Spectroscopic Determination of Water Salinity in Brackish Surface Water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa
Abstract
:1. Introduction
2. Experimental Design
2.1. Materials
2.2. Sampling Location
2.3. On-Site Analysis
2.4. Preparation of Standard Aqueous Solutions
2.5. Atomic Absorption Spectroscopy (AAS) Analysis of Metal Ions
2.6. The Spectroquant Analysis of Anions
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Analysis
3.2. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bessong, P.O.; Nyathi, E.; Mahopo, T.C.; Netshandama, V. Development of the Dzimauli community in Vhembe District, Limpopo Province of South Africa, for the MAL-ED cohort study. Clin. Infect. Dis. 2014, 59, S317–S324. [Google Scholar] [CrossRef] [PubMed]
- Nthunya, L.N.; Masheane, M.L.; Malinga, S.P.; Nxumalo, E.N.; Mamba, B.B.; Mhlanga, S.D. Determination of toxic metals in drinking water sources in the Chief Albert Luthuli Local Municipality in Mpumalanga, South Africa. Phys. Chem. Earth Parts A/B/C 2017, 100, 94–100. [Google Scholar] [CrossRef]
- Frankson, L. Department Ready to Start Giyani Water Project. Available online: http://www.infrastructurene.ws/2015/08/21/department-ready-to-start-giyani-water-project/ (accessed on 24 November 2017).
- Fouche, P.S.O.; Vlok, W.; Roos, J.C.; Luus-Powell, W.; Jooste, A. Establishing the Fishery Potential of Lake Nandoni in the Luvuvhu River, Limpopo Province; WRC Report No. 1925/1/12; Water Research Commission: Gezina, South Africa, 2013; Available online: http://www.wrc.org.za/Knowledge Hub Documents/Research Reports/1925-1-12.pdf (accessed on 13 May 2018).
- Polokwane Hit by Severe Water Shortage. Available online: http://www.infrastructurene.ws/2016/01/11/polokwane-hit-by-severe-water-shortage/ (accessed on 24 July 2018).
- National Groundwater Association (NGWA). Brackish Groundwater; NGWA: Westervill, OH, USA, 2010; Available online: http://www.ngwa.org/Media-Center/briefs/Documents/Brackish_water_info_brief_2010.pdf (accessed on 3 January 2018).
- World Health Organization (WHO). Manganese in Drinking Water—Background Document for Development of WHO, Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Liu, W.C.; Liu, H.M. Assessing the impacts of sea level rise on salinity intrusion and transport time scales in a tidal estuary, Taiwan. Water 2014, 6, 324–344. [Google Scholar] [CrossRef]
- Xing, L.; Huang, L.; Hou, X.; Yang, L.; Chi, G.; Xu, J.; Zhu, H. Groundwater hydrochemical zoning in inland plains and its genetic mechanisms. Water 2018, 10, 752. [Google Scholar] [CrossRef]
- Zuurbier, K.G.; Stuyfzand, P.J. Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface. Hydrol. Earth Syst. Sci. 2017, 21, 1173–1188. [Google Scholar] [CrossRef] [Green Version]
- Cucci, G.; Lacolla, G.; Mastro, M.A.; Caranfa, G. Leaching effect of rainfall on soil under four-year saline water irrigation. Soil Water Res. 2016, 11, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Joshi, D.C.; Toth, T.; Sari, D. Spatial variability of electrical conductivity of soils irrigated with brackish water in the arid region of Rajasthan, India. Ann. Arid Zone 2006, 45, 9–17. [Google Scholar]
- Morillo, J.; Usero, J.; Rosado, D.; El Bakouri, H.; Riaza, A.; Bernaola, F.J. Comparative study of brine management technologies for desalination plants. Desalination 2014, 336, 32–49. [Google Scholar] [CrossRef]
- Clayton, M.E.; Stillwell, A.S.; Webber, M.E. Implementation of brackish groundwater desalination using wind-generated electricity: A case study of the energy-water nexus in Texas. Sustainability 2014, 6, 758–778. [Google Scholar] [CrossRef]
- Anyanwu, P.E.; Gabriel, U.U.; Akinrotimi, O.A.; Bekibele, D.O.; Onunkwo, D.N. Brackish water aquaculture: A veritable tool for the empowerment of Niger Delta communities. Sci. Res. Essays 2007, 2, 295–301. [Google Scholar]
- Cova, A.M.W.; De Freitas, F.T.O.; Viana, P.C.; Rafael, M.R.S.; Neto, A.D.D.A.; Soares, T.M. Content of inorganic solutes in lettuce grown with brackish water in different hydroponic systems. Rev. Bras. Eng. Agrícola e Ambient. 2017, 21, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Jeong, H.; Jeon, J.; Bae, S. Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water 2016, 8, 127. [Google Scholar] [CrossRef]
