Projected Climate Could Increase Water Yield and Cotton Yield but Decrease Winter Wheat and Sorghum Yield in an Agricultural Watershed in Oklahoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Model
Model Calibration and Validation
2.3. Future Climate Data
3. Results
3.1. Future Climate
3.2. Water Balance
3.3. Crop Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Crop | Date (Month/Day) | Operation |
---|---|---|
Cotton | 1/1 | Tillage operation (Disk Plow Ge23ft) |
3/15 | Tillage operation (Disk Plow Ge23ft) | |
5/15 | Tillage operation (Springtooth Harrow Ge15ft) | |
6/1 | Tillage operation (Finishing Harrow Lt15ft) Pesticide Operation (Pendimehalin, 0.25 kg) | |
6/10 | Fertilizer application (Elemental Nitrogen, 50 kg) | |
6/11 | Plant | |
7/1 | Tillage operation (Row Cultivator Ge15ft) | |
11/15 | Harvest and kill | |
Pasture | 1/1 | Plant |
3/1 | Auto fertilization | |
5/1 | Grazing operation (Beef-Fresh Manure, GRZ_DAYS *: 180, BIO_EAT *: 3, BIO_TRMP *: 0.47, MANURE_KG *: 1.5) | |
Winter wheat | 3/15 | Fertilizer application (Elemental Nitrogen, 80 kg) |
6/1 | Harvest and kill | |
7/1 | Tillage operation (Chisel Plow Gt15ft) | |
8/1 | Tillage operation (Offset Dis/heavduty Ge19ft) | |
9/20 | Fertilizer application (Elemental Nitrogen, 80 kg) (Elemental Phosphorus, 35 kg) | |
9/22 | Tillage operation (Disk Plow Ge23ft) | |
9/24 | Tillage operation (Springtooth Harrow Lt15ft) | |
9/25 | Plant | |
12/1 | Grazing operation (GRZ_DAYS *: 90, BIO_EAT *: 3, BIO_TRMP *: 0.47, MANURE_KG *: 1.5) | |
Grain sorghum | 5/1 | Plant |
5/27 | Fertilizer application (Elemental Nitrogen, 150 kg) | |
5/28 | Tillage operation (Springtooth Harrow Ge15ft, Disk Plow Ge23ft, Mecoprop Amine, 125), Pesticide Operation (Mecoprop Amine, 125 kg) | |
10/18 | Tillage operation (Disk Plow Ge23ft) | |
10/20 | Tillage operation (Springtooth Harrow Ge15ft) | |
10/30 | Harvest and kill | |
Alfalfa | 4/1 | Harvest only |
5/15 | Harvest only | |
7/1 | Harvest only | |
8/29 | Fertilizer application (Elemental Nitrogen, 50 kg), (Elemental Phosphorous, 20 kg) | |
9/7 | Plant | |
10/15 | Harvest only | |
Hay | 4/1 | Harvest only |
7.1 | Harvest only | |
8/29 | Auto fertilization | |
9/7 | Plant | |
10/15 | Harvest only | |
Rye | 6/10 | Harvest only |
8/10 | Fertilizer application (Elemental Nitrogen, 80 kg), (Elemental Phosphorous, 35 kg) | |
9/20 | Plant | |
9/15 | Grazing operation (GRZ_DAYS *: 150, BIO_EAT *: 3, BIO_TRMP *: 0.47, MANURE_KG *: 1.5) |
References
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Bouraoui, F.; Grizzetti, B.; Granlund, K.; Rekolainen, S.; Bidoglio, G. Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Clim. Chang. 2004, 66, 109–126. [Google Scholar] [CrossRef]
- Heuvelmans, G.; Garcia-Qujano, J.F.; Muys, B.; Feyen, J.; Coppin, P. Modelling the water balance with SWAT as part of the land use impact evaluation in a life cycle study of CO2 emission reduction scenarios. Hydrol. Process. Int. J. 2005, 19, 729–748. [Google Scholar] [CrossRef]
- Gosain, A.; Rao, S.; Basuray, D. Climate change impact assessment on hydrology of Indian river basins. Curr. Sci. 2006, 90, 346–353. [Google Scholar]
- Rosenzweig, C.; Casassa, G.; Karoly, D.J.; Imeson, A.; Liu, C.; Menzel, A.; Tryjanowski, P. Assessment of observed changes and responses in natural and managed systems. Clim. Chang. 2007, 79–131. [Google Scholar]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef]
