Hydrochemistry and Its Controlling Factors of Rivers in the Source Region of the Nujiang River on the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis Methods
2.3. Data Processing Methods
3. Results
3.1. Major Elements
3.2. Hydrochemical Type
3.3. Association among the Hydrochemical Attributes
4. Discussion
4.1. Mechanisms Controlling the Surface Water Chemistry of the Naqu River Basin
4.2. Chemical Weathering
4.3. Suitability for Irrigation Quality
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, S.; Li, S.L.; Zhong, J.; Su, J.; Chen, S. Hydrochemical characteristics and chemical weathering processes in Chishui River Basin. Chin. J. Ecol. 2018, 37, 667–678. [Google Scholar]
- An, Y.L.; Lv, J.M.; Luo, J.; Wu, Q.X.; Jiang, H.; Peng, W.B.; Yu, X. Hydro-chemical Characteristics of Upper Chishui River Basin in Dry Season. Environ. Sci. Technol. 2015, 38, 117–122. [Google Scholar]
- Moon, S.; Huh, Y.; Qin, J.; van Pho, N. Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors. Geochim. Cosmochim. Acta 2007, 71, 1411–1430. [Google Scholar] [CrossRef]
- Li, Z.; Yu, G.; Xu, M.; Hu, X.; Yang, H.; Hu, S. Progress in studies on river morphodynamics in Qinghai-Tibet Plateau. Adv. Water Sci. 2016, 27, 617–628. [Google Scholar]
- Zhang, Y.; Sillanpää, M.; Li, C.; Guo, J.; Qu, B.; Kang, S. River water quality across the Himalayan regions: elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environ. Earth Sci. 2015, 73, 4151–4163. [Google Scholar] [CrossRef]
- Zhang, F.; Qaiser, F.-u.-R.; Zeng, C.; Pant, R.R.; Wang, G.; Zhang, H.; Chen, D. Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River. Environ. Sci. Pollut. Res. 2019, 26, 23645–23660. [Google Scholar] [CrossRef]
- Sarin, M.M.; Krishnaswami, S. Major ion chemistry of the Ganga—Brahmaputra river systems, India. Nature 1984, 312, 538–541. [Google Scholar] [CrossRef]
- Hodson, A.; Porter, P.; Lowe, A.; Mumford, P. Chemical denudation and silicate weathering in Himalayan glacier basins: Batura Glacier, Pakistan. J. Hydrol. 2002, 262, 193–208. [Google Scholar] [CrossRef]
- West, A.J.; Bickle, M.J.; Collins, R.; Brasington, J. Small-catchment perspective on Himalayan weathering fluxes. Geology 2002, 30, 355–358. [Google Scholar] [CrossRef]
- Hren, M.T.; Chamberlain, C.P.; Hilley, G.E.; Blisniuk, P.M.; Bookhagen, B. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochim. Cosmochim. Acta 2007, 71, 2907–2935. [Google Scholar] [CrossRef]
- Liu, C.Q.; Zhao, Z.Q.; Tao, F.; Li, S.L. Chemical weathering of Qinghai-Tibet Plateau: geochemical study of Jinsha Jiang, Lancang Jiang, and Nu Jiang river water, China. Geochim. Cosmochim. Acta Suppl. 2008, 72, 556. [Google Scholar]
- Li, S.L.; Chetelat, B.; Yue, F.J.; Zhao, Z.Q.; Liu, C.Q. Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China. J. Asian Earth Sci. 2014, 88, 74–84. [Google Scholar] [CrossRef]
- Qu, B.; Zhang, Y.; Kang, S.; Sillanpaa, M. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”. Sci. Total Environ. 2019, 649, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, L.; Iaccarino, S.; Carosi, R.; Montomoli, C.; Simonetti, M.; Paudyal, K.R.; Cidu, R.; Petrini, R. Water quality and solute sources in the Marsyangdi River system of Higher Himalayan range (West-Central Nepal). Sci. Total Environ. 2019, 677, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yang, J.; Xu, S.; Yin, H. Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang: Silicate weathering and CO2 consumption. Appl. Geochem. 2008, 23, 3712–3727. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, Z.; Liu, Z.; Wang, R.; Wu, S. Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau. J. Geochem. Explor. 2015, 155, 76–83. [Google Scholar] [CrossRef]
