Validation of ECMWF Multi-Layer Reanalysis Soil Moisture Based on the OzNet Hydrology Network
Abstract
1. Introduction
2. Data Resources and Method
2.1. Study Area and in Situ Measurements
2.2. Soil Moisture Data from ERA-Iterim
2.3. Method
3. Results and Discussion
3.1. Performance of ERA-Iterim Soil Moisure at Each Network
3.1.1. Adelong
3.1.2. Kyeamba
3.1.3. Yanco
3.2. Inter-Comparison of Different Layers
3.3. Relationship between Model Error and Local Environmental Factors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vereevken, H.; Maes, J.; Feyen, J.; Darius, P. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 1989, 148, 389–403. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.S.; Miller, S.; Ardanuy, P. Spaceborne soil moisture estimation at high resolution: A microwave-optical/ir synergistic approach. Int. J. Remote Sens. 2003, 24, 4599–4622. [Google Scholar] [CrossRef]
- Qiu, J.; Gao, Q.; Wang, S.; Su, Z. Comparison of temporal trends from multiple soil moisture data sets and precipitation: The implication of irrigation on regional soil moisture trend. Int. J. Appl. Earth Obs. Geoinform. 2016, 48, 17–27. [Google Scholar] [CrossRef]
- Su, B.; Wang, A.; Wang, G.; Wang, Y.; Jiang, T. Spatiotemporal variations of soil moisture in the tarim river basin, china. Int. J. Appl. Earth Obs. Geoinform. 2016, 48, 122–130. [Google Scholar] [CrossRef]
- Western, A.W.; Zhou, S.-L.; Grayson, R.B.; McMahon, T.A.; Blöschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The soil moisture and ocean salinity (smos) mission. IEEE Trans. Geosci. Remote Sens. 2002, 39, 1729–1735. [Google Scholar] [CrossRef]
- Njoku, E.G.; Wilson, W.J.; Yueh, S.H.; Dinardo, S.J. Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during sgp99. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2659–2673. [Google Scholar] [CrossRef]
- Koike, T.; Nakamura, Y.; Kaihotsu, I.; Davaa, G.; Matsuura, N.; Tamagawa, K.; Fujii, H. Development of an advanced microwave scanning radiometer (AMSR-E) algorithm for soil moisture and vegetation water content. Proc. Hydraul. Eng. 2004, 48, 217–222. [Google Scholar] [CrossRef]
- De Jeu, R.; Wagner, W.; Holmes, T.; Dolman, A.; Van De Giesen, N.; Friesen, J. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 2008, 29, 399–420. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.; O’Neill, P.; Spencer, M.; Jackson, T.; Entin, J.; Im, E.; Kellogg, K. The soil moisture active/passive mission (smap). IEEE Int. Geosci. Remote Sens. Symp. 2008. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Bitar, A.A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The smos soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Kellogg, K.; Njoku, E.; Thurman, S.; Edelstein, W.; Jai, B.; Spencer, M.; Chen, G.S.; Entekhabi, D.; O′Neill, P.; Piepmeier, J. Nasa′s soil moisture active and passive (smap) mission. In Proceedings of the 2010 SPIE Remote Sensing Conference, Toulouse, France, 4–5 June 2010. [Google Scholar]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The smos mission: New tool for monitoring key elements ofthe global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Cui, Y.; Long, D.; Hong, Y.; Zeng, C.; Zhou, J.; Han, Z.; Liu, R.; Wan, W. Validation and reconstruction of fy-3b/mwri soil moisture using an artificial neural network based on reconstructed modis optical products over the tibetan plateau. J. Hydrol. 