Acute Water-Scarcity Monitoring for Africa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. How Well Do the Maps Represent the Water Scarcity Events in Zambia and Zimbabwe That Affect the Kariba Dam?
3.2. How Have Water Scarcity Classes Changed over Time as a Function of Changes in Streamflow?
3.3. How Have Water Scarcity Classes Changed over Time as a Function of Changes in Population?
3.4. How Have Water Scarcity Classes Changed over Time as a Function of Changes in Population and Changes in Hydrology in the Lake Victoria Basin?
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- UN DESA. World Population Projected to Reach 9.7 Billion by 2050; UN DESA United Nations Department of Economic and Social Affairs: New York, NY, USA, 2015. [Google Scholar]
- US National Intelligence Council. Global Trends 2030: Alternative Worlds; Government Printing Office: Washington, DC, USA, 2013; ISBN 978-0-16-091543-7.
- Gan, T.Y.; Ito, M.; Hülsmann, S.; Qin, X.; Lu, X.X.; Liong, S.Y.; Rutschman, P.; Disse, M.; Koivusalo, H. Possible climate change/variability and human impacts, vulnerability of drought-prone regions, water resources and capacity building for Africa. Hydrol. Sci. J. 2016, 61, 1209–1226. [Google Scholar] [CrossRef]
- USAID. U.S. Government Global Water Strategy 2017; USAID: Washington, DC, USA, 2017.
- USAID. U.S. Government Global Food Security Strategy 2016; USAID: Washington, DC, USA, 2017.
- McNally, A.; McCartney, S.; Ruane, A.C.; Mladenova, I.E.; Whitcraft, A.K.; Becker-Reshef, I.; Bolten, J.D.; Peters-Lidard, C.D.; Rosenzweig, C.; Uz, S.S. Hydrologic and Agricultural Earth Observations and Modeling for the Water-Food Nexus. Front. Environ. Sci. 2019, 7, 23. [Google Scholar] [CrossRef]
- Clark, W.C.; van Kerkhoff, L.; Lebel, L.; Gallopin, G.C. Crafting usable knowledge for sustainable development. Proc. Natl. Acad. Sci. USA 2016, 113, 4570–4578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkenmark, M. The Massive Water Scarcity Now Threatening Africa: Why Isn’t It Being Addressed? Ambio 1989, 18, 112–118. [Google Scholar]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Wisser, D.; Bierkens, M.F.P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 2014, 5, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Mankin, J.S.; Viviroli, D.; Mekonnen, M.M.; Hoekstra, A.Y.; Horton, R.M.; Smerdon, J.E.; Diffenbaugh, N.S. Influence of internal variability on population exposure to hydroclimatic changes. Environ. Res. Lett. 2017, 12, 044007. [Google Scholar] [CrossRef] [Green Version]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; Matlock, M.D. A review of water scarcity indices and methodologies. Food Beverage Agric. 2017, 106, 1–19. [Google Scholar]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present and future. Earths Future 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Damkjaer, S.; Taylor, R. The measurement of water scarcity: Defining a meaningful indicator. Ambio 2017, 46, 513–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Chaney, N.; Guan, K.; Sadri, S.; Yuan, X.; Olang, L.; Amani, A.; Ali, A.; Demuth, S.; et al. A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security. Bull. Amer. Meteor. Soc. 2013, 95, 861–882. [Google Scholar] [CrossRef]
- Scherer, L.; Pfister, S. Dealing with uncertainty in water scarcity footprints. Environ. Res. Lett. 2016, 11, 054008. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Reig, P.; Shiao, T.; Gassert, F. Aqueduct Water Risk Framework; WRI Working Paper; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data Lond. 2017, 4, 170012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations–A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Juma, D.W.; Wang, H.; Li, F. Impacts of population growth and economic development on water quality of a lake: Case study of Lake Victoria Kenya water. Environ. Sci. Pollut. Res. 2014, 21, 5737–5746. [Google Scholar] [CrossRef] [PubMed]
- Peters-Lidard, C.D.; Houser, P.R.; Tian, Y.; Kumar, S.V.; Geiger, J.; Olden, S.; Lighty, L.; Doty, B.; Dirmeyer, P.; Adams, J.; et al. High-performance Earth system modeling with NASA/GSFC’s Land Information System. Innov. Syst. Softw. Eng. 2007, 3, 157–165. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Getirana, A.; Peters-Lidard, C.; Rodell, M.; Bates, P.D. Trade-off between cost and accuracy in large-scale surface water dynamic modeling. Water Resour. Res. 2017, 53, 4942–4955. [Google Scholar] [CrossRef]
- Getirana, A.C.V.; Boone, A.; Yamazaki, D.; Decharme, B.; Papa, F.; Mognard, N. The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon Basin. J. Hydrometeor. 2012, 13, 1641–1665. [Google Scholar] [CrossRef] [Green Version]
- Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 2010, 387, 33–45. [Google Scholar] [CrossRef]
- Verdin, K.L. Hydrologic Derivatives for Modeling and Analysis—A New Global High-Resolution Database; Data Series; U.S. Geological Survey: Reston, VA, USA, 2017; p. 24.