- Wu, L.; Huh, Y.; Qin, J.; Du, G.; van Der Lee, S. Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau. Geochim. Cosmochim. Acta 2005, 69, 5279–5294. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Li, Z.; Guo, H. Quantitative source apportionment of water solutes and CO2 consumption of the whole Yarlung Tsangpo River basin in Tibet, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 1–13. [Google Scholar] [CrossRef]
- Wu, W.; Xu, S.; Yang, J.; Yin, H. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau. Chem. Geol. 2008, 249, 307–320. [Google Scholar] [CrossRef]
- Noh, H.; Huh, Y.; Qin, J.; Ellis, A. Chemical weathering in the Three Rivers region of Eastern Tibet. Geochim. Cosmochim. Acta 2009, 73, 1857–1877. [Google Scholar] [CrossRef]
- Tao, Z.H.; Zhao, Z.Q.; Zhang, D.; Li, X.D.; Liu, C.Q. Chemical weathering in the three rivers (Jingshajiang, Lancangjiang, and Nujiang) Watershed, Southwest China. Chin. J. Ecol. 2015, 34, 2297–2308. [Google Scholar]
- Zhang, L.L.; Zhao, Z.Q.; Zhang, W.; Tao, Z.H.; Huang, L.; Yang, J.X.; Wu, Q.X.; Liu, C.Q. Characteristics of water chemistry and its indication of chemical weathering in Jinshajiang, Lancangjiang and Nujiang drainage basins. Environ. Earth Sci. 2016, 75, 506. [Google Scholar] [CrossRef]
- Yan, D.; Liu, S.; Qin, T.; Weng, B.; Li, C.; Lu, Y.; Liu, J. Evaluation of TRMM precipitation and its application to distributed hydrological model in Naqu River Basin of the Tibetan Plateau. Hydrol. Res. 2016, 48, 822–839. [Google Scholar] [CrossRef]
- Liu, S.; Yan, D.; Qin, T.; Weng, B.; Lu, Y.; Dong, G.; Gong, B. Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau. Theor. Appl. Climatol. 2018, 131, 399–411. [Google Scholar] [CrossRef]
- Chen, X.; Wang, G.; Wang, F. Classification of Stable Isotopes and Identification of Water Replenishment in the Naqu River Basin, Qinghai-Tibet Plateau. Water 2019, 11, 46. [Google Scholar] [CrossRef]
- Lu, Y.J. Interaction and Joint Regulation between Water and Soil Resources in the Alpine Region: A Case Study in the Naqu River Basin of the Tibetan Plateau. Ph.D. Thesis, China Institute of Water Resources & Hydropower Research (IWHR), Beijing, China, May 2017. [Google Scholar]
- Sun, S.J.; Zhang, L.P.; Ding, X.; Sun, W.D.; Zhang, Z.R. Zircon U-Pb ages, Hf isotopes and geochemical characteristics of volcanic rocks in Nagqu area, Tibet and their petrogenesis. Acta Petrol. Sin. 2015, 31, 2063–2077. [Google Scholar]
- Luo, M.; Pan, F.C.; Li, J.C.; Xu, Z.Z.; Deng, W.Z.; Li, G.Q.; Liu, L.J. Greatgangdise Northern Tibet Metallogenic Series Study of Ore Deposits. Acta Petrol. Sin. 2015, 89, 715–730. [Google Scholar]
- Ministry of Geology and Mineral Resources of the People’s Republic of China. Testing Methods of Underground Water Quality—Determination of Carbonate, Bicarbonate and Hydroxide-Titrimetric (DZ/T0064.49-93); China Standards Press: Beijing, China, 1993. [Google Scholar]
- Ministry of Geology and Mineral Resources of the People’s Republic of China. Testing Methods of Underground Water Quality—Determination of Chloride-Argentometric Titration (DZ/T0064.50-93); China Standards Press: Beijing, China, 1993. [Google Scholar]
- Ministry of Geology and Mineral Resources of the People’s Republic of China. Testing Methods of Underground Water Quality—Determination of Sulfate-Turbidimetry (DZ/T0064.65-93); China Standards Press: Beijing, China, 1993. [Google Scholar]