- Delphine, D.; Declan, C.; Navin, R.; Jeff, P.; Rachel, W. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 2014, 9, 034011. [Google Scholar] [Green Version]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-time water and sediment-routing model for large basins. J. Hydraul. Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Daggupati, P.; Shukla, R.; Mekonnen, B.; Rudra, R.; Biswas, A.; Goel, P.K.; Prasher, S.; Yang, W. Hydrological Responses to Various Land Use, Soil and Weather Inputs in Northern Lake Erie Basin in Canada. Water 2018, 10, 222. [Google Scholar] [CrossRef]
- Kharel, G.; Kirilenko, A. Comparing CMIP-3 and CMIP-5 climate projections on flooding estimation of Devils Lake of North Dakota, USA. PeerJ 2018, 6, e4711. [Google Scholar] [CrossRef] [PubMed]
- Khanal, S.; Lal, R.; Kharel, G.; Fulton, J. Identification and classification of critical soil and water conservation areas in the Muskingum River basin in Ohio. J. Soil Water Conserv. 2018, 73, 213–226. [Google Scholar] [CrossRef]
- Gautam, S.; Costello, C.; Baffaut, C.; Thompson, A.; Svoma, M.B.; Phung, A.Q.; Sadler, J.E. Assessing Long-Term Hydrological Impact of Climate Change Using an Ensemble Approach and Comparison with Global Gridded Model-A Case Study on Goodwater Creek Experimental Watershed. Water 2018, 10, 564. [Google Scholar] [CrossRef]
- Adhikari, P.; Ale, S.; Bordovsky, J.P.; Thorp, K.R.; Modala, N.R.; Rajan, N.; Barnes, E.M. Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model. Agric. Water Manag. 2016, 164, 317–330. [Google Scholar] [CrossRef]
- Kharel, G.; Zheng, H.; Kirilenko, A. Can land-use change mitigate long-term flood risks in the Prairie Pothole Region? The case of Devils Lake, North Dakota, USA. Reg. Environ. Chang. 2016, 16, 2443–2456. [Google Scholar] [CrossRef]
- Garbrecht, J.; Zhang, X.; Steiner, J. Climate change and observed climate trends in the Fort Cobb experimental watershed. J. Environ. Qual. 2014, 43, 1319–1327. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Stevens, L.E.; Stevens, S.E.; Sun, L.; Janssen, E.; Wuebbles, D.; Hilberg, S.; Timlin, M.; Stoecker, L.; Westcott, N. Regional Climate Trends and Scenarios for the US National Climate Assessment; Noaa Technical Report; NOAA Publications: Silver Spring, MD, USA, 2013; Volume 3, pp. 142–143. [Google Scholar]
- Reeves, M.C.; Moreno, A.L.; Bagne, K.E.; Running, S.W. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Chang. 2014, 126, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Steiner, J.L.; Briske, D.D.; Brown, D.P.; Rottler, C.M. Vulnerability of Southern Plains agriculture to climate change. Clim. Chang. 2018, 146, 201–218. [Google Scholar] [CrossRef]
- Melillo, J.M. Climate Change Impacts in the United States; US National Climate Assessment; Government Printing Office: Washington, DC, USA, 2014.
- OCWP. Oklahoma Comprehensive Water Plan: Executive Report; Oklahoma Water Resources Board: Oklahoma, OK, USA, 2012.
- Tour, S.W. Oklahoma Comprehensive Water Plan; Oklahoma Water Resources Board: Oklahoma City, OK, USA, 2011.
- Qiao, L.; Hong, Y.; McPherson, R.; Shafer, M.; Gade, D.; Williams, D.; Chen, S.; Lilly, D. Climate change and hydrological response in the trans-state Oologah Lake watershed–evaluating dynamically downscaled NARCCAP and statistically downscaled CMIP3 simulations with VIC model. Water Resour. Manag. 2014, 28, 3291–3305. [Google Scholar] [CrossRef]
- Qiao, L.; Zou, C.B.; Gaitán, C.F.; Hong, Y.; McPherson, R.A. Analysis of precipitation projections over the climate gradient of the Arkansas Red River basin. J. Appl. Meteorol. Clim. 2017, 56, 1325–1336. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziolkowska, J.R. Profitability of irrigation and value of water in Oklahoma and Texas agriculture. Int. J. Water Resour. Dev. 2018, 34, 944–960. [Google Scholar] [CrossRef]
- USDA-NASS. National Agricultural Statistics Service Database; USDA-NASS: Washington, DC, USA, 2014.
