An Integrated Approach for Constraining Depositional Zones in a Tide-Influenced River: Insights from the Gorai River, Southwest Bangladesh
Abstract
:1. Introduction
2. Regional Setting
3. Methods
3.1. Remote Sensing
3.2. Hydrodynamic Observations
3.3. Site Selection and Fieldwork
3.4. X-Radiography
3.5. Granulometry
4. Results
4.1. Surface and Channel Morphology
4.2. Shallow Subsurface Sedimentology and Stratigraphy
4.2.1. Tide-Dominated Depozone (DAC & BTG)
4.2.2. Mixed Tidal-Fluvial Depozone (KAL & BTP)
4.2.3. Fluvial-Dominated Depozone (MHP & KMK)
4.3. Deep Subsurface Sedimentology and Stratigraphy
5. Discussion
5.1. Sedimentological Trends across the TFT
5.1.1. Down-core Trends in Grain Size
5.1.2. Progressive Changes in Bedding Type
5.1.3. Relative Abundance of Sand and Mud
5.2. Channel Morphodynamics across the TFT
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dalrymple, R.W.; Choi, K. Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Sci. Rev. 2007, 81, 135–174. [Google Scholar] [CrossRef]
- Milliman, J.D.; Meade, R.H. World-Wide Delivery of River Sediment to the Oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P.M. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Madsen, O.S.; Poon, Y.-K.; Graber, H.C. Spectral Wave Attenuation by Bottom Friction: Theory; American Society of Civil Engineers: Costa del Sol-Malaga, Spain, 1989; pp. 492–504. [Google Scholar]
- Soulsby, R.L.; Whitehouse, R.J.S. Threshold of sediment motion in coastal environments. In Proceedings of the Pacific Coasts and Ports’ 97, 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, Centre of Advanced Engineering, University of Canterbury, Christchurch, New Zealand, 7–11 September 1997; Engineers Australia. Volume 1, p. 145. [Google Scholar]
- Kobayashi, N.; Raichle, A.W.; Asano, T. Wave Attenuation by Vegetation. J. Waterw. Port Coast. Ocean Eng. 1993, 119, 30–48. [Google Scholar] [CrossRef]
- Möller, I. Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK East coast saltmarsh. Estuar. Coast. Shelf Sci. 2006, 69, 337–351. [Google Scholar] [CrossRef]
- Jadhav, R.S.; Chen, Q.; Smith, J.M. Spectral distribution of wave energy dissipation by salt marsh vegetation. Coast. Eng. 2013, 77, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Godin, G. The Propagation of Tides up Rivers with Special Considerations on the Upper Saint Lawrence River. Estuar. Coast. Shelf Sci. 1999, 48, 307–324. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Kurcinka, C.E.; Jablonski, B.V.J.; Ichaso, A.A.; Mackay, D.A. Deciphering the relative importance of fluvial and tidal processes in the fluvial–marine transition. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 68, pp. 3–45. [Google Scholar]
- Van den Berg, J.H.; Boersma, J.R.; Van Gelder, A. Diagnostic sedimentary structures of the fluvial-tidal transition zone—Evidence from deposits of the Rhine and Meuse. Neth. J. Geosci. 2007, 86, 287–306. [Google Scholar] [CrossRef]
- Olariu, C.; Steel, R.J.; Olariu, M.I.; Choi, K. Facies and architecture of unusual fluvial–tidal channels with inclined heterolithic strata. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 68, pp. 353–394. [Google Scholar]
- Prokocki, E.W.; Best, J.L.; Ashworth, P.J.; Parsons, D.R.; Smith, G.H.S.; Nicholas, A.P.; Simpson, C.J.; Wang, H.; Sandbach, S.D.; Keevil, C.E. Mid to late Holocene geomorphological and sedimentological evolution of the fluvial–tidal zone. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 68, pp. 193–226. [Google Scholar]
- Webb, N.D.; Seyler, B.; Grube, J.P. Geologic reservoir characterization of Carboniferous fluvio-tidal deposits of the Illinois Basin, USA. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 68, pp. 395–443. [Google Scholar]