- Tedengren, M.; Arner, M.; Kautsky, N. Ecophysiology and stress response of marine and brackish water Gammarus species (Crustacea, Amphipoda) to changes in salinity and exposure to cadmium and diesel-oil. Mar. Ecol. Prog. Ser. 1988, 47, 107–116. [Google Scholar] [CrossRef]
- Wu, C.S.; Kam, Y.C. Effects of salinity on the survival, growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zool. Sci. 2009, 26, 476–482. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Yang, Y.; Yang, Y.; Chen, S.; Hu, Q.; Liu, X.; Gao, F. HYDRUS simulation of sustainable brackish water irrigation in a winter wheat-summer maize rotation system in the North China Plain. Water 2017, 9, 536. [Google Scholar] [CrossRef]
- Romanoff, M.; Denison, I.A. Effect of exposure to soils on properties of asbestos-cement pipe. J. Res. Natl. Bur. Stand. 1951, 47, 367–379. [Google Scholar]
- Abu Bakar, B.H.; Wan Ibrahim, M.H.; Megat-Johari, M.A. A review: Durability of fired clay brick masonry wall due to salt attack. Int. J. Integr. Eng. 2011, 1, 111–127. [Google Scholar]
- Netterberg, F.; Bennet, R.A. Blistering and cracking of airport runway surfacing due to salt crystallization. In Proceedings of the 8th Conference onAsphalt Pavements for South. Africa (CAPSA’04), Sun City, South Africa, 11–16 September 2004; Document Tranformation Technologies: Centurion, South Africa, 2014; pp. 1–19. [Google Scholar]
- Tidwell, V.C.; Moreland, B.D.; Zemlick, K.M.; Roberts, B.L.; Passell, H.D.; Jensen, D.; Forsgren, C.; Sehlke, G.; Cook, M.A.; King, C.W.; et al. Mapping water availability, projected use and cost in the western United States. Environ. Res. Lett. 2014, 9, 1–11. [Google Scholar] [CrossRef]
- Paine, J.G. Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, and airborne electromagnetic induction methods. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R. Solid Waste Management and Safe Drinking Water in Context of Mizoram and other States in India; Educreation Publishing: New Delhi, India, 2011; pp. 6–11. [Google Scholar]
- Crompton, T.R. Determination of Metals in Natural and Treated Water; Spon Press: New York, NY, USA, 2002; p. 1108. [Google Scholar]
- Lowe, B.M.; Skylaris, C.K.; Green, N.G. Acid-base dissociation mechanisms and energetics at the silica-water interface: An activationless process. J. Colloid Interface Sci. 2015, 451, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Hassanali, A.; Prakash, M.K.; Eshet, H.; Parrinello, M. On the recombination of hydronium and hydroxide ions in water. Proc. Natl. Acad. Sci. USA 2011, 108, 20410–20415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theeuwes, N.E.; Solcerová, A.; Steeneveld, G.J. Modeling the influence of open water surfaces on the summertime temperature and thermal comfort in the city. J. Geophys. Res. Atmos. 2013, 118, 8881–8896. [Google Scholar] [CrossRef] [Green Version]
- Malmberg, C.G. Electrical conductivity of dilute solutions of ‘sea water’ from 5 to 120 °C. J. Res. Natl. Bur. Stand. A Phys. Chem. 1965, 69, 39–43. [Google Scholar] [CrossRef]
- Rusydi, A.F. Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, 012019. [Google Scholar] [CrossRef]
- Jonsson, J.; Smedfors, K.; Nyholm, L.; Thornell, G. Towards chip-based salinity measurements for small submersibles and biologgers. Int. J. Oceanogr. 2013, 2013, 529674. [Google Scholar] [CrossRef]
- Sharma, A.; Kundu, S.S.; Tariq, H.; Kewalramani, N.; Yadav, R.K. Impact of total dissolved solids in drinking water on nutrient utilisation and growth performance of Murrah buffalo calves. Livest. Sci. 2017, 198, 17–23. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef]
- Eng, M.H.; Ita, M.K.; Urata, K.M. Quantitative analysis of chloride in brackish water: An application to the hyperchromic effect of copper (II) ion with chloride ion. Anal. Sci. 2005, 21, 95–99. [Google Scholar]
- Alley, F.S. Ground-Water Resources for the Future, Desalination of Ground Water: Earth Science Perspectives; USGS Fact Sheet 075-03; U.S. Geological Survey: Denver, CO, USA, 2003. Available online: https://pubs.usgs.gov/fs/fs075-03/ (accessed on 2 January 2018).
