Building ANN-Based Regional Multi-Step-Ahead Flood Inundation Forecast Models
Abstract
:1. Introduction
2. Study Area and Materials
3. Forecast Models
3.1. Simulation Model
- (1)
- Observed distribution: 8 real events (rainfall data).
- (2)
- Synthetic distribution: a total of 12 designed events were generated, based on different combinations of rainfall durations (12, 24, 48 and 72 h) and return periods (20, 50 and 100 years) at main gauge stations.
3.2. ANN-Based Models
3.2.1. Self-Organizing Map (SOM)
3.2.2. Recurrent Configuration of Nonlinear Autoregressive with Exogenous Inputs (RNARX)
3.3. ANNs-Based Regional Inundation Depth Forecasting
3.4. Evaluation Indexes
4. Results and Discussion
4.1. SOM Clustering
4.2. Forecasting Average Regional Inundation Depths (ARID)
4.3. ANNs-Based Models for Forecasting Regional Inundation Maps
4.4. Development of the Flood Early Warning System
5. Conclusions
- (1)
- The input datasets for the SOM consist of high-dimensional spatial inundation depths (with a grid resolution of 75 m × 75 m) of the study area obtained from the 2-D simulation model based on a number of real storm events. The main features of the spatial inundation distributions can be well distinguished by an SOM with 4 × 4 neurons to obtain a distinguishable topology. The SOM network can effectively cluster the high-dimensional (10,744 grids) inundation depths to extract and present their topological structures.
- (2)
- The results suggest that the RNARX network configured with current regional rainfall information and the model’s recurrent output can well capture the main features of the input-output patterns to provide stable and reliable forecasts of ARIDs.
- (3)
- The proposed model integrates the favorable essence of both networks (SOM & RNARX) and fuses their corresponding results to provide real-time visible regional multi-step-ahead flood inundation maps with high resolution; their nowcasts are reliable and adequate (with small RMSE and high R2 values).
- (4)
- Regarding the execution efficiency of the developed system for the study area, the system can very quickly (in just a few seconds) carry out three to twelve-hour-ahead forecasting of area-wide inundation maps and thereby lead to real-time flood forecasting.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doocy, S.; Daniels, A.; Murray, S.; Kirsch, T.D. The Human Impact: A Historical Review of Events and Systematic Literature Review. PLoS Curr. Disasters 2013, 1, 1–32. [Google Scholar]
- Guha-Sapir, D.; Hoyois, P.; Below, R. Annual Disaster Statistical Review 2014: The Numbers and Trends; CRED, Université Catholique de Louvain: Brussels, Belgium, 2015. [Google Scholar]
- Guha-Sapir, D.; Hoyois, P.; Below, R.; Vanderveken, A. Annual Disaster Statistical Review 2015: The Numbers and Trends; CRED, Université Catholique de Louvain: Brussels, Belgium, 2016. [Google Scholar]
- Balica, S.F.; Popescu, I.; Beevers, L.; Wright, N.G. Parametric and physically based modelling techniques for flood risk and vulnerability assessment: A comparison. Environ. Model. Softw. 2013, 41, 84–92. [Google Scholar] [CrossRef] [Green Version]
- ESCAP IDD, United Nations. Disasters in Asia and the Pacific: 2015 Year in Review. Available online: https://www.unescap.org/sites/default/files/2015_Year%20in%20Review_final_PDF_1.pdf (accessed on 1 December 2017).
