Using RothC Model to Simulate Soil Organic Carbon Stocks under Different Climate Change Scenarios for the Rangelands of the Arid Regions of Southern Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Field and Laboratorial Measurements
2.3. RothC Model
2.4. Inputs Data and Model Calibration
2.5. Validation of RothC Model
2.6. Scenarios of Climate Change
3. Results
3.1. Calibration of the RothC Model
3.2. Validation of the RothC Model
3.3. Simulation of the SOC Stock under Different Climate Change Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lal, R. Sequestering carbon in soils of arid ecosystems. Land Degrad. Dev. 2009, 20, 441–454. [Google Scholar] [CrossRef]
- Khalil, M.I.; Francaviglia, R.; Henry, B.; Klumpp, K.; Koncz, P.; Llorente, M.; Madari, B.E.; Muñoz-Rojas, M.; Nerger, R. Strategic Management of Grazing Grassland Systems to Maintain and Increase Organic Carbon in Soils. In CO2 Sequestration; Frazão, L.A., Olaya, A.M.S., Cota, J., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Smith, P.; Fang, C.; Dawson, J.J.; Moncrieff, J.B. Impact of Global Warming on Soil Organic Carbon. Adv. Agron. 2008, 97, 1–43. [Google Scholar]
- Easdale, M.; Bruzzone, O. Anchored in ’average thinking’ in studies of arid rangeland dynamics—The need for a step forward from traditional measures of variability. J. Arid. Environ. 2015, 116, 77–81. [Google Scholar] [CrossRef]
- Larreguy, C.; Carrera, A.; Bertiller, M. Reductions of plant cover induced by sheep grazing change the above-belowground partition and chemistry of organic C stocks in arid rangelands of Patagonian Monte, Argentina. J. Environ. Manag. 2017, 199, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Montané, F.; Romanyà, J.; Rovira, P.; Casals, P. Aboveground litter quality changes may drive soil organic carbon increase after shrub encroachment into mountain grasslands. Plant Soil 2010, 337, 151–165. [Google Scholar] [CrossRef]
- Azad, B.; Afzali, S.F.; Ghanbarian, G.A. Modeling the effect of vegetation conversion and climate change on soil organic carbon stock dynamics in a complex ecosystem. J. Soil Manag. Sustain. 2019, 9, 83–99. [Google Scholar]
- Jebari, A.; Del Prado, A.; Pardo, G.; Martín, J.A.R.; Álvaro-Fuentes, J. Modeling Regional Effects of Climate Change on Soil Organic Carbon in Spain. J. Environ. Qual. 2018, 47, 644–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondini, C.; Coleman, K.; Whitmore, A.; Whitmore, A. Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001–2100: Potential for compost amendment. Agric. Ecosyst. Environ. 2012, 153, 24–32. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Jordan, A.; Zavala, L.M.; González-Peñaloza, F.A.; De La Rosa, D.; Anaya-Romero, M. Modelling soil organic carbon stocks in global change scenarios: A CarboSOIL application. Biogeosci. Discuss. 2013, 10, 10997–11035. [Google Scholar] [CrossRef]
- Soleimani, A.; Hosseini, S.M.; Bavani, A.R.M.; Jafari, M.; Francaviglia, R. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Sci. Total Environ. 2017, 599, 1646–1657. [Google Scholar] [CrossRef]
- Wan, Y.; Lin, E.; Xiong, W.; Li, Y.; Guo, L. Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agric. Ecosyst. Environ. 2011, 141, 23–31. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Kiely, G. Modeling the change in soil organic carbon of grassland in response to climate change: Effects of measured versus modelled carbon pools for initializing the Rothamsted Carbon model. Agric. Ecosyst. Environ. 2011, 140, 372–381. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Doro, L.; Ledda, L.; Francaviglia, R. Application of CarboSOIL model to predict the effects of climate change on soil organic carbon stocks in agro-silvo-pastoral Mediterranean management systems. Agric. Ecosyst. Environ. 2015, 202, 8–16. [Google Scholar] [CrossRef]