- Linard, C.; Gilbert, M.; Snow, R.W.; Noor, A.M.; Tatem, A.J. Population Distribution, Settlement Patterns and Accessibility across Africa in 2010. PLoS ONE 2012, 7, e31743. [Google Scholar] [CrossRef]
- Birkett, C.; Reynolds, C.; Beckley, B.; Doorn, B. From Research to Operations: The USDA Global Reservoir and Lake Monitor. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 19–50. ISBN 978-3-642-12796-0. [Google Scholar]
- Latham, B.; Nhamire, B. Zimbabwe, Mozambique in power deal that could close Kariba hydro plant. Business Day, 11 July 2019. [Google Scholar]
- Ndlovu, M. Kariba Dam left with 4 metres before switching off. Bulawayo 24 News, 30 June 2019. [Google Scholar]
- Crecey, K. Power production on the verge of shutdown at Zim’s Kariba Dam. Fin24, 31 May 2019. [Google Scholar]
- Baaitse, F. Water finally flows in Shashe ward. The Okavanogo Voice, 18 June 2019. [Google Scholar]
- Episcopal Relief and Development Responding to the Drought in Namibia. Reliefweb, 26 June 2019.
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global freshwater availability. Nature 2018, 557, 651. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Schmied, H.M.; van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [Green Version]
- Smakhtin, V.U.; Revenga, C.; Doll, P. Taking into Account Environmental Water Requirements in Global-Scale Water Resources Assessments; International Water Management Institute (IWMI), Comprehensive Assessment Secretariat: Colombo, Sri Lanka, 2004. [Google Scholar]
- Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K. An integrated model for the assessment of global water resources—Part 2: Applications and assessments. Hydrol. Earth Syst. Sci. 2008, 12, 1027–1037. [Google Scholar] [CrossRef]
- Dontoh, E.; Cohen, M. Africa’s Booming Cities Are Running Out of Water. Bloomberg, 18 March 2019. [Google Scholar]
- Mosbergen, D. After 3 Years of Drought, A Starving Madagascar Teeters on The Brink Of “Catastrophe”. Available online: https://www.huffpost.com/entry/madagascar-drought-hunger_n_580dbb32e4b0a03911ed7540 (accessed on 15 August 2019).
- Vörösmarty, C.J.; Douglas, E.M.; Green, P.A.; Revenga, C. Geospatial indicators of emerging water stress: An application to Africa. Ambio 2005, 34, 230–236. [Google Scholar] [CrossRef]
- Nearing, G.S.; Mocko, D.M.; Peters-Lidard, C.D.; Kumar, S.V.; Xia, Y. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions. J. Hydrometeor. 2016, 17, 745–759. [Google Scholar] [CrossRef]
- McNally, A.; Verdin, K.; Jung, H.C.; Harrison, L.; Shukla, S.; Peters-Lidard, C. Hydrologic Modeling for Monitoring Water Availability in Sub-Saharan Africa; American Geophysical Union: Washington, DC, USA, 2017. [Google Scholar]
- Jung, H.C.; Getirana, A.; Policelli, F.; McNally, A.; Arsenault, K.R.; Kumar, S.; Tadesse, T.; Peters-Lidard, C.D. Upper Blue Nile basin water budget from a multi-model perspective. J. Hydrol. 2017, 555, 535–546. [Google Scholar] [CrossRef] [Green Version]
Dataset or Model | Description | Data Citation | Data Availability |
---|---|---|---|
Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS) rainfall | input to FEWS NET Land Data Assimilation System (FLDAS), available 1981–present | Funk et al. 2015 [27] | University of California, Santa Barbara (UCSB) |
Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) meteorology | input to FLDAS, availability 1979–present | Gelaro et al. 2017 [31] | NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) |
U.S. Geological Survey (USGS) Hydrologic Derivatives for Modeling and Applications (HDMA) basins | used for spatial aggregation | Verdin 2017 [35] | USGS |
WorldPop | 2015 population estimate | Linard et al. 2015 [36] | WorldPop |
FLDAS-Noah.36 | land surface model, monthly outputs available 1982–present | McNally et al. 2017 [26] | NASA GES DISC |
Hydrologic Modeling and Analysis Platform (HyMAP-2) routing | river routing scheme, beta version | Getirana et al. 2012 [33]; 2017 [32] | NA |
Category | m3/year/capita |
---|---|
no stress | >1700 |
stress | 1000–1700 |
scarcity | 500–1000 |
absolute scarcity | <500 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNally, A.; Verdin, K.; Harrison, L.; Getirana, A.; Jacob, J.; Shukla, S.; Arsenault, K.; Peters-Lidard, C.; Verdin, J.P. Acute Water-Scarcity Monitoring for Africa. Water 2019, 11, 1968. https://doi.org/10.3390/w11101968
McNally A, Verdin K, Harrison L, Getirana A, Jacob J, Shukla S, Arsenault K, Peters-Lidard C, Verdin JP. Acute Water-Scarcity Monitoring for Africa. Water. 2019; 11(10):1968. https://doi.org/10.3390/w11101968
Chicago/Turabian StyleMcNally, Amy, Kristine Verdin, Laura Harrison, Augusto Getirana, Jossy Jacob, Shraddhanand Shukla, Kristi Arsenault, Christa Peters-Lidard, and James P. Verdin. 2019. "Acute Water-Scarcity Monitoring for Africa" Water 11, no. 10: 1968. https://doi.org/10.3390/w11101968
APA StyleMcNally, A., Verdin, K., Harrison, L., Getirana, A., Jacob, J., Shukla, S., Arsenault, K., Peters-Lidard, C., & Verdin, J. P. (2019). Acute Water-Scarcity Monitoring for Africa. Water, 11(10), 1968. https://doi.org/10.3390/w11101968