Changes of Annual Precipitation and Probability Distributions for Different Climate Types of the World
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Data Preparation and Methodology
3. Results
3.1. Serial Correlation
3.2. Trends
3.2.1. Pre Increasing (ßPre > 0)
3.2.2. Pre Decreasing (ßPre < 0)
3.3. Best-Fit Distribution
3.3.1. Regions with Significant Decreases in Annual Precipitation
3.3.2. Regions with Significant Increases in Annual Precipitation
4. Discussion
5. Conclusions
- The relationship of the trends of Pre with Wet showed an increase in the intensity of Pre and longer duration of dry seasons for most of the cold regions in mid to high latitude regions.
- Drought-like conditions, i.e., low-intensity wet spells and long dry spells, were found to be prevailing in the arid and semi-arid regions of the world.
- The best-fit probability distribution for the regions showing significant decrease or increase (at a 5% significance level) in annual Pre indicated that GL and GEV distributions were two competent models followed by LL distribution.
- Widely considered probability distributions by different climatologists, i.e., Gamma, Log-Normal, Extreme Value and 3, and Generalized Pareto distributions, were best fitted to less than 1% (individually) of global regions, while Normal and Log-Pearson 3 distributions best fitted to 2–5% regions only. So, the authors conclude that instead of simply assuming the probability distribution for statistical analysis and forecasting long-term precipitation at any location of the world, either a wide range of PDFs should be fitted to data to find the best-fit PDF or simply the results of this study may be referred.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. PDF of Distributions
Appendix A.1. Generalized Gamma, Generalized Gamma_F, Gamma and Gamma_F
- γ = 0 yields three-parameter Generalized Gamma distribution, Generalized Gamma_F
- k = 1 yields three-Parameter Gamma Distribution
- γ = 0 and k = 1 yields two-parameter Gamma distribution, Gamma_F
Appendix A.2. Generalized Extreme Value Distribution (GEV)
Appendix A.3. Gumbel Max and Gumbel Min
Appendix A.4. Generalized Logistic Distribution (GL)
Appendix A.5. Log-Logistic and Log-Logistic_F
Appendix A.6. Normal
Appendix A.7. Lognormal and Lognormal_F
Appendix A.8. Log-Pearson Type III
Appendix A.9. Pearson-5 and Pearson-5_F
Appendix A.10. Pearson-6 and Pearson-6_F
Appendix A.11. Weibull and Weibull_F
Appendix B. Parameter Estimation Methods
Appendix B.1. Method of Least-Squares (LS)
Appendix B.2. Maximum Likelihood Method (ML)
Appendix B.3. Method of Moments (Mo)
Appendix B.4. Method of L-Moments (LMo)
Appendix C. Goodness of Fit Tests
Appendix C.1. Anderson–Darling Test (AD Test)
Appendix C.2. Kolmogorov–Smirnov Test (KS Test)
Appendix C.3. Chi-Squared Test (CS Test)
References
- Stocker, T.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.; Boschung, J.; Midgley, P. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the IPCC Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Lehmann, J.; Coumou, D.; Frieler, K. Increased record-breaking precipitation events under global warming. Clim. Chang. 2015, 132, 501–515. [Google Scholar] [CrossRef]
- Mishra, V.; Ganguly, A.R.; Nijssen, B.; Lettenmaier, D.P. Changes in observed climate extremes in global urban areas. Environ. Res. Lett. 2015, 10, 024005. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, L.; Leonard, M.; Do, H.X.; Westra, S.; Seneviratne, S.I. Observed Trends in Global Indicators of Mean and Extreme Streamflow. Geophys. Res. Lett. 2018, 46, 756–766. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 57, 269–306. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, V. Trend analysis of rainfall and temperature data for India. Curr. Sci. 2012, 102, 37–49. [Google Scholar] [CrossRef]
- Bera, S. Trend Analysis of Rainfall in Ganga Basin, India during 1901–2000. Am. J. Clim. Chang. 2017, 6, 116–131. [Google Scholar] [CrossRef]
- Duhan, D.; Pandey, A. Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmos. Res. 2013, 122, 136–149. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charless Griffin: London, UK, 1975; ISBN 0195208374. [Google Scholar]
- Modarres, R.; Sarhadi, A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res. Atmos. 2009, 114, 1–9. [Google Scholar] [CrossRef]