- Carvalho, G.L.D.; Maria, C.I.; Equardo de sa, M. Trees modify the dynamics of soil CO2 efflux in coffee agroforestry systems. Agric. For. Meteorol. 2016, 224, 30–39. [Google Scholar]
- Álvaro-Fuentes, J.; Easter, M.; Paustian, K. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 2012, 155, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D. RothC-26.3-A Model for the turnover of carbon in soil. Evaluation of soil organic matter models. In Evaluation of Soil Organic Matter Models Using Existing Long-Term Datasets; Powlson, D.S., Smith, P., Smith, J.U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 237–246. [Google Scholar]
- Gottschalk, P.; Smith, J.U.; Wattenbach, M.; Bellarby, J.; Stehfest, E.; Arnell, N.; Osborn, T.J.; Smith, P. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosci. Discuss. 2012, 9, 411–451. [Google Scholar] [CrossRef]
- Smith, P.; Smith, J.U.; Franko, U.; Kuka, K.; Romanenkov, V.A.; Shevtsova, L.K.; Wattenbach, M.; Gottschalk, P.; Sirotenko, O.D.; Rukhovich, D.I.; et al. Changes in mineral soil organic carbon stocks in the croplands of European Russia and the Ukrain, 1990–2070; Comparision of three models and implications for climate mitigation. Reg. Environ. Chang. 2007, 7, 105–119. [Google Scholar] [CrossRef]
- Francaviglia, R.; Coleman, K.; Whitmore, A.P.; Doro, L.; Urracci, G.; Rubino, M.; Ledda, L. Changes in soil organic carbon and climate change—Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agric. Syst. 2012, 112, 48–54. [Google Scholar] [CrossRef]
- Martins, C.S.; Macdonald, C.A.; Anderson, I.C.; Singh, B.K. Feedback responses of soil greenhouse gas emissions to climate change are modulated by soil characteristics in dryland ecosystems. Soil Boil. Biochem. 2016, 100, 21–32. [Google Scholar] [CrossRef]
- Koocheki, A.; Nassiri, M.; Kamali, G.A. Climate indices of Iran under climate change. J. Iran. Field Crop Res. 2007, 5, 133–143. [Google Scholar]
- IUSS Working Group (WRB). World Reference Base for Soil Resources 2014, Update 2015; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; pp. 347–356. [Google Scholar]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–376. [Google Scholar]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Azad, B.; Afzali, S.F. Investigating the structural and practical of the Rothamsted model in assessing the effect of climate change on soil carbon sources. J. Environ. Water Eng. 2019, 5, 83–90. [Google Scholar]
- Falloon, P.; Smith, P.; Coleman, K.; Marshall, S.; Falloon, P. Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Boil. Biochem. 1998, 30, 1207–1211. [Google Scholar] [CrossRef]
- Azad, B.; Afzali, S.F. Modelling the impacts of climate change on the soil CO2 emissions in arid rangelands (Southern Iran). Desert Ecosyst. Eng. J. 2018, 7, 71–87. [Google Scholar]
- Zareeian, G.R.; Sayed-jalali, S.A. Reload Semi-Detailed Soil Studies and Land Suitability Studies for Major Agricultural Products in Plain Ghir-o-Karzin-Fars Province; Ministry of Agriculture, Agricultural Education and Research Organization: Tehran, Iran, 2002; p. 80. [Google Scholar]
- Azad, B.; Afzali, S.F.; Ghanbarian, G.A. Simulation of soil organic carbon stock in rangeland ecosystems of Ghir VA Karzin’s BandBast using the RothC model. In New Findings in Environmental and Agricultural Ecosystems; Renewable Energy and Environment Research Center: Tehran, Iran, 2014; pp. 1–14. [Google Scholar]
- Tornquist, C.G.; Mielniczuk, J.; Cerri, C.E.P. Modeling soil organic carbon dynamics in Oxisols of Ibirubá (Brazil) with the Century Model. Soil Tillage Res. 2009, 105, 33–43. [Google Scholar] [CrossRef]
- Cerdà, A. Relationships between climate and soil hydrological and erosional characteristics along climatic gradients in Mediterranean limestone areas. Geomorphology 1998, 25, 123–134. [Google Scholar] [CrossRef]
