Improved Curve Number Estimation in SWAT by Reflecting the Effect of Rainfall Intensity on Runoff Generation
Abstract
:1. Introduction
2. Study Watersheds and Methods
2.1. Study Watersheds
2.2. SWAT and SWAT-ICN
CNICN,i = CNscs,i when Pi < T (mm)
2.3. Model Calibration and Validation
3. Results
3.1. Development of the RE
3.2. Daily Streamflow Simulations
3.3. Annual Extreme Flow Simulations
3.4. Base Flow Simulations
3.5. Advantages, Disadvantages, and Future Work
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- King, K.W.; Arnold, J.; Bingner, R. Comparison of Green-Ampt and curve number methods on Goodwin Creek watershed using SWAT. Trans. ASABE 1999, 42, 919. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Romano, N. Green-Ampt Curve-Number mixed procedure as an empirical tool for rainfall–runoff modelling in small and ungauged basins. Hydrol. Process. 2013, 27, 1253–1264. [Google Scholar] [CrossRef]
- Bulygina, N.; Mcintyre, N.; Wheater, H. A comparison of rainfall-runoff modelling approaches for estimating impacts of rural land management on flood flows. Hydrol. Res. 2013, 44, 467–483. [Google Scholar] [CrossRef]
- Kisi, O.; Shiri, J.; Tombul, M. Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci. 2013, 51, 108–117. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W. Comparative study of different wavelet based neural network models for rainfall–runoff modeling. J. Hydrol. 2014, 515, 47–58. [Google Scholar] [CrossRef]
- Futter, M.N.; Erlandsson, M.A.; Butterfield, D.; Whitehead, P.G.; Oni, S.K.; Wade, A.J. PERSiST: A flexible rainfall-runoff modelling toolkit for use with the INCA family of models. Hydrol. Earth Syst. Sci. 2014, 18, 855–873. [Google Scholar] [CrossRef]
- Ficklin, D.; Zhang, M. A comparison of the curve number and green-ampt models in an agricultural watershed. Trans. ASABE 2013, 56, 61–69. [Google Scholar] [CrossRef]
- Wang, X.; Shang, S.; Yang, W.; Melesse, A. Simulation of an agricultural watershed using an improved curve number method in SWAT. Trans. ASABE 2008, 51, 1323–1339. [Google Scholar] [CrossRef]
- Coles, A.E.; McConkey, B.G.; McDonnell, J.J. Climate change impacts on hillslope runoff on the northern Great Plains, 1962–2013. J. Hydrol. 2017, 550, 538–548. [Google Scholar] [CrossRef]
- Alizadeh, M.J.; Kavianpour, M.R.; Kisi, O.; Nourani, V. A new approach for simulating and forecasting the rainfall-runoff process within the next two months. J. Hydrol. 2017, 548, 588–597. [Google Scholar] [CrossRef]
- Garen, D.C.; Moore, D.S. Curve number hydrology in water quality modeling: Uses, abuses, and future directions. J. Am. Water Resour. Assoc. 2005, 41, 377–388. [Google Scholar] [CrossRef]
- Cheng, Q.-B.; Reinhardt-Imjela, C.; Chen, X.; Schulte, A.; Ji, X.; Li, F.-L. Improvement and comparison of the rainfall–runoff methods in SWAT at the monsoonal watershed of Baocun, Eastern China. Hydrol. Sci. J. 2016, 61, 1460–1476. [Google Scholar] [CrossRef]
- Michel, C.; Andréassian, V.; Perrin, C. Soil Conservation Service Curve Number method: How to mend a wrong soil moisture accounting procedure? Water Resour. Res. 2005, 41, W02011. [Google Scholar] [CrossRef]
- Jeong, J.; Kannan, N.; Arnold, J.; Glick, R.; Gosselink, L.; Srinivasan, R. Development and Integration of Sub-hourly Rainfall–Runoff Modeling Capability Within a Watershed Model. Water Resour. Manag. 2010, 24, 4505–4527. [Google Scholar] [CrossRef]
- White, E.D.; Feyereisen, G.W.; Veith, T.L.; Bosch, D.D. Improving daily water yield estimates in the Little River watershed: SWAT adjustments. Trans. ASABE 2009, 52, 69–79. [Google Scholar] [CrossRef]
- White, E.D.; Easton, Z.M.; Fuka, D.R.; Collick, A.S.; Adgo, E.; McCartney, M.; Awulachew, S.B.; Selassie, Y.G.; Steenhuis, T.S. Development and application of a physically based landscape water balance in the SWAT model. Hydrol. Process. 2011, 25, 915–925. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Yao, H.; Lin, B. Improved calibration scheme of SWAT by separating wet and dry seasons. Ecol. Model. 2015, 301, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Romkens, M.J.M.; Baumhardt, R.L.; Parlange, M.B.; Whisler, F.D.; Parlange, J.Y.; Prasad, S.N. Rain-induced surface seals: Their effect on ponding and infiltration. Ann. Geophys. 1986, 4, 417–424. [Google Scholar]