- Pranuthi, G.; Dubey, S.K.; Tripathi, S.K.; Chandniha, S.K. Trend and Change Point Detection of Precipitation in Urbanizing Districts of Uttarakhand in India. Indian J. Sci. Technol. 2014, 7, 1573–1582. [Google Scholar]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Villarini, G.; Serinaldi, F.; Smith, J.A.; Krajewski, W.F. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res. 2009, 45, 1–17. [Google Scholar] [CrossRef]
- Sharma, C.; Arora, H.; Ojha, C.S.P. Assessment of the Effect of Climate Change on Historical and Future Rainfall in Uttarakhand. In Proceedings of the Hydro-2015 International, Roorkee, India, 17–19 December 2015. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Whitelaw, G.S.; Fenech, A. Mean Annual Temperature and Total Annual Precipitation Trends at Canadian Biosphere Reserves. Environ. Monit. Assess. 2001, 67, 239–275. [Google Scholar] [CrossRef]
- Burn, D.H.; Hag Elnur, M.A. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Bayazit, M.; Önöz, B. To prewhiten or not to prewhiten in trend analysis? Hydrol. Sci. J. 2007, 52, 611–624. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [Google Scholar] [CrossRef]
- Sinha, D.; Syed, T.H.; Famiglietti, J.S.; Reager, J.T.; Thomas, R.C. Characterizing Drought in India Using GRACE Observations of Terrestrial Water Storage Deficit. J. Hydrometeorol. 2017, 18, 381–396. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.C. Synoptic characteristics, atmospheric controls, and long-term changes of heat waves over the Indochina Peninsula. Clim. Dyn. 2018, 51, 2707–2723. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Sippel, S.; Zscheischler, J.; Heimann, M.; Lange, H.; Mahecha, M.D.; van Oldenborgh, G.J.; Otto, F.E.L.; Reichstein, M. Have precipitation extremes and annual totals been increasing in the world’s dry regions over the last 60 years? Hydrol. Earth Syst. Sci. 2017, 21, 441–458. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.W.; Hegerl, G.C.; Lambert, F.H.; Gillett, N.P.; Solomon, S.; Stott, P.A.; Nozawa, T. Detection of human influence on twentieth-century precipitation trends. Nature 2007, 448, 461–465. [Google Scholar] [CrossRef]
- Feng, X.; Liu, C.; Xie, F.; Lu, J.; Chiu, L.S.; Tintera, G.; Chen, B. Precipitation Characteristic Changes due to Global Warming in a High-Resolution (16-km) ECMWF Simulation. Q. J. R. Meteorol. Soc. 2018, 1–15. [Google Scholar] [CrossRef]
- Choi, G.; Collins, D.; Ren, G.; Trewin, B.; Baldi, M.; Fukuda, Y.; Afzaal, M.; Pianmana, T.; Gomboluudev, P.; Huong, P.T.T.; et al. Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Climatol. 2009, 29, 1906–1925. [Google Scholar] [CrossRef]
- Goyal, M.K.; Gupta, V. Identification of homogeneous rainfall regimes in northeast region of India using fuzzy cluster analysis. Water Resour. Manag. 2014, 28, 4491–4511. [Google Scholar] [CrossRef]
- Giorgi, F.; Im, E.S.; Coppola, E.; Diffenbaugh, N.S.; Gao, X.J.; Mariotti, L.; Shi, Y. Higher hydroclimatic intensity with global warming. J. Clim. 2011, 24, 5309–5324. [Google Scholar] [CrossRef]
- Raghavendra, A.; Zhou, L.; Jiang, Y.; Hua, W. Increasing extent and intensity of thunderstorms observed over the Congo Basin from 1982 to 2016. Atmos. Res. 2018, 213, 17–26. [Google Scholar] [CrossRef]
- Choudhury, B.A.; Saha, S.K.; Konwar, M.; Sujith, K.; Deshamukhya, A. Rapid Drying of Northeast India in the Last Three Decades: Climate Change or Natural Variability? J. Geophys. Res. Atmos. 2019, 124, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Nigam, S. Twentieth-century climate change over Africa: Seasonal hydroclimate trends and sahara desert expansion. J. Clim. 2018, 31, 3349–3370. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Rajeevan, M.; Bhate, J.; Jaswal, A.K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef]
- Köppen, W. The thermal zones of the Earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. Meteorol. Z. 2011, 20, 351–360. [Google Scholar] [CrossRef]
- Hanf, F.; Körper, J.; Spangehl, T.; Cubasch, U. Shifts of climate zones in multi-model climate change experiments using the Köppen climate classification. Meteorol. Z. 2012, 21, 111–123. [Google Scholar] [CrossRef]
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Gao, X.; Giorgi, F. Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob. Planet. Chang. 2008, 62, 195–209. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Hanson, L.S.; Ding, P.; Wang, D.; Vogel, R.M. The Probability Distribution of Daily Precipitation at the Point and Catchment Scales in the United States. Hydrol. Earth Syst. Sci. Discuss. 2018, 22, 1–28. [Google Scholar] [CrossRef]