- Becker, C.J. Assessment of Conservation Practices in the Fort Cobb Reservoir Watershed, Southwestern Oklahoma; 2010-5257; USGS: Reston, VA, USA, 2011.
- Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Sang, J. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project; American Geophysical Union: Washington, DC, USA, 2007. [Google Scholar]
- Sinnathamby, S.; Douglas-Mankin, K.R.; Craige, C. Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agric. Water Manag. 2017, 180, 61–69. [Google Scholar] [CrossRef]
- Starks, P.J.; Moriasi, D.N. Impact of Eastern redcedar encroachment on stream discharge in the North Canadian River basin. J. Soil Water Conserv. 2017, 72, 12–25. [Google Scholar] [CrossRef]
- USDA-NRCS. Soil Survey Staff. Natural Resources Conservation Service; USDA-NRCS: Washington, DC, USA, 2018.
- Storm, D.E.; Busteed, P.R.; White, M.J. Fort Cobb Basin: Modeling and Land Cover Classification; Biosystems and Agricultural Engineering Department, Division of Agricultural Sciences and Natural Resources, Oklahoma State University: Stillwater, OK, USA, 2006. [Google Scholar]
- Yue, P. TMDL Development for Cobb Creek Watershed and Fort Cobb Lake; Oklahoma Department of Environmental Quality: Oklahoma City, OK, USA, 2006.
- USDA-NASS. Oklahoma Agricultural Statistics; United States Department of Agriculture National Agricultural Statistics Service; Oklahoma Department of Agriculture: Oklahoma City, OK, USA, 2012.
- Abbaspour, K. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Eawag Dübendorf, Switzerland, 2014; p. 106. [Google Scholar]
- Moriasi, D.; Arnold, J.; Green, C. Incorporation of Hooghoudt and Kirkham tile drain equations into SWAT2005. In Proceedings of the 4th International SWAT Conference, Delft, The Netherlands, 4–6 July 2007; pp. 139–147. [Google Scholar]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Ávila-Carrasco, J.R.; Dávila, F.M.; Moriasi, D.N.; Gowda, P.H.; Bautista-Capetillo, C.; Echavarria-Cháirez, F.G.; Garbrecht, J.D.; Steiner, J.L.; Howell, T.A.; Kanemasu, E.T. Calibration of SWAT2009 using crop biomass, evapotranspiration, and deep recharge: Calera watershed in Zacatecas, Mexico case study. J. Water Resour. Prot. 2012, 4, 439. [Google Scholar] [CrossRef]
- Nair, S.S.; King, K.W.; Witter, J.D.; Sohngen, B.L.; Fausey, N.R. Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools 1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 1285–1297. [Google Scholar] [CrossRef]
- Gaitán, C.; McPherson, R.; Rosendahl, D.; Stacy, M.; Kellogg, W.; Austin, B. Statistically Downscaled Datasets for the Red River Basin, South Central USA; USGS: Reston, VA, USA, 2016.