- Gugliotta, M.; Kurcinka, C.E.; Dalrymple, R.W.; Flint, S.S.; Hodgson, D.M. Decoupling seasonal fluctuations in fluvial discharge from the tidal signature in ancient deltaic deposits: An example from the Neuquén Basin, Argentina. J. Geo. Soc. 2016, 173, 94–107. [Google Scholar] [CrossRef]
- Jablonski, B.V.J.; Dalrymple, R.W. Recognition of strong seasonality and climatic cyclicity in an ancient, fluvially dominated, tidally influenced point bar: Middle McMurray Formation, Lower Steepbank River, north-eastern Alberta, Canada. Sedimentology 2016, 63, 552–585. [Google Scholar] [CrossRef]
- Martin, J.; Fernandes, A.M.; Pickering, J.; Howes, N.; Mann, S.; McNeil, K. The Stratigraphically Preserved Signature of Persistent Backwater Dynamics in a Large Paleodelta System: The Mungaroo Formation, North West Shelf, Australia. J. Sediment. Res. 2018, 88, 850–872. [Google Scholar] [CrossRef]
- Ethridge, F.G.; Flores, R.M.; Harvey, M.D. Recent Developments in Fluvial Sedimentology; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 1987. [Google Scholar]
- Dashtgard, S.E.; Venditti, J.G.; Hill, P.R.; Sisulak, C.F.; Johnson, S.M.; LaCroix, A.D. Sedimentation across the Tidal-Fluvial Transition in the Lower Fraser River, Canada. Sediment. Rec. 2012, 10, 4–9. [Google Scholar] [CrossRef]
- Gugliotta, M.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Nakashima, R.; Tamura, T.; Uehara, K.; Katsuki, K.; Yamamoto, S. Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam. Cont. Shelf Res. 2017, 147, 7–26. [Google Scholar] [CrossRef]
- Gugliotta, M.; Saito, Y. Matching trends in channel width, sinuosity, and depth along the fluvial to marine transition zone of tide-dominated river deltas: The need for a revision of depositional and hydraulic models. Earth-Sci. Rev. 2019, 191, 93–113. [Google Scholar] [CrossRef]
- Musial, G.; Reynaud, J.-Y.; Gingras, M.K.; Féniès, H.; Labourdette, R.; Parize, O. Subsurface and outcrop characterization of large tidally influenced point bars of the Cretaceous McMurray Formation (Alberta, Canada). Sediment. Geol. 2012, 279, 156–172. [Google Scholar] [CrossRef]
- Michael, H.A.; Voss, C.I. Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis. Hydrogeol. J. 2009, 17, 1561–1577. [Google Scholar] [CrossRef]
- Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J.P.M. Land subsidence at aquaculture facilities in the Yellow River delta, China: Subsidence at aquaculture facilities. Geophys. Res. Lett. 2013, 40, 3898–3902. [Google Scholar] [CrossRef]
- Wilson, C.; Goodbred, S.; Small, C.; Gilligan, J.; Sams, S.; Mallick, B.; Hale, R. Widespread infilling of tidal channels and navigable waterways in human-modified tidal deltaplain of southwest Bangladesh. Elem. Sci. Anthr. 2017, 5, 78. [Google Scholar] [CrossRef]
- Das, T.K.; Haldar, S.K.; Das Gupta, I.; Sen, S. River Bank Erosion Induced Human Displacement and Its Consequences. Living Rev. Landsc. Res. 2014, 8, 1–35. [Google Scholar] [CrossRef]
- La Croix, A.D.; Dashtgard, S.E. A Synthesis of Depositional Trends in Intertidal and Upper Subtidal Sediments Across the Tidal–Fluvial Transition In the Fraser River, Canada. J. Sediment. Res. 2015, 85, 683–698. [Google Scholar] [CrossRef]
- Gingras, M.K.; MacEachern, J.A.; Dashtgard, S.E. Process ichnology and the elucidation of physico-chemical stress. Sediment. Geol. 2011, 237, 115–134. [Google Scholar] [CrossRef]
- Johnson, S.M.; Dashtgard, S.E. Inclined heterolithic stratification in a mixed tidal–fluvial channel: Differentiating tidal versus fluvial controls on sedimentation. Sediment. Geol. 2014, 301, 41–53. [Google Scholar] [CrossRef]
- Díez-Canseco, D.; Buatois, L.A.; Mángano, M.G.; Rodriguez, W.; Solorzano, E. The ichnology of the fluvial–tidal transition. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 68, pp. 283–321. [Google Scholar]