- Harris, R.R. Aspects of sodium regulation in a brackish-water and a marine species of the isopod genus Sphaeroma. Mar. Biol. 1977, 12, 18–27. [Google Scholar]
- Srimuk, P.; Lee, J.; Fleischmann, S.; Choudhury, S.; Jäckel, N.; Zeiger, M.; Kim, C.; Aslan, M.; Presser, V. Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide. J. Mater. Chem. A 2017, 5, 15640–15649. [Google Scholar] [CrossRef]
- Delsman, J.R. Saline Groundwater—Surface Water Interaction in Coastal Lowlands; IOS Press: Amsterdam, The Netherlands, 2015; pp. 3–194. [Google Scholar]
- Scarborough, R.B. Reconnaissance Geology: Salt River—From Roosevelt Dam to Granite Reef Dam, Central Arizona; 1981; Arizona Geological Survey: Tucson, AZ, USA, 2018. Available online: http://repository.azgs.az.gov/sites/default/files/dlio/files/nid1323/ofr-81-30_print_version.pdf (accessed on 9 July 2018).
- Westbrook, S.J.; Rayner, J.L.; Davis, G.B.; Clement, T.P.; Bjerg, P.L.; Fisher, S.J. Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary. J. Hydrol. 2005, 302, 255–269. [Google Scholar] [CrossRef]
- Nergis, Y.; Sharif, M.; Choudhry, A.F.; Hussain, A.; Butt, J.A. Impact of industrial and sewage effluents on Karachi coastal water and sediment quality. Middle-East J. Sci. Res. 2012, 11, 1443–1454. [Google Scholar]
- Nthunya, L.N.; Masheane, M.L.; Malinga, S.P.; Edward, N.; Barnard, T.G.; Kao, M.; Tetana, Z.N.; Mhlanga, S.D. A greener approach to prepare electrospun antibacterial cyclodextrin/cellulose acetate nanofibres for removal of bacteria from water. ACS Sustain. Chem. Eng. 2016, 5, 153–160. [Google Scholar] [CrossRef]
- Owili, M.A. Assessment of Impact of Sewage Effluents on Coastal Water Quality in Hafnarfjordur, Iceland; Icelandic Fisheries Laboratories: Reykjavik, Iceland, 2003. [Google Scholar]
- Nthunya, L.N.; Masheane, M.L.; Malinga, S.P.; Barnard, T.G.; Nxumalo, E.N.; Mamba, B.B.; Mhlanga, S.D. UV-assisted reduction of in situ electrospun antibacterial chitosan-based nanofibres for removal of bacteria from water. RSC Adv. 2016, 6, 95936–95943. [Google Scholar] [CrossRef]
- Nakwafile, A.N. Salinisation Source(s) and Mechanism(s) in Shallow Alluvial Aquifers along the Buffels River, Northern Cape Province, South Africa. Master’s Thesis, Stellenbosch University, Western Cape Province, South Africa, 2015. [Google Scholar]
- WHO. Ammonia in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2003; Available online: http://www.who.int/water_sanitation_health/dwq/ammonia.pdf (accessed on 9 July 2018).
- Department of Water Affairs and Forestry (DWAF). South African Water Quality Guidelines: Volume 1 Domestic Use; DWAF: Pretoria, South Africa, 1996. Available online: http://www.dwa.gov.za/iwqs/wq_guide/Pol_saWQguideFRESH_vol1_Domesticuse.PDF (accessed on 9 July 2018).