2016, 543, 242–254. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. Esa cci soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Sabater, J.M.; Jarlan, L.; Calvet, J.-C.; Bouyssel, F.; Rosnay, P.D. From near-surface to root-zone soil moisture using different assimilation techniques. J. Hydrometeorol. 2007, 8, 194–206. [Google Scholar] [CrossRef]
- Calvet, J.-C.; Noilhan, J.; Bessemoulin, P. Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J. Appl. Meteorol. 1998, 37, 371–386. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Root-zone soil moisture estimation using data-driven methods. Water Resour. Res. 2014, 50, 2946–2962. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The era-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Uppala, S.M.; KÅllberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The era-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar] [CrossRef]
- Wagner, W. Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J. Geophys. Res. 2003, 108, 4611–4620. [Google Scholar] [CrossRef]
- Draper, C.S.; Walker, J.P.; Steinle, P.J.; de Jeu, R.A.M.; Holmes, T.R.H. An evaluation of amsr–e derived soil moisture over australia. Remote Sens. Environ. 2009, 113, 703–710. [Google Scholar] [CrossRef]
- Bitar, A.A.; Leroux, D.; Kerr, Y.H.; Merlin, O.; Richaume, P.; Sahoo, A.; Wood, E.F. Evaluation of smos soil moisture products over continental U.S. Using the scan/snotel network. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1572–1586. [Google Scholar] [CrossRef]
- Peng, J.; Niesel, J.; Loew, A.; Zhang, S.; Wang, J. Evaluation of satellite and reanalysis soil moisture products over southwest china using ground-based measurements. Remote Sens. 2015, 7, 15729–15747. [Google Scholar] [CrossRef]
- Griesfeller, A.; Lahoz, W.A.; de Jeu, R.A.M.; Dorigo, W.; Haugen, L.E.; Svendby, T.M.; Wagner, W. Evaluation of satellite soil moisture products over norway using ground-based observations. Int. J. Appl. Earth Obs. Geoinform. 2016, 45, 155–164. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Zhou, P.; Shao, Y.; Gao, S. Validation analysis of smap and amsr2 soil moisture products over the united states using ground-based measurements. Remote Sens. 2017, 9, 104. [Google Scholar] [CrossRef]
- Kędzior, M.; Zawadzki, J. Smos data as a source of the agricultural drought information: Case study of the vistula catchment, poland. Geoderma 2017, 306, 167–182. [Google Scholar] [CrossRef]
- Kędzior, M.; Zawadzki, J. Comparative study of soil moisture estimations from smos satellite mission, gldas database, and cosmic-ray neutrons measurements at cosmos station in eastern poland. Geoderma 2016, 283, 21–31. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the tibetan plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. [Google Scholar] [CrossRef]
- Fang, L.; Hain, C.R.; Zhan, X.; Anderson, M.C. An inter-comparison of soil moisture data products from satellite remote sensing and a land surface model. Int. J. Appl. Earth Obs. Geoinform. 2016, 48, 37–50. [Google Scholar] [CrossRef]