- Nittrouer, J.A.; Shaw, J.; Lamb, M.P.; Mohrig, D. Spatial and temporal trends for water-flow velocity and bed-material sediment transport in the lower Mississippi River. Geol. Soc. Am. Bull. 2012, 124, 400–414. [Google Scholar] [CrossRef]
- Nittrouer, J.A. Backwater hydrodynamics and sediment transport in the lowermost Mississippi River Delta: Implications for development of fluvial-deltaic landforms in a large lowland river. In Proceedings of the IAHS Publication 358, Gothenburg, Sweden, 22–26 July 2013; pp. 48–61. [Google Scholar]
- Lamb, M.P.; Nittrouer, J.A.; Mohrig, D.; Shaw, J. Backwater and river plume controls on scour upstream of river mouths: Implications for fluvio-deltaic morphodynamics: Backwater and river plume controls. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Blum, M.; Martin, J.; Milliken, K.; Garvin, M. Paleovalley systems: Insights from Quaternary analogs and experiments. Earth-Sci. Rev. 2013, 116, 128–169. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Törnqvist, T.E.; Straub, K.M.; Mohrig, D. Connecting the backwater hydraulics of coastal rivers to fluvio-deltaic sedimentology and stratigraphy. Geology 2016, 44, 979–982. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, A.M.; Smith, V.B.; Mason, K.G. Backwater Controls on the Sedimentology, Kinematics and Geometry of Bar Deposits in Coastal Rivers. EarthArXiv 2018. [Google Scholar] [CrossRef] [Green Version]
- Sisulak, C.F.; Dashtgard, S.E. Seasonal Controls On the Development and Character of Inclined Heterolithic Stratification in A Tide-Influenced, Fluvially Dominated Channel: Fraser River, Canada. J. Sediment. Res. 2012, 82, 244–257. [Google Scholar] [CrossRef]
- Czarnecki, J.M.; Dashtgard, S.E.; Pospelova, V.; Mathewes, R.W.; MacEachern, J.A. Palynology and geochemistry of channel-margin sediments across the tidal–fluvial transition, lower Fraser River, Canada: Implications for the rock record. Mar. Pet. Geol. 2014, 51, 152–166. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Nicholls, R.J.; Saito, Y.; Chen, Z.; Goodbred, S.L. Landscape Variability and the Response of Asian Megadeltas to Environmental Change. In Global Change and Integrated Coastal Management; Harvey, N., Ed.; Springer: Dordrecht, The Netherlands, 2006; Volume 10, pp. 277–314. [Google Scholar]
- Small, C.; Sousa, D.; Yetman, G.; Elvidge, C.; MacManus, K. Decades of urban growth and development on the Asian megadeltas. Glob. Planet. Chang. 2018, 165, 62–89. [Google Scholar] [CrossRef]
- Shaha, D.C.; Cho, Y.-K. Salt Plug Formation Caused by Decreased River Discharge in a Multi-Channel Estuary. Sci. Rep. 2016, 6, 27176. [Google Scholar] [CrossRef] [PubMed]
- Chow, V.T. Open-Channel Hydraulics; Blackburn Press: Caldwell, NJ, USA, 2009. [Google Scholar]
- Edmonds, D.A.; Hoyal, D.C.J.D.; Sheets, B.A.; Slingerland, R.L. Predicting delta avulsions: Implications for coastal wetland restoration. Geology 2009, 37, 759–762. [Google Scholar] [CrossRef]
- Chatanantavet, P.; Lamb, M.P.; Nittrouer, J.A. Backwater controls of avulsion location on deltas: Backwater controls on delta avulsions. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Ganti, V.; Chadwick, A.J.; Hassenruck-Gudipati, H.J.; Fuller, B.M.; Lamb, M.P. Experimental river delta size set by multiple floods and backwater hydrodynamics. Sci. Adv. 2016, 2, e1501768. [Google Scholar] [CrossRef]
- Chadwick, A.J.; Lamb, M.P.; Moodie, A.J.; Parker, G.; Nittrouer, J.A. Origin of a Preferential Avulsion Node on Lowland River Deltas. Geophys. Res. Lett. 2019, 46, 4267–4277. [Google Scholar] [CrossRef] [Green Version]
- Ganti, V.; Chu, Z.; Lamb, M.P.; Nittrouer, J.A.; Parker, G. Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China: Avulsion drivers on fans versus deltas. Geophys. Res. Lett. 2014, 41, 7882–7890. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics. Population and Housing Census 2011; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2011.