- Blain, G.C.; Meschiatti, M.C. Using multi-parameters distributions to assess the probability of occurrence of extreme rainfall data. Rev. Bras. Eng. Agríc. Ambient. 2014, 18, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Douka, M.; Karacostas, T. Statistical analyses of extreme rainfall events in Thessaloniki, Greece. Atmos. Res. 2018, 208, 60–77. [Google Scholar] [CrossRef]
- Santos, E.B.; Lucio, P.S.; Santos e Silva, C.M. Estimating return periods for daily precipitation extreme events over the Brazilian Amazon. Theor. Appl. Climatol. 2016, 126, 585–595. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. A global survey on the seasonal variation of the marginal distribution of daily precipitation. Adv. Water Resour. 2016, 94, 131–145. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res. 2013, 49, 187–201. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. Entropy based derivation of probability distributions: A case study to daily rainfall. Adv. Water Resour. 2012, 45, 51–57. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 2005, 25, 693–712. [Google Scholar] [CrossRef]
- New, M.; Hulme, M.; Jones, P. Representing Twentieth-Century Space–Time Climate Variability. Part II: Development of 1901–96 Monthly Grids of Terrestrial Surface Climate. J. Clim. 2000, 13, 2217–2238. [Google Scholar] [CrossRef]
- Ming, J.; Sun, J. Enhancement of the relationship between boreal summer precipitation over eastern China and Australia since the early 1980s. Int. J. Climatol. 2019, 39, 266–277. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P. Reliability of climate model multi-member ensembles in estimating internal precipitation and temperature variability at the multi-decadal scale. Int. J. Climatol. 2019, 39, 843–856. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Woods, R.A.; Freer, J.E. Global bimodal precipitation seasonality: A systematic overview. Int. J. Climatol. 2019, 39, 558–567. [Google Scholar] [CrossRef]
- Sharma, C.; Ojha, C.S.P. Statistical Parameters of Hydrometeorological Variables: Standard Deviation, SNR, Skewness and Kurtosis. In Advances in Water Resources Engineering and Management; Springer: Singapore, 2019; Volume I, p. 257. ISBN 9811381801. [Google Scholar]
- Udo, M.S.; Andreas, B.; Peter, F.; Meyer-Christoffer, A.; Bruno, R.; Ziese, M. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data; Global Precipitation Climatology Centre (GPCC): Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: New York, NY, USA, 2002; ISBN 0387953515. [Google Scholar]
- El-Shaarawi, A.H.; Piegorsch, W.W. Encyclopedia of Environmetrics; Wiley: New York City, NY, USA, 2002; Volume 1, ISBN 0471899976. [Google Scholar]
- Greenwood, J.A.; Landwehr, J.M.; Matalas, N.C.; Wallis, J.R. Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resour. Res. 1979, 15, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Hosking, J.R.M. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. J. R. Stat. Soc. 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Zerda, I. An experimental comparison of popular estimation methods for the Weibull, Gamma and Gompertz Distributions. Schedae Inform. 2012, 20, 67–82. [Google Scholar] [CrossRef]
- Giles, B.D.; Flocas, A.A. Air temperature variations in Greece. Part 1. Persistence, trend, and fluctuations. J. Climatol. 1984, 4, 531–539. [Google Scholar] [CrossRef]
- Mirza, M.Q.; Warrick, R.A.; Ericksen, N.J.; Kenny, G.J. Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna river basins. Hydrol. Sci. J. 1998, 43, 845–858. [Google Scholar] [CrossRef]
- Chou, C.; Lan, C.-W. Changes in the Annual Range of Precipitation under Global Warming. J. Clim. 2011, 25, 222–235. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Cui, B. Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. J. Hydrol. 2008, 361, 330–338. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Mancini, M. Trend detection of annual and seasonal rainfall in Calabria (Southern Italy). Int. J. Climatol. 2011, 31, 44–56. [Google Scholar] [CrossRef]
- Kiely, G.; Albertson, J.D.; Parlange, M.B. Recent trends in diurnal variation of precipitation at Valentia on the west coast of Ireland. J. Hydrol. 1998, 207, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Vose, R.S.; Schmoyer, R.L.; Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R.; Eischeid, J.K. The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data (CONF-930133--2); Oak Ridge National Lab.: Oak Ridge, TN, USA, 1992.