- Mendlik, T.; Gobiet, A. Selecting climate simulations for impact studies based on multivariate patterns of climate change. Clim. Chang. 2016, 135, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of climate models. In Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 741–866. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3, 369. [Google Scholar] [CrossRef]
- Neupane, R.P.; Kumar, S. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed. J. Hydrol. 2015, 529, 418–429. [Google Scholar] [CrossRef]
- Travis, W.R.; Huisenga, M.T. The effect of rate of change, variability, and extreme events on the pace of adaptation to a changing climate. Clim. Chang. 2013, 121, 209–222. [Google Scholar] [CrossRef]
- Schattman, R.E.; Méndez, V.E.; Merrill, S.C.; Zia, A. Mixed methods approach to understanding farmer and agricultural advisor perceptions of climate change and adaptation in Vermont, United States. Agroecol. Sustain. Food Syst. 2018, 42, 121–148. [Google Scholar] [CrossRef]
- Brown, C.; Ghile, Y.; Laverty, M.; Li, K. Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Hoogenboom, G.; McClendon, R.W.; Paz, J.O. Potential adaptation strategies for rainfed soybean production in the south-eastern USA under climate change based on the CSM-CROPGRO-Soybean model. J. Agric. Sci. 2015, 153, 798–824. [Google Scholar] [CrossRef]
- Akkari, C.; Robin Bryant, C. Toward Improved Adoption of Best Management Practices (BMPs) in the Lake Erie Basin: Perspectives from Resilience and Agricultural Innovation Literature. Agriculture 2017, 7, 54. [Google Scholar] [CrossRef]
Parameter | Description | Calibrated Value |
---|---|---|
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0.6 |
GW_REVAP | Groundwater “revap” coefficient (unit less) | 0.02 |
REVAPMN | Threshold depth of water in the shallow aquifer for “revap” to occur (mm) | 1.4 |
RCHRG_DP | Deep aquifer percolation fraction (unit less) | 0.47 |
GW_DELAY | Groundwater delay (days) | 376 |
CN2 | SCS Curve number adjustment for soil moisture condition II (unit less) | −12.7 % of default values |
ALPHA_BF | Baseflow Alpha Factor (days) | 0.95 |
ESCO | Soil evaporation compensation factor (unit less) | 0.83 |
EPCO | Plant uptake compensation factor (unit less) | 0.3 |
CH_K1 | Effective hydraulic conductivity in tributary channel alluvium (mm/h) | 0.093 |
SURLAG | Surface runoff lag coefficient (unit less) | 3.1 |
EVRCH | reach evaporation adjustment factor (unit less) | 0.34 |
TRNSRCH | Fraction of transmission losses partitioned to deep aquifer (unit less) | 0.095 |
ALPHA_BNK | base flow alpha factor for bank (days) | 0.84 |
SOL_AWC | Available water capacity of soil layer (mm H2O/mm soil) | 0.036 |
CH_N2 | Manning’s n value for the main channel (unit less) | 0.18 |
CH_K2 | Main channel conductivity (mm/h) | 1.98 |
Parameter | Unit | Parameter Definition | Calibrated Values | ||
---|---|---|---|---|---|
Cotton | Grain Sorghum | Winter Wheat | |||
BIO_E | kg/ha/MJ/m2 | Radiation use efficiency or biomass energy ratio | 14 | 37 | 29 |
USLE_C | no unit | Minimum value of USLE C factor for water erosion | 0.1 | 0.2 | 0.02 |
HVSTI | kg/ha/kg/ha | Harvest index for optimal growing season | 0.3 | 0.3 | 0.3 |
OV_N | no unit | Manning’s “n” value for overland flow | 0.12 | 0.12 | 0.12 |
BLAI | m2/m2 | Maximum potential leaf area index | 3 | 4.5 | 3 |
FRGRW1 | fraction | Fraction of plant growing season to the first point on the optimal leaf area development curve | 0.14 | 0.15 | 0.03 |
FRGRW2 | fraction | Fraction of plant growing season to the second point on the optimal leaf area development curve | 0.3 | 0.5 | 0.35 |
LAIMX1 | fraction | Fraction maximum leaf area index to the first point on the optimal leaf area development curve | 0.005 | 0.05 | 0.03 |