- Chamberlain, E.L.; Goodbred, S.L.; Hale, R.; Steckler, M.S.; Wallinga, J.; Wilson, C. Integrating geochronologic and instrumental approaches across the Bengal Basin: Integrating geochronologic and instrumental approaches. Earth Surf. Process. Landf. 2019. [Google Scholar] [CrossRef]
- Environmental and Geographical Information System. Environmental Baseline of Gorai River Restoration Project, EGIS-II; Bangladesh Water Development Board, Ministry of Water Resources, Government of Bangladesh: Delft, The Netherlands, 2000; p. 150.
- Winterwerp, J.C.; Giardino, A. Assessment of increasing freshwater input on salinity and sedimentation in the Gorai River system. World Bank Proj. 2012. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Bridge, J.S. Rivers and Floodplains: Forms, Processes, and Sedimentary Record; Blackwell Pub: Oxford, UK; Malden, MA, USA, 2003. [Google Scholar]
- Transportation Research Board; National Academies of Sciences, Engineering, and Medicine. Handbook for Predicting Stream Meander Migration and Supporting Software; Transportation Research Board: Washington, DC, USA, 2004. [Google Scholar]
- Finotello, A.; Lanzoni, S.; Ghinassi, M.; Marani, M.; Rinaldo, A.; D’Alpaos, A. Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Proc. Natl. Acad. Sci. USA 2018, 115, 1463–1468. [Google Scholar] [CrossRef] [Green Version]
- Pethick, J. Assessing changes in the landform and geomorphology due to sea level rise in the Bangladesh Sundarbans. Rep. World Bank Mimeo 2012, 127, 1–42. [Google Scholar]
- Sambrook Smith, G.H.; Nicholas, A.P.; Best, J.L.; Bull, J.M.; Dixon, S.J.; Goodbred, S.; Sarker, M.H.; Vardy, M.E. The sedimentology of river confluences. Sedimentology 2019, 66, 391–407. [Google Scholar] [CrossRef]
- BIWTA (Bangladesh Inland Water Transport). Bangladesh Tide Tables, 2019; Bangladesh Inland Water Transport: Dhaka, Bangladesh, 2019. [Google Scholar]
- Pickering, J.L.; Goodbred, S.L.; Reitz, M.D.; Hartzog, T.R.; Mondal, D.R.; Hossain, M.S. Late Quaternary sedimentary record and Holocene channel avulsions of the Jamuna and Old Brahmaputra River valleys in the upper Bengal delta plain. Geomorphology 2014, 227, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.M.; Goldring, R. Description and analysis of bioturbation and ichnofabric. J. Geol. Soc. 1993, 150, 141–148. [Google Scholar] [CrossRef]
- Wilson, C.A.; Goodbred, S.L. Construction and Maintenance of the Ganges-Brahmaputra-Meghna Delta: Linking Process, Morphology, and Stratigraphy. Annu. Rev. Mar. Sci. 2015, 7, 67–88. [Google Scholar] [CrossRef]
- Pethick, J.; Orford, J.D. Rapid rise in effective sea-level in southwest Bangladesh: Its causes and contemporary rates. Glob. Planet. Chang. 2013, 111, 237–245. [Google Scholar] [CrossRef]
- Wilson, C.A.; Valentine, L.; Louisiana State University, Department of Geology and Geophysics, Baton Rouge, LA, 70803, USA. Personal communication, 2018.
- Rahman, A.; University of Dhaka, Department of Geology, Dhaka, Bangladesh. Personal communication (interview with local villagers), 2018.