- Hawke, R.M.; Price, A.G.; Bryan, R.B. The effect of initial soil water content and rainfall intensity on near-surface soil hydrologic conductivity: A laboratory investigation. Catena 2006, 65, 237–246. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L. Research on Effecting Factors of Precipitation’s Redistribution of Rainfall Intensity, Gradient and Cover Ratio. J. Soil Water Conserv. 2006, 20, 28–30. [Google Scholar]
- Huang, J.; Wu, P.; Zhao, X. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena 2013, 104, 93–102. [Google Scholar] [CrossRef]
- Wei, W.; Jia, F.; Yang, L.; Chen, L.; Zhang, H.; Yu, Y. Effects of surficial condition and rainfall intensity on runoff in a loess hilly area, China. J. Hydrol. 2014, 513, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Gao, J.E.; Zhang, M.-J.; Li, X.-H.; Zhang, S.-L.; Jia, L.-Z. Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model. Catena 2015, 127, 80–91. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef]
- Fohrer, N.; Berkenhagen, J.; Hecker, J.M.; Rudolph, A. Changing soil and surface conditions during rainfall. Catena 1999, 37, 355–375. [Google Scholar] [CrossRef]
- Kim, N.W.; Lee, J. Temporally weighted average curve number method for daily runoff simulation. Hydrol. Process. 2008, 22, 4936–4948. [Google Scholar] [CrossRef]
- Khan, A.; Koch, M. Correction and informed regionalization of precipitation data in a high mountainous region (Upper Indus Basin) and its effect on SWAT-modelled discharge. Water 2018, 10, 1557. [Google Scholar] [CrossRef]
- Kumarasamy, K.; Belmont, P. Calibration Parameter Selection and Watershed Hydrology Model Evaluation in Time and Frequency Domains. Water 2018, 10, 1. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Yao, H.; James, A. Moving SWAT model calibration and uncertainty analysis to an enterprise Hadoop-based cloud. Environ. Model. Softw. 2016, 84, 140–148. [Google Scholar] [CrossRef]
- Lin, B.; Chen, X.; Yao, H.; Chen, Y.; Liu, M.; Gao, L.; James, A. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol. Indic. 2015, 58, 55–63. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Yao, H. Development of a prototype web-based decision support system for watershed management. Water 2015, 7, 780–793. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Lin, M.; Chen, X.; Chen, Y.; Yao, H. Improving calibration of two key parameters in Hydrologic Engineering Center hydrologic modelling system, and analysing the influence of initial loss on flood peak flows. Water Sci. Technol. 2013, 68, 2718–2724. [Google Scholar] [CrossRef] [PubMed]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and ground water recharge from streamflow records. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Gebert, W.A.; Radloff, M.J.; Considine, E.J.; Kennedy, J.L. Use of Streamflow Data to Estimate Base Flow/Ground-Water Recharge for Wisconsin. J. Am. Water Resour. Assoc. 2007, 43, 220–236. [Google Scholar] [CrossRef]
- Rutledge, A.; Daniel, C. Testing an Automated Method to Estimate Ground-Water Recharge from Streamflow Records. Ground Water 1994, 32, 180–189. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Allen, P.; Chen, X. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 1259–1267. [Google Scholar] [CrossRef] [Green Version]
- Szilagyi, J. Sensitivity analysis of aquifer parameter estimations based on the Laplace equation with linearized boundary conditions. Water Resour. Res. 2003, 39, 280–304. [Google Scholar] [CrossRef]
- Szilagyi, J. Heuristic continuous base flow separation. J. Hydrol. Eng. 2004, 9, 311–318. [Google Scholar] [CrossRef]
ID | Parameter | Meaning | Range | Optimal Value |