- Gourley, J.; Clark, R., III. Real-time flash flood forecasting. In Oxford Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 2010, 387, 33–45. [Google Scholar] [CrossRef]
- Han, S.; Coulibaly, P. Bayesian flood forecasting methods: A review. J. Hydrol. 2017, 551, 340–351. [Google Scholar] [CrossRef]
- Neal, J.C.; Odoni, N.A.; Trigg, M.A.; Freer, J.E.; Garcia-Pintado, J.; Mason, D.C.; Wood, M.; Bates, P.D. Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models. J. Hydrol. 2015, 529, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Abrahart, R.J.; See, L.M.; Solomatine, D.P. Practical Hydroinformatics: Computational Intelligence and Technological Developments in Water Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Mount, N.J.; Maier, H.R.; Toth, E.; Elshorbagy, A.; Solomatine, D.; Chang, F.J.; Abrahart, R.J. Data-driven modelling approaches for social-hydrology: Opportunities and challenges within the Panta Rhei Science Plan. Hydrol. Sci. J. 2016, 61, 1192–1208. [Google Scholar]
- Jhong, Y.D.; Chen, C.S.; Lin, H.P.; Chen, S.T. Physical Hybrid Neural Network Model to Forecast Typhoon Floods. Water 2018, 10, 632. [Google Scholar] [CrossRef]
- Badrzadeh, H.; Sarukkalige, R.; Jayawardena, A.W. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models. J. Hydrol. 2015, 529, 1633–1643. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, H.; Singh, V.P. Forward prediction of runoff data in data-scarce basins with an improved ensemble empirical mode decomposition (EEMD) model. Water 2018, 10, 388. [Google Scholar] [CrossRef]
- Chang, F.J.; Chen, P.A.; Lu, Y.R.; Huang, E.; Chang, K.Y. Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. J. Hydrol. 2014, 517, 836–846. [Google Scholar] [CrossRef]
- Chang, F.J.; Huang, C.W.; Cheng, S.T.; Chang, L.C. Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management. Sci. Total Environ. 2017, 598, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.J.; Tsai, W.P.; Chen, H.K.; Tam, R.S.W.; Herricks, E.E. A self-organizing radial basis network for estimating riverine fish diversity. J. Hydrol. 2013, 476, 280–289. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Zadeh, H.A.; Isazadeh, M.; Terzi, O. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ. Earth Sci. 2016, 75, 476. [Google Scholar] [CrossRef]
- Ashrafi, M.; Chua, L.H.C.; Quek, C.; Qin, X. A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data. J. Hydrol. 2017, 545, 424–435. [Google Scholar] [CrossRef]
- Lohani, A.K.; Goel, N.K.; Bhatia, K.K.S. Improving real time flood forecasting using fuzzy inference system. J. Hydrol. 2014, 509, 25–41. [Google Scholar] [CrossRef]
- Nguyen, P.K.T.; Chua, L.H.C.; Talei, A.; Chai, Q.H. Water level forecasting using neuro-fuzzy models with local learning. Neural Comput. Appl. 2018, 30, 1877–1887. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Jaafar, O.; Deo, R.C.; Kisi, O.; Adamowski, J.; Quilty, J.; El-Shafie, A. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 2016, 542, 603–614. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Chang, F.J.; Liu, P.; Chen, A.B. Methodology that improves water utilization and hydropower generation without increasing flood risk in mega cascade reservoirs. Energy 2018, 143, 785–796. [Google Scholar] [CrossRef]
- Chang, F.J.; Chiang, Y.M.; Ho, Y.H. Multi-step-ahead flood forecasts by neuro-fuzzy networks with effective rainfall-runoff patterns. J. Flood Risk Manag. 2015, 8, 224–236. [Google Scholar] [CrossRef]
- Chang, F.J.; Tsai, M.J. A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques. J. Hydrol. 2016, 535, 256–269. [Google Scholar] [CrossRef]
- Zhong, Y.; Guo, S.; Ba, H.; Xiong, F.; Chang, F.J.; Lin, K. Evaluation of the BMA probabilistic inflow forecasts using TIGGE numeric precipitation predictions based on artificial neural network. Hydrol. Res. 2018. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, T.; Zhang, C.; Sun, N. Data Pre-Analysis and Ensemble of Various Artificial Neural Networks for Monthly Streamflow Forecasting. Water 2018, 10, 628. [Google Scholar] [CrossRef]
- Seng Mah, D.Y.; Lai, S.H.; Chan, R.A.; Putuhena, F.J. Investigative modelling of the flood bypass channel in Kuching, Sarawak, by assessing its impact on the inundations of Kuching-Batu Kawa-Bau Expressway. Struct. Infrastruct. Eng. 2012, 8, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Benito, G.; Lang, M.; Barriendos, M.; Llasat, M.C.; Frances, F.; Ouarda, T.; Thorndycraft, V.R.; Enzel, Y.; Bardossy, A.; Coeur, D.; et al. Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods. Nat. Hazards 2004, 31, 623–643. [Google Scholar]
- Wallingford Software. InfoWorks RS Forms Basis for Flood Map of Northern Ireland. User Case Studies. Available online: http://www.wallingfordsoftware.com/casestudies/fullarticle.asp?ID¼870 (accessed on 28 November 2009).