- Choi, K.S.; Dalrymple, R.W.; Chun, S.S.; Kim, S.-P. Sedimentology of Modern, Inclined Heterolithic Stratification (IHS) in the Macrotidal Han River Delta, Korea. J. Sediment. Res. 2004, 74, 677–689. [Google Scholar] [CrossRef]
- Brivio, L.; Ghinassi, M.; D’Alpaos, A.; Finotello, A.; Fontana, A.; Roner, M.; Howes, N. Aggradation and lateral migration shaping geometry of a tidal point bar: An example from salt marshes of the Northern Venice Lagoon (Italy). Sediment. Geol. 2016, 343, 141–155. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Baker, E.K.; Harris, P.T.; Hughes, M.G. Tropical Deltas of Southeast Asia; Sidi, F.H., Nummedal, D., Imbert, P., Darman, H., Posamentier, H.W., Eds.; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 2003. [Google Scholar]
- Ghinassi, M.; D’alpaos, A.; Gasparotto, A.; Carniello, L.; Brivio, L.; Finotello, A.; Roner, M.; Franceschinis, E.; Realdon, N.; Howes, N.; et al. Morphodynamic evolution and stratal architecture of translating tidal point bars: Inferences from the northern Venice Lagoon (Italy). Sedimentology 2018, 65, 1354–1377. [Google Scholar] [CrossRef]
- Hale, R.; Bain, R.; Goodbred Jr., S.; Best, J. Observations and scaling of tidal mass transport acrossthe lower Ganges-Brahmaputra delta plain: Implications for delta management and sustainability. Earth Surf. Dyn. 2018, 7, 231–245. [Google Scholar] [CrossRef]
- Best, J.L.; Rhoads, B.L. Sediment Transport, Bed Morphology and the Sedimentology of River Channel Confluences. In River Confluences, Tributaries and the Fluvial Network; Rice, S.P., Roy, A.G., Rhoads, B.L., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; pp. 45–72. [Google Scholar]
- Hale, R.P.; Wilson, C.A.; Bomer, E.J. Seasonal variability of forces controlling sedimentation in the Sundarbans National Forest, Bangladesh. Front. Earth Sci. 2019, 7, 211. [Google Scholar] [CrossRef]
- Roscoe, G. Jackson II Depositional Model of Point Bars in the Lower Wabash River. SEPM JSR 1976, 46, 579–594. [Google Scholar]
- Clift, P.D.; Olson, E.D.; Lechnowskyj, A.; Moran, M.G.; Barbato, A.; Lorenzo, J.M. Grain-size variability within a mega-scale point-bar system, False River, Louisiana. Sedimentology 2019, 66, 408–434. [Google Scholar] [CrossRef]
- Ikeda, H. Sedimentary controls on channel migration and origin of point bars in sand-bedded meandering rivers. In Water Resources Monograph; Ikeda, S., Parker, G., Eds.; American Geophysical Union: Washington, DC, USA, 1989; Volume 12, pp. 51–68. [Google Scholar]
- Goodbred, S.L.; Paolo, P.M.; Ullah, M.S.; Pate, R.D.; Khan, S.R.; Kuehl, S.A.; Singh, S.K.; Rahaman, W. Piecing together the Ganges-Brahmaputra-Meghna River delta: Use of sediment provenance to reconstruct the history and interaction of multiple fluvial systems during Holocene delta evolution. Geol. Soc. Am. Bull. 2014, 126, 1495–1510. [Google Scholar] [CrossRef]
- Kvale, E.P. Tidal Constituents of Modern and Ancient Tidal Rhythmites: Criteria for Recognition and Analyses. In Principles of Tidal Sedimentology; Davis, R.A., Dalrymple, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–17. [Google Scholar]
- Pearson, N.J.; Gingras, M.K. An Ichnological and Sedimentological Facies Model for Muddy Point-Bar Deposits. J. Sediment. Res. 2006, 76, 771–782. [Google Scholar] [CrossRef]
- Taylor, A.; Goldring, R.; Gowland, S. Analysis and application of ichnofabrics. Earth-Sci. Rev. 2003, 60, 227–259. [Google Scholar] [CrossRef]