---|---|---|---|---|
1 | CANMX | Maximum canopy storage (mm) | 0–100 | 19.222 |
2 | ESCO | Soil evaporation compensation factor | 0–1.0 | 0.175 |
3 | EPCO | Plant uptake compensation factor | 0–1.0 | 0.499 |
4 | ALPHA_BNK | Base flow alpha factor for bank storage | 0–1.0 | 0.749 |
5 | ALPHA_BF | Base flow alpha factor (days) | 0–1.0 | 0.965 |
6 | SOL_AWC | Available water capacity of the soil layer | 0–1.0 | 0.447 |
7 | GWQMN | Threshold depth of water in shallow aquifer required before groundwater flow will occur (mm H2O) | 0–500 | 0.236 |
8 | RCHRG_DP | Deep aquifer percolation fraction | 0–1.0 | 0.294 |
ID | Regression Equation | R2* | Parameters | Performance Measures (2002 to 2006) | ||
---|---|---|---|---|---|---|
ENS | R2 | PBIAS (%) | ||||
RE1 | y = a + bx | 0.73 | a = −1.744 b = 0.040 | 0.87 | 0.86 | 1.51 |
RE2 | y = a − bln(x + c) | 0.74 | a = −87.20 b = −14.95 c = 299.39 | 0.88 | 0.88 | 0.80 |
RE3 | y = a + bx + cx2 | 0.78 | a = −2.459 b = 0.060 c = −1.082 × 10−4 | 0.89 | 0.88 | 1.23 |
RE4 | y = ln(x)/ln(a) + b | 0.60 | a = 1.58 b = −7.87 | 0.84 | 0.83 | 1.07 |
Gauge | Model | Calibration (2002–2006) | Validation (2007–2010) | ||||
---|---|---|---|---|---|---|---|
ENS | R2 | PBIAS (%) | ENS | R2 | PBIAS (%) | ||
Anxi | SWAT-CN | 0.83 | 0.84 | −0.70 | 0.79 | 0.78 | 10.52 |
SWAT-ICN | 0.88 | 0.88 | −0.80 | 0.86 | 0.85 | 9.75 | |
Shanmei | SWAT-CN | 0.84 | 0.87 | −0.27 | 0.82 | 0.85 | 7.26 |
SWAT-ICN | 0.89 | 0.89 | −1.69 | 0.87 | 0.87 | 4.66 | |
Shilong | SWAT-CN | 0.86 | 0.87 | 6.86 | 0.77 | 0.82 | 7.67 |
SWAT-ICN | 0.89 | 0.89 | 5.33 | 0.84 | 0.85 | 5.45 |
Series | Gauge | Model | Calibration (2002–2006) | Validation (2007–2010) | ||||
---|---|---|---|---|---|---|---|---|
ENS | R2 | PBIAS (%) | ENS | R2 | PBIAS (%) | |||
Dry series | Anxi | SWAT-CN | 0.41 | 0.64 | −19.79 | 0.39 | 0.63 | 3.01 |
SWAT-ICN | 0.71 | 0.74 | −13.39 | 0.66 | 0.67 | 1.04 | ||
Shanmei | SWAT-CN | 0.50 | 0.64 | −18.97 | 0.66 | 0.61 | 5.87 | |
SWAT-ICN | 0.54 | 0.63 | −19.93 | 0.69 | 0.69 | 4.40 | ||
Shilong | SWAT-CN | 0.06 | 0.66 | −8.56 | 0.45 | 0.63 | 13.01 | |
SWAT-ICN | 0.35 | 0.66 | −10.23 | 0.69 | 0.72 | 11.91 | ||
Wet series | Anxi | SWAT-CN | 0.83 | 0.81 | −6.25 | 0.76 | 0.83 | 14.92 |
SWAT-ICN | 0.88 | 0.87 | 0.33 | 0.87 | 0.88 | 11.65 | ||
Shanmei | SWAT-CN | 0.84 | 0.82 | −6.55 | 0.87 | 0.87 | 7.72 | |
SWAT-ICN | 0.89 | 0.89 | −8.35 | 0.90 | 0.91 | 5.22 | ||
Shilong | SWAT-CN | 0.85 | 0.82 | −4.67 | 0.82 | 0.85 | 10.65 | |
SWAT-ICN | 0.90 | 0.86 | −6.30 | 0.86 | 0.87 | 8.01 |
Gauge | Model | Calibration (2002–2006) | Validation (2007–2010) | ||||
---|---|---|---|---|---|---|---|
ENS | R2 | PBIAS (%) | ENS | R2 | PBIAS (%) | ||
Anxi | SWAT-CN | 0.34 | 0.50 | −20.80 | 0.37 | 0.58 | −21.28 |
SWAT-ICN | 0.55 | 0.63 | −14.26 | 0.53 | 0.60 | −15.66 | |
Shanmei | SWAT-CN | 0.42 | 0.58 | −24.05 | 0.46 | 0.54 | −22.94 |
SWAT-ICN | 0.58 | 0.64 | −12.56 | 0.66 | 0.68 | −12.04 | |
Shilong | SWAT-CN | 0.31 | 0.55 | −29.99 | 0.32 | 0.55 | −25.27 |
SWAT-ICN | 0.50 | 0.60 | −15.66 | 0.51 | 0.60 | −12.98 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Lin, Q.; Chen, X.; Chai, T. Improved Curve Number Estimation in SWAT by Reflecting the Effect of Rainfall Intensity on Runoff Generation. Water 2019, 11, 163. https://doi.org/10.3390/w11010163
Zhang D, Lin Q, Chen X, Chai T. Improved Curve Number Estimation in SWAT by Reflecting the Effect of Rainfall Intensity on Runoff Generation. Water. 2019; 11(1):163. https://doi.org/10.3390/w11010163
Chicago/Turabian StyleZhang, Dejian, Qiaoyin Lin, Xingwei Chen, and Tian Chai. 2019. "Improved Curve Number Estimation in SWAT by Reflecting the Effect of Rainfall Intensity on Runoff Generation" Water 11, no. 1: 163. https://doi.org/10.3390/w11010163
APA StyleZhang, D., Lin, Q., Chen, X., & Chai, T. (2019). Improved Curve Number Estimation in SWAT by Reflecting the Effect of Rainfall Intensity on Runoff Generation. Water, 11(1), 163. https://doi.org/10.3390/w11010163