Sampling Point | GPS Coordinates | Description | |
---|---|---|---|
Dam Inlet | −22.99835° South | 30.51354° East | The dam entrance located nearby the bridge between the dam and Luvuvhu River in Muledane village. |
Dam Near-Inlet | −22.99687° South | 30.54071° East | The middle entrance was located 4.6 km away from the dam exit. |
Dam Near-Outlet | −22.98237° South | 30.57476° East | The middle exit point was located at 2.7 km away from the dam exit. |
Dam Outlet | −22.97901° South | 30.59336° East | The dam exit is 100 m away from the Thohoyandou bridge. |
Municipal WTP | −23.255636° South | 30.77175° East | This treatment plant sources the water from Nandoni Dam for purification and distribution. The water is collected at the rate of 60 × 106 L/day within the distance of 30.7 km from the dam closer to the outlet |
Sampling Point | Sampling Season | Conductivity µS/cm | TDS mg/L | Salinity mg/L | Temperature K | pH |
---|---|---|---|---|---|---|
Dam inlet | Spring | 1468 ± 68 | 954 ± 42 | 712 ± 33 | 292 ± 6 | 7.95 ± 0.34 |
Summer | 1395 ± 45 | 903 ± 45 | 633 ± 12 | 298 ± 9 | 8.23 ± 0.45 | |
Autumn | 1321 ± 52 | 833 ± 33 | 541 ± 36 | 299 ± 8 | 7.65 ± 0.21 | |
Winter | 1352 ± 23 | 912 ± 42 | 625 ± 25 | 294 ± 5 | 8.02 ± 0.35 | |
Dam Mid-Inlet | Spring | 1835 ± 65 | 910 ± 21 | 751 ± 10 | 293 ± 5 | 7.61 ± 0.22 |
Summer | 1820 ± 12 | 958 ± 33 | 610 ± 18 | 298 ± 10 | 7.83 ± 0.32 | |
Autumn | 1785 ± 44 | 821 ± 49 | 532 ± 34 | 297 ± 4 | 7.78 ± 0.11 | |
Winter | 1798 ± 35 | 897 ± 22 | 586 ± 35 | 292 ± 12 | 7.36 ± 0.24 | |
Dam Mid-outlet | Spring | 1358 ± 54 | 864 ± 12 | 469 ± 17 | 294 ± 3 | 7.15 ± 0.09 |
Summer | 1318 ± 25 | 852 ± 33 | 417 ± 9 | 298 ± 10 | 7.90 ± 0.42 | |
Autumn | 1301 ± 56 | 812 ± 44 | 364 ± 18 | 299 ± 18 | 8.11 ± 0.23 | |
Winter | 1311 ± 43 | 798 ± 43 | 523 ± 38 | 293 ± 7 | 7.35 ± 0.35 | |
Dam Outlet | Spring | 1685 ± 63 | 985 ± 13 | 716 ± 14 | 292 ± 4 | 7.73 ± 0.34 |
Summer | 1717 ± 32 | 1194 ± 32 | 634 ± 23 | 298 ± 14 | 7.82 ± 0.14 | |
Autumn | 1699 ± 23 | 1154 ± 41 | 445 ± 32 | 298 ± 3 | 7.25 ± 0.41 | |
Winter | 1765 ± 55 | 1245 ± 34 | 526 ± 22 | 292 ± 5 | 7.35 ± 0.32 | |
WTP TW | Spring | 772 ± 32 | 646 ± 29 | 309 ± 33 | 291 ± 11 | 7.35 ± 0.13 |
Summer | 565 ± 66 | 705 ± 36 | 258 ± 8 | 297 ± 8 | 7.84 ± 0.35 | |
Autumn | 721 ± 41 | 882 ± 18 | 221 ± 42 | 298 ± 4 | 8.13 ± 0.28 | |
Winter | 685 ± 65 | 695 ± 10 | 336 ± 35 | 291 ± 5 | 7.68 ± 0.35 | |
WTP RW | Spring | 985 ± 33 | 715 ± 34 | 408 ± 31 | 292 ± 10 | 7.89 ± 0.21 |
Summer | 912 ± 47 | 722 ± 35 | 361 ± 12 | 297 ± 8 | 8.19 ± 0.17 | |
Autumn | 854 ± 69 | 717 ± 14 | 325 ± 27 | 296 ± 4 | 8.21 ± 0.31 | |
Winter | 978 ± 45 | 698 ± 36 | 464 ± 21 | 291 ± 11 | 7.77 ± 0.10 |
Water Salinity | Physico-Chemical Properties | ||
---|---|---|---|