- Albergel, C.; De Rosnay, P.; Balsamo, G.; Isaksen, L.; Muñozsabater, J. Soil moisture analyses at ecmwf: Evaluation using global ground-based in situ observations. J. Hydrometeorol. 2012, 13, 1442–1460. [Google Scholar] [CrossRef]
- Penna, D.; Brocca, L.; Borga, M.; Dalla Fontana, G. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. J. Hydrol. 2013, 477, 55–71. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Ceballos, A. Temporal stability of soil moisture in a large-field experiment in spain. Soil Sci. Soc. Am. J. 2003, 67, 1647–1656. [Google Scholar] [CrossRef]
- Smith, A.B.; Walker, J.P.; Western, A.W.; Young, R.I.; Ellett, K.M.; Pipunic, R.C.; Grayson, R.B.; Siriwardena, L.; Chiew, F.H.S.; Richter, H. The murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 2012, 48, 7701. [Google Scholar] [CrossRef]
- Albergel, C.; Dorigo, W.; Reichle, R.H.; Balsamo, G.; de Rosnay, P.; Muñoz-Sabater, J.; Isaksen, L.; de Jeu, R.; Wagner, W. Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeorol. 2013, 14, 1259–1277. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. Era-interim/land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef]
- Paris Anguela, T.; Zribi, M.; Hasenauer, S.; Habets, F.; Loumagne, C. Analysis of surface and root-zone soil moisture dynamics with ers scatterometer and the hydrometeorological model safran-isba-modcou at grand morin watershed (France). Hydrol. Earth Syst. Sci. 2008, 12, 1415–1424. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Guan, H.; Zhou, X. Different responses of modis-derived ndvi to root-zone soil moisture in semi-arid and humid regions. J. Hydrol. 2007, 340, 12–24. [Google Scholar] [CrossRef]
- Choi, M.; Jacobs, J.M. Soil moisture variability of root zone profiles within smex02 remote sensing footprints. Adv. Water Resour. 2007, 30, 883–896. [Google Scholar] [CrossRef]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Chen, K.S. Simulation and smap observation of sun-glint over the land surface at the l-band. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2589–2604. [Google Scholar] [CrossRef]
- Jin, M.; Zheng, X.; Jiang, T.; Li, X.; Li, X.J.; Zhao, K. Evaluation and improvement of smos and smap soil moisture products for soils with high organic matter over a forested area in northeast china. Remote Sens. 2017, 9, 387. [Google Scholar] [CrossRef]
- Jing, W.; Song, J.; Zhao, X. A comparison of ecv and smos soil moisture products based on oznet monitoring network. Remote Sens. 2018, 10, 703. [Google Scholar] [CrossRef]
- Bicheron, P.; Amberg, V.; Bourg, L.; Petit, D.; Huc, M.; Miras, B.; Brockmann, C.; Hagolle, O.; Delwart, S.; Ranera, F. Geolocation assessment of meris globcover orthorectified products. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2972–2982. [Google Scholar] [CrossRef]
- Fischer, G.; Velthuizen, H.V.; Shah, M.; Nachtergaele, F. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); International Institute for Applied Systems Analysis (IIASA): Laxenburg; Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Douville, H.; Viterbo, P.; Mahfouf, J.-F.; Beljaars, A.C.M. Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using fife data. Mon. Weather Rev. 2000, 128, 1733–1756. [Google Scholar] [CrossRef]