- Lucero, O.A.; Rozas, D. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount. Atmos. Res. 2002, 61, 35–48. [Google Scholar] [CrossRef]
- Millington, N.; Das, S.; Simonovic, S.P. The Comparison of GEV, Log-Pearson Type 3 and Gumbel Distributions in the Upper Thames River Watershed under Global Climate Models; Department of Civil and Environmental Engineering, The University of Western Ontario: London, ON, Canada, 2011; Volume 77, pp. 1–54. ISBN 978-0-7714-2898-2. [Google Scholar]
- Cunnane, C. Statistical Distributions for Flood Frequency Analysis; WMO-No. 718; Operational Hydrology Report (OHR)- No. 33; American Meteorological Society: Boston, MA, USA, 1989; ISBN 978-92-63-10718-3. [Google Scholar]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef]
- Zhisheng, A.; Guoxiong, W.; Jianping, L.; Youbin, S.; Yimin, L.; Weijian, Z.; Yanjun, C.; Anmin, D.; Li, L.; Jiangyu, M.; et al. Global Monsoon Dynamics and Climate Change. Annu. Rev. Earth Planet. Sci. 2015, 43, 29–77. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, P.A. Precipitation Extremes Under Climate Change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Neelin, J.D.; Chen, C.-A.; Tu, J.-Y. Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming. J. Clim. 2009, 22, 1982–2005. [Google Scholar] [CrossRef]
- Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Reichstein, M.; Seneviratne, S.I. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014, 7, 716–721. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D.; Makropoulos, C. How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrol. Earth Syst. Sci. 2013, 17, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Roy, M.K.; Biswas, S.C. Determination of the Best Fit Probability Distribution for Monthly Rainfall Data in Bangladesh. Am. J. Math. Stat. 2016, 6, 170–174. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis—An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Statistical Distributions, 4th ed.; Wiley: New York City, NY, USA, 2010; ISBN 0470390638. [Google Scholar]
Distribution Name | Parameter Estimation Method |
---|---|
Gamma | ML |
Gamma_F | Mo |
Gen. Extreme Value | LMo |
Gen. Gamma | ML |
Gen. Gamma_F | ML |
Gen. Logistic | LMo |
Gen. Pareto | LMo |
Gumbel Max | Mo |
Gumbel Min | Mo |
Log-Logistic | ML |
Log-Logistic_F | LS |
Log-Pearson 3 | Mo |
Lognormal | Mo |
Lognormal_F | Mo |
Normal | ML |
Pearson 5 | ML |
Pearson 5_F | ML |
Pearson 6 | ML |
Pearson 6_F | ML |
Weibull | ML |
Weibull_F | LS |
Distribution | AD | KS | CS |
---|---|---|---|
Gamma | 1.2% | 2.3% | 2.6% |
Gamma_F | 1.4% | 2.4% | 3.1% |
GEV | 23.0% | 14.7% | 6.8% |
Gen. Gamma | 6.5% | 5.6% | 4.7% |
Gen. Gamma_F | 1.0% | 2.3% | 3.0% |
Gen. Logistic | 27.2% | 16.3% | 10.3% |
Gen. Pareto | 0.5% | 1.7% | 0.2% |
Gumbel Max | 0.1% | 1.6% | 5.2% |
Gumbel Min | 0.0% | 0.2% | 1.8% |
Log-Logistic | 17.9% | 20.3% | 10.7% |
Log-Logistic_F | 0.2% | 2.8% | 6.7% |
Log-Pearson 3 | 2.9% | 2.9% | 3.0% |
Lognormal | 2.1% | 2.3% | 2.1% |
Lognormal_F | 0.8% | 2.7% | 4.0% |
Normal | 3.8% | 4.1% | 6.7% |
Pearson 5 | 2.9% | 2.8% | 2.4% |
Pearson 5_F | 0.4% | 1.7% | 4.7% |
Pearson 6 | 1.6% | 1.9% | 2.1% |
Pearson 6_F | 0.5% | 1.3% | 2.3% |
Weibull | 4.9% | 5.2% | 4.6% |
Weibull_F | 0.7% | 4.3% | 7.4% |
#N/A | 0.3% | 0.5% | 5.6% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, C.; Ojha, C.S.P. Changes of Annual Precipitation and Probability Distributions for Different Climate Types of the World. Water 2019, 11, 2092. https://doi.org/10.3390/w11102092
Sharma C, Ojha CSP. Changes of Annual Precipitation and Probability Distributions for Different Climate Types of the World. Water. 2019; 11(10):2092. https://doi.org/10.3390/w11102092
Chicago/Turabian StyleSharma, Chetan, and Chandra Shekhar Prasad Ojha. 2019. "Changes of Annual Precipitation and Probability Distributions for Different Climate Types of the World" Water 11, no. 10: 2092. https://doi.org/10.3390/w11102092
APA StyleSharma, C., & Ojha, C. S. P. (2019). Changes of Annual Precipitation and Probability Distributions for Different Climate Types of the World. Water, 11(10), 2092. https://doi.org/10.3390/w11102092