Conductivity (µS/cm) | TDS (mg/L) | Salinity (mg/L) | |
Fresh water | 150–500 | <1000 | <500 |
Brackish water | 1000–80,000 | 1000–5000 | 500–17,000 |
Sea water | 55,000 | 30,000–40,000 | 35,000–40,000 |
Brine | ≥55,000 | ≥100,000 | ≥50,000 |
Ions | Concentration (mg/L) | ||
---|---|---|---|
Fresh Water | Brackish Water | Sea Water | |
Chloride | 1–250 | 500–5000 | 19,000 |
Nitrate | 0–18 | – | 0.7 |
Phosphate | – | – | 0.1 |
Sulphate | – | 10–800 | – |
Fluoride | – | – | 1.4 |
Iodide | – | – | 0.05 |
Ammonium | – | – | 0.05 |
Hydrogen carbonate | – | 100–360 | 145 |
Sodium | ≥200 | 5–800 | 10,000 |
Magnesium | – | 5–80 | 1290 |
Calcium | – | 30–350 | 400 |
Sampling Point | Sampling Season | Cl− mg/L | NO3− mg/L | PO43− mg/L | SO42− mg/L | F− mg/L | I− mg/L | NH4+ mg/L | Na+ mg/L | Mg2+ mg/L | Ca2+ mg/L | HCO3− mg/L |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dam Inlet | Spring | 59.5 | 8.06 | 1.25 | 0.3 | 0.08 | 1.32 | 0.32 | 34.86 | 6.76 | 25.21 | 44.35 |
Summer | 64.6 | 16.12 | 1.01 | 0.6 | 0.06 | 1.04 | 1.32 | 38.63 | 6.68 | 22.25 | 33.25 | |
Autumn | 25.5 | 7.02 | 1.48 | 0.9 | 0.06 | 1.56 | 2.21 | 16.08 | 4.51 | 19.09 | 41.32 | |
Winter | 35.7 | 5.98 | 1.25 | 0.6 | 0.05 | 1.29 | 2.28 | 15.86 | 4.42 | 29.79 | 45.65 | |
Dam Mid-Inlet | Spring | 110.7 | 19.5 | 1.73 | 0.3 | 0.09 | 1.82 | 3.45 | 55.33 | 4.50 | 19.36 | 38.25 |
Summer | 76.5 | 20.54 | 1.12 | 0.6 | 0.04 | 1.04 | 2.45 | 45.86 | 6.47 | 16.85 | 22.65 | |
Autumn | 30.6 | 7.54 | 1.51 | 0.3 | 0.09 | 1.56 | 5.25 | 17.65 | 9.54 | 17.66 | 24.85 | |
Winter | 37.4 | 5.72 | 1.69 | 0.9 | 0.08 | 1.82 | 4.26 | 17.27 | 17.99 | 20.54 | 35.45 | |
Dam Mid-Outlet | Spring | 114.1 | 20.28 | 1.250 | 0.6 | 0.07 | 1.35 | 4.24 | 34.75 | 7.57 | 15.49 | 19.52 |
Summer | 76.5 | 31.46 | 1.75 | 0.3 | 0.06 | 1.82 | 5.12 | 44.89 | 7.65 | 13.59 | 22.58 | |
Autumn | 69.7 | 5.21 | 1.54 | 0.9 | 0.05 | 1.56 | 4.69 | 18.86 | 5.11 | 12.66 | 17.96 | |
Winter | 37.4 | 5.98 | 1.42 | 0.6 | 0.05 | 1.56 | 4.19 | 18.90 | 5.41 | 14.35 | 24.85 | |
Dam Outlet | Spring | 54.4 | 3.64 | 1.54 | 0.6 | 0.06 | 1.56 | 5.26 | 34.69 | 5.29 | 13.25 | 27.85 |
Summer | 76.5 | 8.32 | 1.53 | 1.8 | 0.09 | 1.56 | 4.19 | 30.78 | 5.16 | 10.26 | 22.58 | |
Autumn | 44.2 | 5.98 | 1.75 | 0.9 | 0.05 | 1.82 | 4.78 | 21.84 | 3.77 | 6.585 | 23.55 | |
Winter | 35.7 | 5.46 | 1.44 | 0.6 | 0.06 | 1.56 | 4.26 | 19.74 | 10.81 | 12.26 | 26.25 | |
TP TW | Spring | 134.7 | 24.96 | 4.08 | 0.3 | 0.07 | 4.16 | 3.02 | 86.16 | 0.16 | 25.25 | 46.85 |
Summer | 73.1 | 6.24 | 2.23 | 0.6 | 0.16 | 2.08 | 2.23 | 42.16 | 0.32 | 23.54 | 33.58 | |
Autumn | 64.6 | 3.12 | 2.25 | 0.3 | 0.17 | 2.34 | 5.32 | 37.99 | 0.51 | 24.33 | 41.33 | |
Winter | 57.8 | 2.86 | 2.15 | 0.9 | 0.18 | 2.08 | 5.12 | 37.84 | 0.22 | 26.33 | 12.25 | |