- Novosádová, I.; Záhora, J.; Ruiz-Sinoga, J.D. The Availability of Mineral Nitrogen in Mediterranean Open Steppe Dominated by Stipa Tenacissima L.; Acta Universitatis Agriculturae et Silviculturae Mendelianae: Brunensis, Czech Republic, 2014; pp. 187–192. [Google Scholar]
- Balkovic, J.; Schmid, E.; Skalský, R.; Novakova, M. Modelling soil organic carbon changes on arable land under climate change—A case study analysis of the Kočín farm in Slovakia. Soil Water Res. 2011, 6, 30–42. [Google Scholar] [CrossRef]
- Ludwig, B.; Hu, K.; Niu, L.; Liu, X. Modelling the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model—Initialization and calculation of C inputs. Plant Soil 2010, 332, 193–206. [Google Scholar] [CrossRef]
- Ludwig, B.; Schulz, E.; Rethemeyer, J.; Merbach, I.; Flessa, H. Predictive modelling of C dynamics in the long-term fertilization experiment at Bad Lauchstädt with the Rothamsted Carbon Model. Eur. J. Soil Sci. 2007, 58, 1155–1163. [Google Scholar] [CrossRef]
- Mishra, G.; Giri, K.; Jangir, A.; Francaviglia, R. Projected trends of soil organic carbon stocks in Meghalaya state of Northeast Himalayas, India. Implications for a policy perspective. Sci. Total Environ. 2020, 698, 134266. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Location | 52°59′ N, 29°28′ E |
Total precipitation (mm) | 275.36 |
Mean temperature (°C) | 23.94 |
Total open-pan evaporation (mm) | 2910.98 |
Texture (sand, silt, clay) | 36%; 51%; 13% |
Bulk density (gr/cm3) | 1.34 |
pH | 8 |
Initial total soil organic carbon (Mg C ha−1) | 16.68 |
Soil depth (cm) | 20 |
Soil type | Entisols |
Farmyard manure C inputs (FYM) (Mg C ha−1) | 0 |
Historical land use/native vegetation | Rangeland |
Vegetation Cover | Clay (%) | Inert Organic Matter (IOM ) (Mg ha−1) | Modeled Soil C Inputs (Mg C ha−1) | DPM/RPM a | Measured SOC Stock (Mg C ha−1) | Modeled SOC Stock (Mg C ha−1) | Deviation (%) b |
---|---|---|---|---|---|---|---|
Rangeland | 13 | 1.2086 | 0.9561 | 0.67 | 16.68 | 16.68 c | 0.00 |
Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 2025 | 1.9 | 1.5 | 1.9 | 2.2 | 2.4 | 2.5 | 3 | 3 | 2.9 | 2.7 | 2.3 | 2.3 |
2050 | 2.5 | 2 | 2.5 | 2.9 | 3.1 | 3.2 | 3.6 | 3.7 | 3.5 | 3.3 | 2.9 | 2.8 | |
Rainfall (%) | 2025 | −5 | −7 | −7 | −8 | −9 | - | - | - | - | −6 | −8 | −8 |
2050 | −9 | −10 | −21 | −13 | −41 | - | - | - | - | −10 | −10 | −11 |
Scenario | P | CCH1 | CCH2 | ||||
---|---|---|---|---|---|---|---|
Period | 2014–25 | 2025–50 | 2014–50 | 2014–25 | 2025–50 | 2014–50 | 2025–50 |
SOC stock (Mg C ha−1) | 16.72 | 16.72 | 16.72 | 16.352 | 16.95 | 16.07 | 15.82 |
SOC loss (Mg C ha−1) | 0.04 | 0.01 | 0.04 | 0.51 | 0.38 | 0.89 | 0.57 |
% of initial SOC | −0.23 a | −0.05 | −0.24 | −3.05 | −2.36 | −5.36 | −3.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzali, S.F.; Azad, B.; Golabi, M.H.; Francaviglia, R. Using RothC Model to Simulate Soil Organic Carbon Stocks under Different Climate Change Scenarios for the Rangelands of the Arid Regions of Southern Iran. Water 2019, 11, 2107. https://doi.org/10.3390/w11102107
Afzali SF, Azad B, Golabi MH, Francaviglia R. Using RothC Model to Simulate Soil Organic Carbon Stocks under Different Climate Change Scenarios for the Rangelands of the Arid Regions of Southern Iran. Water. 2019; 11(10):2107. https://doi.org/10.3390/w11102107
Chicago/Turabian StyleAfzali, Sayed Fakhreddin, Bijan Azad, Mohammad H. Golabi, and Rosa Francaviglia. 2019. "Using RothC Model to Simulate Soil Organic Carbon Stocks under Different Climate Change Scenarios for the Rangelands of the Arid Regions of Southern Iran" Water 11, no. 10: 2107. https://doi.org/10.3390/w11102107
APA StyleAfzali, S. F., Azad, B., Golabi, M. H., & Francaviglia, R. (2019). Using RothC Model to Simulate Soil Organic Carbon Stocks under Different Climate Change Scenarios for the Rangelands of the Arid Regions of Southern Iran. Water, 11(10), 2107. https://doi.org/10.3390/w11102107