Layers of ERA Soil Moisture | Depths of OzNet Soil Moisture |
---|---|
Layer 1 (0–7 cm) | 0–5 cm or 0–8 cm |
Layer 2 (7–28 cm) | 0–30 cm |
Layer 3 (28–100 cm) | Average of 30–60 cm and 60–90 cm |
Site Number | Latitude | Longitude | Land Cover Type |
---|---|---|---|
A1 | −35.4975 | 148.106488 | Savannas |
A2 | −35.4283 | 148.131626 | Grasslands |
A3 | −35.3997 | 148.101076 | Grasslands |
A4 | −35.3731 | 148.066082 | Grasslands |
A5 | −35.3602 | 148.085427 | Croplands |
Soil Layers | Seasons | R | RMSE (m3·m−3) | ubRMSD (m3·m−3) | Bias |
---|---|---|---|---|---|
Layer 1 | All seasons | 0.727 | 0.104 | 0.037 | 0.627 |
Spring | 0.685 | 0.104 | 0.039 | 0.558 | |
Summer | 0.839 | 0.118 | 0.025 | 0.976 | |
Autumn | 0.521 | 0.113 | 0.036 | 0.819 | |
Winter | 0.725 | 0.066 | 0.022 | 0.293 | |
Layer 2 | All seasons | 0.816 | 0.040 | 0.035 | 0.081 |
Spring | 0.853 | 0.033 | 0.030 | 0.055 | |
Summer | 0.881 | 0.049 | 0.024 | 0.214 | |
Autumn | 0.590 | 0.047 | 0.033 | 0.170 | |
Winter | 0.753 | 0.026 | 0.022 | −0.048 | |
Layer 3 | All seasons | 0.575 | 0.078 | 0.043 | −0.202 |
Spring | 0.623 | 0.070 | 0.040 | −0.173 | |
Summer | 0.760 | 0.068 | 0.040 | −0.177 | |
Autumn | 0.749 | 0.084 | 0.035 | −0.244 | |
Winter | 0.045 | 0.089 | 0.052 | −0.216 |
Site Number | Latitude | Longitude | Land Cover Type | Site Number | Latitude | Longitude | Land Cover Type |
---|---|---|---|---|---|---|---|
K2 | −35.4353 | 147.531 | Croplands | K8 | −35.3163 | 147.344 | Grasslands |
K3 | −35.4341 | 147.569 | Grasslands | K10 | −35.324 | 147.535 | Croplands |
K4 | −35.4269 | 147.6 | Croplands | K11 | −35.272 | 147.429 | Grasslands |
K5 | −35.4193 | 147.604 | Croplands | K12 | −35.2275 | 147.485 | Croplands |
K6 | −35.3898 | 147.457 | Grasslands | K13 | −35.2389 | 147.533 | Grasslands |
K7 | −35.3939 | 147.566 | Grasslands | K14 | −35.1249 | 147.497 | Croplands |
Soil Layers | Seasons | R | RMSE (m3·m−3) | ubRMSD (m3·m−3) | Bias |
---|---|---|---|---|---|
Layer 1 | All seasons | 0.839 | 0.079 | 0.060 | 0.319 |
Spring | 0.840 | 0.086 | 0.059 | 0.379 | |
Summer | 0.884 | 0.080 | 0.049 | 0.472 | |
Autumn | 0.843 | 0.086 | 0.036 | 0.632 | |
Winter | 0.671 | 0.060 | 0.060 | −0.023 | |
Layer 2 | All seasons | 0.792 | 0.064 | 0.038 | 0.310 |
Spring | 0.781 | 0.078 | 0.042 | 0.392 | |
Summer | 0.819 | 0.065 | 0.030 | 0.406 | |
Autumn | 0.794 | 0.069 | 0.027 | 0.468 | |
Winter | 0.761 | 0.035 | 0.031 | 0.083 | |
Layer 3 | All seasons | 0.682 | 0.066 | 0.033 | −0.210 |
Spring | 0.830 | 0.048 | 0.023 | −0.149 | |
Summer | 0.689 | 0.059 | 0.029 | −0.201 | |
Autumn | 0.702 | 0.066 | 0.035 | −0.224 | |
Winter | 0.617 | 0.083 | 0.031 | −0.264 |
Site Number | Latitude | Longitude | Land Cover Type | Site Number | Latitude | Longitude | Land Cover Type |
---|---|---|---|---|---|---|---|
Y1 | −34.6289 | 145.849 | Croplands | Y8 | −34.847 | 146.414 | Croplands |
Y2 | −34.6548 | 146.11 | Grasslands | Y9 | −34.9678 | 146.016 | Grasslands |
Y3 | −34.6208 | 146.424 | Croplands | Y10 | −35.0054 | 146.31 | Grasslands |
Y4 | −34.7194 | 146.02 | Croplands | Y11 | −35.1098 | 145.936 | Grasslands |
Y5 | −34.7284 | 146.293 | Grasslands | Y12 | −35.0696 | 146.169 | Croplands |