TP RW | Spring | 81.6 | 7.28 | 4.51 | 0.3 | 0.17 | 4.68 | 4.98 | 80.06 | 0.78 | 19.33 | 32.53 |
Summer | 73.1 | 8.06 | 0.25 | 0.6 | 0.21 | 0.26 | 5.96 | 40.07 | 1.09 | 15.25 | 26.54 | |
Autumn | 25.5 | 8.84 | 1.24 | 0.3 | 0.18 | 1.28 | 3.24 | 14.56 | 0.66 | 14.69 | 21.48 | |
Winter | 35.7 | 8.32 | 1.49 | 0.9 | 0.15 | 1.56 | 3.02 | 14.82 | 1.15 | 18.23 | 33.85 |
Parameters | Mean | Sum of Squares | df | Mean Square | F | Sig. | t | p-Value |
---|---|---|---|---|---|---|---|---|
Conductivity (µS/cm) | 1308.330 | 18,203.333 | 3 | 6067.778 | 0.032 | 0.992 | 3.685 | 0.001 |
TDS (mg/L) | 1153.174 | 5759.111 | 3 | 1919.704 | 0.067 | 0.977 | −4.019 | 0.001 |
Salinity (mg/L) | 490.250 | 83,333.333 | 3 | 27,777.778 | 1.271 | 0.311 | −0.38 | 0.707 |
Chloride (mg/L) | 62.296 | 11,361.031 | 3 | 3787.010 | 9.866 | 0.000 | −74.532 | 0.000 |
Nitrate (mg/L) | 10.270 | 441.919 | 3 | 147.306 | 3.327 | 0.040 | 6.299 | 0.000 |
Phosphate (mg/L) | 1.728 | 4.063 | 3 | 1.354 | 1.967 | 0.151 | 8.948 | 0.000 |
Sulphate (mg/L) | 0.625 | 0.495 | 3 | 0.165 | 1.507 | 0.243 | −134.421 | 0.000 |
Fluoride (mg/L) | 0.971 | 0.001 | 3 | 0.000 | 0.063 | 0.979 | −119.98 | 0.000 |
Iodide (mg/L) | 1.778 | 4.394 | 3 | 1.465 | 1.967 | 0.151 | 9.237 | 0.000 |
Ammonium (mg/L) | 3.998 | 2.000 | 3 | 0.667 | 0.290 | 0.832 | 12.742 | 0.000 |
Sodium (mg/L) | 34.152 | 4763.786 | 3 | 1587.929 | 8.557 | 0.001 | 7.441 | 0.000 |
Magnesium (mg/L) | 4.855 | 27.178 | 3 | 9.059 | 0.483 | 0.698 | −0.165 | 0.870 |
Calcium (mg/L) | 18.173 | 80.638 | 3 | 26.879 | 0.809 | 0.504 | −10.178 | 0.000 |
Hydrogen carbonate (mg/L) | 29.972 | 218.136 | 3 | 72.712 | 0.787 | 0.515 | −36.206 | 0.000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nthunya, L.N.; Maifadi, S.; Mamba, B.B.; Verliefde, A.R.; Mhlanga, S.D. Spectroscopic Determination of Water Salinity in Brackish Surface Water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa. Water 2018, 10, 990. https://doi.org/10.3390/w10080990
Nthunya LN, Maifadi S, Mamba BB, Verliefde AR, Mhlanga SD. Spectroscopic Determination of Water Salinity in Brackish Surface Water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa. Water. 2018; 10(8):990. https://doi.org/10.3390/w10080990
Chicago/Turabian StyleNthunya, Lebea N., Sebabatso Maifadi, Bhekie B. Mamba, Arne R. Verliefde, and Sabelo D. Mhlanga. 2018. "Spectroscopic Determination of Water Salinity in Brackish Surface Water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa" Water 10, no. 8: 990. https://doi.org/10.3390/w10080990
APA StyleNthunya, L. N., Maifadi, S., Mamba, B. B., Verliefde, A. R., & Mhlanga, S. D. (2018). Spectroscopic Determination of Water Salinity in Brackish Surface Water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa. Water, 10(8), 990. https://doi.org/10.3390/w10080990