- Hassan, A.J. River and Floodplain Modelling: A Practical Approach; National Hydraulic Research Institute of Malaysia (NAHRIM): Kuala Lumpur, Malaysia, 2009. [Google Scholar]
- Adnan, M.S.; Yuliarahmadila, E.; Norfathiah, C.A.; Kasmin, H.; Rosly, N. Flood Simulation Using Rainfall-Runoff for Segamat River Basin, Advances in Civil, Architectural, Structural and Constructional Engineering; Kim, J.S., Ed.; Taylor & Francis Group: London, UK, 2016; ISBN 978-1-138-02849-4. [Google Scholar]
- Othman, F.; Amin, M.; Farahain, N.; Mi Fung, L.; Elamin, M.; Eldin, A. Utilizing GIS and Infoworks RS in Modelling the Flooding Events for a Tropical River Basin. Appl. Mech. Mater. 2013, 353–356, 2281–2285. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Chang, L.C.; Shen, H.Y.; Chang, F.J. Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. J. Hydrol. 2014, 519, 476–489. [Google Scholar] [CrossRef]
- Chang, F.J.; Chang, L.C.; Huang, C.W.; Kao, I.F. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. J. Hydrol. 2016, 541, 965–976. [Google Scholar] [CrossRef]
- Chen, I.T.; Chang, L.C.; Chang, F.J. Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps. J. Hydrol. 2018, 556, 131–142. [Google Scholar] [CrossRef]
- Tsai, W.P.; Huang, S.P.; Cheng, S.T.; Shao, K.T.; Chang, F.J. A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map. Sci. Total Environ. 2017, 579, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Maheswaran, R.; Kurths, J.; Khosa, R. Wavelet Spectrum and self-organizing maps-based approach for hydrologic regionalization-a case study in the western United States. Water Res. Manag. 2016, 30, 4399–4413. [Google Scholar] [CrossRef]
- Kalteh, A.M.; Hjorth, P.; Berndtsson, R. Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environ. Model. Softw. 2008, 23, 835–845. [Google Scholar] [CrossRef]
- Leontaritis, I.J.; Billings, S.A. Input–output parametric models for nonlinear systems. Int. J. Control 1985, 41, 303–344. [Google Scholar] [CrossRef]
- Chen, P.A.; Chang, L.C.; Chang, F.J. Reinforced Recurrent Neural Networks for Multi-Step-Ahead Flood Forecasts. J. Hydrol. 2013, 497, 71–79. [Google Scholar] [CrossRef]
- Chang, F.J.; Chen, P.A.; Chang, L.C.; Tsai, Y.H. Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. Sci. Total Environ. 2016, 562, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.; Qu, Y.; Liang, S.; Wang, J. Estimating time-series leaf area index based on recurrent nonlinear autoregressive neural networks with exogenous inputs. Int. J. Remote Sens. 2012, 33, 5712–5731. [Google Scholar] [CrossRef]