CNYLD | kg N/kg seed | Normal fraction of nitrogen in yield | 0.018 | 0.02 | 0.02 |
CPYLD | kg P/kg seed | Normal fraction of Phosphorus in yield | 0.0027 | 0.0032 | 0.0018 |
GCMs | Model Agency | Atmospheric Resolution (Lat × Lon) | Downscaled Resolution (Lat × Lon) | Downscaling Method |
---|---|---|---|---|
CCSM4 | National Center for Atmospheric Research, Boulder, CO, USA | 0.90 × 1.25 | 0.1 × 0.1 | Quantile mapping method-cumulative density function transform [44] |
MIROC5 | Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan | 1.41 × 1.41 | ||
MPI-ESM-LR | Max Planck Institute for Meteorology, Hamburg, Germany | 1.80 × 1.80 |
Climate Scenario | Rainfall | PET | ET | SURQ | GWQ | WYLD |
---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | |
RCP2.6 Mean | 829.8 | 1604.6 | 709.5 | 32.4 | 48.7 | 142.6 |
RCP4.5 Mean | 812.8 | 1676.5 | 693.3 | 31.7 | 51.9 | 148.4 |
RCP8.5 Mean | 811.1 | 1706.6 | 704.4 | 30.3 | 45 | 133.4 |
Overall Mean | 817.9 | 1662.6 | 702.4 | 31.5 | 48.6 | 141.4 |
Modeled Historical Mean | 806.2 | 1920.1 | 729.2 | 38.3 | 30.7 | 114.2 |
Percent change | 1.5% | −13.4% | −3.7% | −17.9% | 58.4% | 23.9% |
RCP | GCM | WYLD (mm) | Change from Historical (%) |
---|---|---|---|
2.6 | MPI-ESM-LR | 193.5 | 69.5 |
MIROC5 | 124.9 | 9.4 | |
CCSM4 | 113.5 | −0.6 | |
4.5 | MPI-ESM-LR | 196.0 | 71.6 |
MIROC5 | 136.0 | 19.1 | |
CCSM4 | 118.6 | 3.9 | |
8.5 | MPI-ESM-LR | 220.2 | 92.8 |
MIROC5 | 115.1 | 0.8 | |
CCSM4 | 69.3 | −39.3 | |
Historical | 114.2 | - |
Crop | RCP 2.6 | RCP 4.5 | RCP 8.5 | Overall | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MPI-ESM-LR | MIROC5 | CCSM4 | Mean | MPI-ESM-LR | MIROC5 | CCSM4 | Mean | MPI-ESM-LR | MIROC5 | CCSM4 | Mean | ||
Cotton | 73.1 | 18.2 | 33.9 | 41.7 | 103.4 | 28.8 | 32.8 | 55.0 | 105.9 | 27.3 | 64.7 | 66.0 | 54.2 |
Sorghum | −1.9 | −8.3 | −8.8 | −6.3 | −8.1 | −13.0 | −16.5 | −12.5 | −2.4 | −16.3 | −13.4 | −10.7 | −9.9 |
Winter wheat | −16.8 | 2.5 | 3.3 | −3.7 | −23.0 | −0.5 | 5.8 | −5.9 | −18.7 | 2.8 | −2.6 | −6.2 | −5.2 |
RCP | GCM | Cotton Yield (kg/ha) | |||
---|---|---|---|---|---|
Irrigated | Mean | Dry Land | Mean | ||
2.6 | CCSM4 | 1015.7 | 1014.8 | 671.9 | 752.7 |
MIROC5 | 804.1 | 656.8 | |||
MPI-ESM-LR | 1224.6 | 929.4 | |||
4.5 | CCSM4 | 976.2 | 1147.5 | 688.1 | 797.6 |
MIROC5 | 1018.2 | 618.9 | |||
MPI-ESM-LR | 1448.1 | 1085.7 | |||
8.5 | CCSM4 | 1257.7 | 1199.9 | 820.9 | 873.5 |
MIROC5 | 918.3 | 671.5 | |||
MPI-ESM-LR | 1423.6 | 1128.1 | |||
Overall Mean | 1120.7 | 807.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasoulzadeh Gharibdousti, S.; Kharel, G.; Miller, R.B.; Linde, E.; Stoecker, A. Projected Climate Could Increase Water Yield and Cotton Yield but Decrease Winter Wheat and Sorghum Yield in an Agricultural Watershed in Oklahoma. Water 2019, 11, 105. https://doi.org/10.3390/w11010105
Rasoulzadeh Gharibdousti S, Kharel G, Miller RB, Linde E, Stoecker A. Projected Climate Could Increase Water Yield and Cotton Yield but Decrease Winter Wheat and Sorghum Yield in an Agricultural Watershed in Oklahoma. Water. 2019; 11(1):105. https://doi.org/10.3390/w11010105
Chicago/Turabian StyleRasoulzadeh Gharibdousti, Solmaz, Gehendra Kharel, Ronald B. Miller, Evan Linde, and Art Stoecker. 2019. "Projected Climate Could Increase Water Yield and Cotton Yield but Decrease Winter Wheat and Sorghum Yield in an Agricultural Watershed in Oklahoma" Water 11, no. 1: 105. https://doi.org/10.3390/w11010105
APA StyleRasoulzadeh Gharibdousti, S., Kharel, G., Miller, R. B., Linde, E., & Stoecker, A. (2019). Projected Climate Could Increase Water Yield and Cotton Yield but Decrease Winter Wheat and Sorghum Yield in an Agricultural Watershed in Oklahoma. Water, 11(1), 105. https://doi.org/10.3390/w11010105