Y6 | −34.8426 | 145.867 | Grasslands | Y13 | −35.0903 | 146.306 | Grasslands |
Y7 | −34.8518 | 146.115 | Open shrublands |
Soil Layers | Seasons | R | RMSE (m3·m−3) | ubRMSD (m3·m−3) | Bias |
---|---|---|---|---|---|
Layer 1 | All seasons | 0.840 | 0.103 | 0.047 | 0.741 |
Spring | 0.847 | 0.106 | 0.053 | 0.726 | |
Summer | 0.832 | 0.106 | 0.050 | 0.921 | |
Autumn | 0.755 | 0.111 | 0.041 | 1.024 | |
Winter | 0.798 | 0.083 | 0.038 | 0.420 | |
Layer 2 | All seasons | 0.738 | 0.045 | 0.044 | 0.022 |
Spring | 0.768 | 0.039 | 0.039 | 0.013 | |
Summer | 0.742 | 0.047 | 0.047 | −0.010 | |
Autumn | 0.700 | 0.042 | 0.037 | 0.105 | |
Winter | 0.665 | 0.050 | 0.050 | −0.006 | |
Layer 3 | All seasons | 0.559 | 0.076 | 0.043 | −0.231 |
Spring | 0.821 | 0.072 | 0.040 | −0.211 | |
Summer | 0.716 | 0.083 | 0.038 | −0.276 | |
Autumn | 0.812 | 0.085 | 0.035 | −0.281 | |
Winter | 0.220 | 0.065 | 0.048 | −0.161 |
Soil Layers | Land Cover Type | R | RMSE (m3·m−3) | UbRMSD (m3·m−3) | Bias | Number of Stations |
---|---|---|---|---|---|---|
Soil layer 1 | Croplands | 0.78 | 0.11 | 0.06 | 0.73 | 12 |
Grasslands | 0.77 | 0.11 | 0.06 | 0.77 | 16 | |
Open shrublands | 0.79 | 0.13 | 0.04 | 1.38 | 1 | |
Savannas | 0.79 | 0.08 | 0.04 | 0.38 | 1 | |
Soil layer 2 | Croplands | 0.74 | 0.08 | 0.05 | 0.34 | 12 |
Grasslands | 0.72 | 0.08 | 0.05 | 0.28 | 16 | |
Open shrublands | 0.60 | 0.06 | 0.05 | 0.17 | 1 | |
Savannas | 0.75 | 0.05 | 0.05 | −0.08 | 1 | |
Soil layer 3 | Croplands | 0.60 | 0.10 | 0.04 | −0.14 | 12 |
Grasslands | 0.61 | 0.08 | 0.04 | −0.12 | 16 | |
Open shrublands | 0.59 | 0.04 | 0.03 | −0.15 | 1 | |
Savannas | 0.21 | 0.12 | 0.06 | −0.30 | 1 |
Soil Layers | Land Cover Type | R | RMSE (m3·m−3) | UbRMSD (m3·m−3) | Bias | Number of Stations |
---|---|---|---|---|---|---|
Soil layer 1 | Loamy sand | 0.76 | 0.11 | 0.06 | 0.77 | 9 |
Sandy clay loam | 0.73 | 0.13 | 0.04 | 1.07 | 2 | |
Silty loam | 0.76 | 0.12 | 0.07 | 0.81 | 11 | |
Sandy loam | 0.82 | 0.10 | 0.05 | 0.59 | 8 | |
Soil layer 2 | Loamy sand | 0.64 | 0.09 | 0.07 | 0.06 | 9 |
Sandy clay loam | 0.79 | 0.07 | 0.05 | 0.18 | 2 | |
Silty loam | 0.73 | 0.07 | 0.05 | 0.31 | 11 | |
Sandy loam | 0.81 | 0.08 | 0.04 | 0.55 | 8 | |
Soil layer 3 | Loamy sand | 0.50 | 0.09 | 0.04 | -0.22 | 9 |
Sandy clay loam | 0.52 | 0.10 | 0.05 | -0.25 | 2 | |
Silty loam | 0.58 | 0.11 | 0.04 | −0.20 | 11 | |
Sandy loam | 0.72 | 0.06 | 0.03 | 0.07 | 8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, W.; Song, J.; Zhao, X. Validation of ECMWF Multi-Layer Reanalysis Soil Moisture Based on the OzNet Hydrology Network. Water 2018, 10, 1123. https://doi.org/10.3390/w10091123
Jing W, Song J, Zhao X. Validation of ECMWF Multi-Layer Reanalysis Soil Moisture Based on the OzNet Hydrology Network. Water. 2018; 10(9):1123. https://doi.org/10.3390/w10091123
Chicago/Turabian StyleJing, Wenlong, Jia Song, and Xiaodan Zhao. 2018. "Validation of ECMWF Multi-Layer Reanalysis Soil Moisture Based on the OzNet Hydrology Network" Water 10, no. 9: 1123. https://doi.org/10.3390/w10091123
APA StyleJing, W., Song, J., & Zhao, X. (2018). Validation of ECMWF Multi-Layer Reanalysis Soil Moisture Based on the OzNet Hydrology Network. Water, 10(9), 1123. https://doi.org/10.3390/w10091123