- Eugen, D. Prediction of chaotic time series with NARX recurrent dynamic neural networks. In Proceedings of the 9th WSEAS International Conference International Conference Automation and Information, Bucharest, Romania, 24–26 June 2008; pp. 248–253. [Google Scholar]
Event | Beginning (yy/mm/dd) | Ending (yy/mm/dd) | Duration (h) | Maximum Flow (m3/s) | Accumulated Average Rainfall (mm) | Maximum Average Inundation Depth (m) | ||
---|---|---|---|---|---|---|---|---|
St*. #4131453 | St. #4232401 | St. #4332401 | ||||||
1 | 2001/12/20, 5:00 a.m. | 2001/12/27, 9:00 a.m. | 172 | 731 | 814 | 84 | 453 | 1.70 |
2 | 2003/12/5, 12:00 p.m. | 2003/12/12, 9:00 a.m. | 165 | 554 | 433 | 183 | 396 | 1.67 |
3 | 2006/12/20, 2:15 a.m. | 2006/12/26, 8:30 a.m. | 150 | 534 | 207 | 87 | 268 | 1.48 |
4 | 2008/12/31, 19:30 a.m. | 2009/1/8, 7:30 a.m. | 180 | 478 | 487 | 96 | 390 | 1.74 |
5 | 2012/1/10, 7:15 a.m. | 2012/1/17, 4:00 p.m. | 177 | 453 | 506 | 39 | 255 | 1.70 |
6 | 2012/12/13, 0:15 a.m. | 2013/1/13, 0:00 a.m. | 744 | 509 | 920 | 75 | 973 | 3.28 |
7 | 2013/11/28 9:30 p.m. | 2013/12/6, 9:30 p.m. | 192 | 745 | 1142 | 63 | 996 | 4.17 |
8 | 2014/12/13, 12:00 p.m. | 2015/1/1, 4:00 p.m. | 460 | 634 | 801 | 57 | 1653 | 3.35 |
Dataset | Real Events | Designed Events |
---|---|---|
Training | Event 3 Event 5 Event 6 Event 7 | 100yearreturnperiod_12hourRainfall 50yearreturnperiod_24hourRainfall 20yearreturnperiod_48hourRainfall 50yearreturnperiod_48hourRainfall 20yearreturnperiod_72hourRainfall 100yearreturnperiod_72hourRainfall |
Validation | Event 2 Event 4 | 20yearreturnperiod_12hourRainfall 20yearreturnperiod_24hourRainfall 100yearreturnperiod_48hourRainfall |
Testing | Event 8 | 50yearreturnperiod_12hourRainfall 100yearreturnperiod_24hourRainfall 50yearreturnperiod_72hourRainfall |
Input Factors | Kemaman River Average Rainfall | Cherul River Average Rainfall | Flood Depth | |
---|---|---|---|---|
Forecast Time-Step | ||||
T + 1 (3 h-ahead) | T − 2 | T − 2 | - | |
T + 2 (6 h-ahead) | T − 1 | T − 1 | - | |
T + 3 (9 h-ahead) | T | T | - | |
T + 4 (12 h-ahead) | T | T | T + 3 |
Forecasting Time-Step | RMSE (m) | |||||
---|---|---|---|---|---|---|
Training | Validation | Testing | Training | Validation | Testing | |
3 h-ahead | 0.28 | 0.30 | 0.34 | 0.92 | 0.90 | 0.90 |
6 h-ahead | 0.28 | 0.30 | 0.34 | 0.92 | 0.90 | 0.90 |
9 h-ahead | 0.29 | 0.30 | 0.33 | 0.91 | 0.90 | 0.90 |
12 h-ahead | 0.31 | 0.34 | 0.35 | 0.90 | 0.87 | 0.89 |
Time (h) | All | 0–1 m | 1–2 m | 2–3 m | >3 m |
---|---|---|---|---|---|