- Rogers, K.G.; Goodbred, S.L.; Mondal, D.R. Monsoon sedimentation on the ‘abandoned’ tide-influenced Ganges–Brahmaputra delta plain. Estuar. Coast. Shelf Sci. 2013, 131, 297–309. [Google Scholar] [CrossRef]
- Brown, K.F.; Hale, R.P.; Datta, D.K.; Datta, S.B. Persistence of Depositional Features in a Strongly Seasonal, Tide-Dominated Delta. In Proceedings of the American Geophysical Union Annual Meeting, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Bomer, E.J.; Wilson, C.A.; Hale, R.P.; Hossain, A.N.M.; Rahman, F.M.A. Surface elevation and sedimentation dynamics in the Ganges-Brahmaputra tidal delta plain, Bangladesh: Evidence for mangrove adaptation to human-induced hydrological distubances. Catena 2019. in review. [Google Scholar]
- Baker, V.R. Paleoflood hydrology and extraordinary flood events. J. Hydrol. 1987, 96, 79–99. [Google Scholar] [CrossRef]
- Nittrouer, J.A.; Mohrig, D.; Allison, M. Punctuated sand transport in the lowermost Mississippi River. J. Geophys. Res. 2011, 116, F04025. [Google Scholar] [CrossRef]
- Smith, V.B. Geomorphology of a Coastal Sand-Bed River: Lower Trinity River; University of Texas: Austin, TX, USA, 2012. [Google Scholar]
- Jerolmack, D.J.; Swenson, J.B. Scaling relationships and evolution of distributary networks on wave-influenced deltas: Networks on wave-influenced deltas. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Allison, M.A.; Khan, S.R.; Goodbred, S.L.; Kuehl, S.A. Stratigraphic evolution of the late Holocene Ganges—Brahmaputra lower delta plain. Sediment. Geol. 2003, 155, 317–342. [Google Scholar] [CrossRef]
- Cao, L.; Jiang, T.; Wang, Z.; Zhang, Y.; Sun, H. Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U–Pb ages. Mar. Geol. 2015, 361, 136–146. [Google Scholar] [CrossRef]
- Guo, L.; Van der Wegen, M.; Jay, D.A.; Matte, P.; Wang, Z.B.; Roelvink, D.; He, Q. River-tide dynamics: Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary: River tidal dynamics. J. Geophys. Res. Oceans 2015, 120, 3499–3521. [Google Scholar] [CrossRef]
- Zhang, M.; Townend, I.; Zhou, Y.; Cai, H. Seasonal variation of river and tide energy in the Yangtze estuary, China: Seasonal energy in Yangtze. Earth Surf. Process. Landf. 2016, 41, 98–116. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine facies models: Conceptual basis and stratigraphic implications. J. Sediment. Res. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Hoyal, D.C.J.D.; Sheets, B.A. Morphodynamic evolution of experimental cohesive deltas. J. Geophys. Res. 2009, 114, F02009. [Google Scholar] [CrossRef]
- Li, Q.; Matthew Benson, W.; Harlan, M.; Robichaux, P.; Sha, X.; Xu, K.; Straub, K.M. Influence of Sediment Cohesion on Deltaic Morphodynamics and Stratigraphy Over Basin-Filling Time Scales: Influence of Sediment Cohesion on Deltas. J. Geophys. Res. Earth Surf. 2017, 122, 1808–1826. [Google Scholar] [CrossRef]
- Kolb, C.R. Sediments forming the bed and banks of the lower Mississippi River and their effect on river migration. Sedimentology 1963, 2, 227–234. [Google Scholar] [CrossRef]
- Orton, G.J.; Reading, H.G. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 1993, 40, 475–512. [Google Scholar] [CrossRef]
- Tornqvist, T.E. Holocene Alternation of Meandering and Anastomosing Fluvial Systems in the Rhine-Meuse Delta (Central Netherlands) Controlled by Sea-Level Rise and Subsoil Erodibility. SEPM JSR 1993, 63, 683–693. [Google Scholar] [CrossRef]