T = 75 | 10,744 | 7274 | 1361 | 1231 | 908 |
T = 81 | 10,744 | 6530 | 1617 | 1376 | 1251 |
T = 87 | 10,744 | 4488 | 2176 | 1964 | 2146 |
T = 93 | 10,744 | 3466 | 2053 | 2452 | 2803 |
T = 108 | 10,744 | 1400 | 1195 | 2473 | 5706 |
T = 120 | 10,744 | 614 | 780 | 1707 | 7673 |
Time (h) | Time Step | All | 0–1 m | 1–2 m | 2–3 m | >3 m | |
---|---|---|---|---|---|---|---|
RMSE * | R2 | RMSE | RMSE | RMSE | RMSE | ||
T = 75 | T + 1 (=3 h) | 0.45 | 0.94 | 0.52 | 0.38 | 0.16 | 0.09 |
T + 2 (=6 h) | 0.44 | 0.94 | 0.51 | 0.36 | 0.14 | 0.10 | |
T + 3 (=9 h) | 0.45 | 0.94 | 0.52 | 0.38 | 0.17 | 0.09 | |
T + 4 (=12 h) | 0.49 | 0.94 | 0.55 | 0.45 | 0.25 | 0.17 | |
T = 81 | T + 1 | 0.65 | 0.97 | 0.53 | 0.79 | 0.81 | 0.84 |
T + 2 | 0.64 | 0.97 | 0.52 | 0.77 | 0.79 | 0.81 | |
T + 3 | 0.66 | 0.97 | 0.53 | 0.79 | 0.82 | 0.85 | |
T + 4 | 0.68 | 0.97 | 0.54 | 0.81 | 0.85 | 0.90 | |
T = 87 | T + 1 | 0.38 | 0.99 | 0.36 | 0.45 | 0.40 | 0.34 |
T + 2 | 0.37 | 0.99 | 0.35 | 0.43 | 0.39 | 0.31 | |
T + 3 | 0.39 | 0.99 | 0.36 | 0.45 | 0.41 | 0.35 | |
T + 4 | 0.08 | 1 | 0.06 | 0.08 | 0.08 | 0.12 | |
T = 93 | T + 1 | 0.19 | 1 | 0.16 | 0.2 | 0.2 | 0.19 |
T + 2 | 0.19 | 1 | 0.10 | 0.16 | 0.19 | 0.19 | |
T + 3 | 0.19 | 1 | 0.16 | 0.21 | 0.21 | 0.19 | |
T + 4 | 0.12 | 1 | 0.09 | 0.12 | 0.13 | 0.12 | |
T = 108 | T + 1 | 0.25 | 1 | 0.11 | 0.07 | 0.12 | 0.32 |
T + 2 | 0.25 | 1 | 0.11 | 0.07 | 0.12 | 0.32 | |
T + 3 | 0.24 | 1 | 0.11 | 0.07 | 0.11 | 0.31 | |
T + 4 | 0.18 | 1 | 0.12 | 0.08 | 0.08 | 0.23 | |
T = 120 | T + 1 | 0.42 | 1 | 0.48 | 0.57 | 0.34 | 0.42 |
T + 2 | 0.42 | 1 | 0.48 | 0.57 | 0.34 | 0.42 | |
T + 3 | 0.42 | 1 | 0.48 | 0.57 | 0.34 | 0.42 | |
T + 4 | 0.34 | 1 | 0.49 | 0.61 | 0.43 | 0.34 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, L.-C.; Amin, M.Z.M.; Yang, S.-N.; Chang, F.-J. Building ANN-Based Regional Multi-Step-Ahead Flood Inundation Forecast Models. Water 2018, 10, 1283. https://doi.org/10.3390/w10091283
Chang L-C, Amin MZM, Yang S-N, Chang F-J. Building ANN-Based Regional Multi-Step-Ahead Flood Inundation Forecast Models. Water. 2018; 10(9):1283. https://doi.org/10.3390/w10091283
Chicago/Turabian StyleChang, Li-Chiu, Mohd Zaki M. Amin, Shun-Nien Yang, and Fi-John Chang. 2018. "Building ANN-Based Regional Multi-Step-Ahead Flood Inundation Forecast Models" Water 10, no. 9: 1283. https://doi.org/10.3390/w10091283
APA StyleChang, L. -C., Amin, M. Z. M., Yang, S. -N., & Chang, F. -J. (2018). Building ANN-Based Regional Multi-Step-Ahead Flood Inundation Forecast Models. Water, 10(9), 1283. https://doi.org/10.3390/w10091283