- Mehta, A.J. Review notes on cohesive sediment erosion. In Proceedings of the Coastal Sediments, Seattle, WA, USA, 25–27 June 1991; pp. 40–53. [Google Scholar]
- Hoitink, A.J.F.; Wang, Z.B.; Vermeulen, B.; Huismans, Y.; Kästner, K. Tidal controls on river delta morphology. Nat. Geosci. 2017, 10, 637–645. [Google Scholar] [CrossRef] [Green Version]
- Lentsch, N.; Finotello, A.; Paola, C. Reduction of deltaic channel mobility by tidal action under rising relative sea level. Geology 2018, 46, 599–602. [Google Scholar] [CrossRef]
- Ikeda, S.; Parker, G.; Sawai, K. Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 1981, 112, 363. [Google Scholar] [CrossRef]
- Hasegawa, K. Studies on qualitative and quantitative prediction of meander channel shift. In Water Resources Monograph; Ikeda, S., Parker, G., Eds.; American Geophysical Union: Washington, DC, USA, 1989; Volume 12, pp. 215–235. [Google Scholar]
- Fisk, H.N. Fine-Grained Alluvial Deposits and Their Effects on Mississippi River Activity; USACE: Vicksburg, MS, USA, 1947; pp. 1–82. [Google Scholar]
- Hudson, P.F.; Kesel, R.H. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology 2000, 28, 531–534. [Google Scholar] [CrossRef]
- Wilson, C.A.; Sincavage, R.; Goodbred, S.L.; Patrick, M.; Hale, R.P.; Bain, R.; Steckler, M. Coupling mass extraction of sediment, topography, and backwater effects in the Ganges-Brahmaputra delta. In Proceedings of the International Conference on Fluvial Sedimentology, Calgary, Canada, 17–21 July 2017. [Google Scholar]
TFT Hydrodynamic Conditions | Tide-dominated | Tide-dominated | Mixed Tidal-fluvial | Mixed Tidal-fluvial | Fluvial-dominated | Fluvial-dominated |
---|---|---|---|---|---|---|
Auger core location/ Grain size (%) | DAC | BTG | KAL | BTP | MHP | KMK |
Fine-medium silt (8–32 µm) | 84.3 | 36.5 | 31.5 | 11.8 | 7.0 | 0 |
Coarse silt (32–63 µm) | 15.7 | 51.2 | 41.6 | 54.1 | 37.2 | 13.3 |
Very fine sand (63–125 µm) | 0 | 2.3 | 26.9 | 32.9 | 45.3 | 84.5 |
Fine sand (125–250 µm) | 0 | 0 | 0 | 1.2 | 10.5 | 2.2 |
Sand : mud ratio | 0 : 100 | 2.3 : 97.7 | 26.9 : 73.1 | 34.1 : 65.9 | 55.8 : 44.2 | 86.7 : 13.3 |
Mean tide range (m) | 3.2 | 2.9 | 1.8 | 1.4 | 0.2 | 0 |
Water salinity, dry season (psu) | 23.0 | 22.0 | 10.0 | 4.0 | 0.5 | 0 |
TFT Hydrodynamic Conditions | Tide-dominated | Mixed Tidal-fluvial | Fluvial-dominated |
---|---|---|---|
Drill core location/Grain size (%) | DAC | BTP | KMK |
Peat | 2.2 | 0 | 2.1 |
Fine-medium silt (8–32 µm) | 35.6 | 6.7 | 14.9 |
Coarse silt (32–63 µm) | 6.7 | 4.4 | 2.1 |
Very fine sand (63–125 µm) | 15.6 | 2.2 | 0 |
Fine sand (125–250 µm) | 37.7 | 71.1 | 76.6 |
Medium sand (250–500 µm) | 2.2 | 15.6 | 4.3 |
Sand : mud ratio | 55.5 : 45.5 | 88.9 : 11.1 | 80.9 : 19.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bomer, E.J.; Wilson, C.A.; Datta, D.K. An Integrated Approach for Constraining Depositional Zones in a Tide-Influenced River: Insights from the Gorai River, Southwest Bangladesh. Water 2019, 11, 2047. https://doi.org/10.3390/w11102047
Bomer EJ, Wilson CA, Datta DK. An Integrated Approach for Constraining Depositional Zones in a Tide-Influenced River: Insights from the Gorai River, Southwest Bangladesh. Water. 2019; 11(10):2047. https://doi.org/10.3390/w11102047
Chicago/Turabian StyleBomer, Edwin J., Carol A. Wilson, and Dilip K. Datta. 2019. "An Integrated Approach for Constraining Depositional Zones in a Tide-Influenced River: Insights from the Gorai River, Southwest Bangladesh" Water 11, no. 10: 2047. https://doi.org/10.3390/w11102047