- Ministry of Environmental Protection of the People’s Republic of China. Water Quality—Determination of 32 Elements—Inductively Coupled Plasma Optical Emission Spectrometry (HJ776-2015); China Environmental Sciences Press: Beijing, China, 2015. [Google Scholar]
- Zhang, Y.; Guo, F.; Meng, W.; Wang, X.Q. Water quality assessment and source identification of Daliao river basin using multivariate statistical methods. Environ. Monit. Assess. 2008, 152, 105. [Google Scholar] [CrossRef]
- Zhao, L.; Li, W.; Lin, L.; Guo, W.; Zhao, W.; Tang, X.; Gong, D.; Li, Q.; Xu, P. Field Investigation on River Hydrochemical Characteristics and Larval and Juvenile Fish in the Source Region of the Yangtze River. Water 2019, 11, 1342. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Liu, Y.; Wu, J.; Yu, M. Application of multivariate statistical techniques in the assessment of water quality in the Southwest New Territories and Kowloon, Hong Kong. Environ. Monit. Assess. 2011, 173, 17–27. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, G.; Lei, K.; Li, Y. Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management. J. Environ. Sci. 2011, 23, 1460–1471. [Google Scholar] [CrossRef]
- Vespasiano, G.; Apollaro, C.; De Rosa, R.; Muto, F.; Larosa, S.; Fiebig, J.; Mulch, A.; Marini, L. The Small Spring Method (SSM) for the definition of stable isotope–elevation relationships in Northern Calabria (Southern Italy). Appl. Geochem. 2015, 63, 333–346. [Google Scholar] [CrossRef]
- Zhang, L.; Song, X.; Xia, J.; Yuan, R.; Zhang, Y.; Liu, X.; Han, D. Major element chemistry of the Huai River basin, China. Appl. Geochem. 2011, 26, 293–300. [Google Scholar] [CrossRef]
- Kobus, S.; Glińska-Lewczuk, K.; Sidoruk, M.; Skwierawski, A.; Obolewski, K.; Timofte, C.M.; Sowiński, P. Effect of hydrological connectivity on physicochemical properties of bottom sediments of floodplain lakes—A case study of the Łyna River, Northern Poland. Environ. Eng. Manag. J. 2016, 15, 1237–1246. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Feth, J.H.; Gibbs, R.J. Mechanisms Controlling World Water Chemistry: Evaporation-Crystallization Process. Science 1971, 172, 870–872. [Google Scholar] [CrossRef]
- Ndoye, S.; Fontaine, C.; Gaye, C.B.; Razack, M. Groundwater Quality and Suitability for Different Uses in the Saloum Area of Senegal. Water 2018, 10, 1837. [Google Scholar] [CrossRef]
- Richards, L. Diagnosis and Improvement of Saline and Alkali Soils; Handbook No. 60; US Department of Agriculture: Washington, DC, USA, 1954.
- Kumar, M.; Kumari, K.; Ramanathan, A.; Saxena, R. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environ. Geol. 2007, 53, 553–574. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Meybeck, M. Global Occurrence of Major Elements in Rivers; Pergamon: Oxford, UK, 2003. [Google Scholar]
- Jiang, L.G.; Yao, Z.J.; Wang, R.; Liu, Z.F.; Wang, L.; Wu, S.S. Hydrochemistry of the middle and upper reaches of the Yarlung Tsangpo River system: Weathering processes and CO2 consumption. Environ. Earth Sci. 2015, 74, 2369–2379. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpää, M.; Gjessing, E.T.; Vogt, R.D. Water quality in the Tibetan Plateau: Major ions and trace elements in the headwaters of four major Asian rivers. Sci. Total Environ. 2009, 407, 6242–6254. [Google Scholar] [CrossRef] [PubMed]
- Apollaro, C.; Marini, L.; De Rosa, R.; Settembrino, P.; Scarciglia, F.; Vecchio, G. Geochemical features of rocks, stream sediments, and soils of the Fiume Grande Valley (Calabria, Italy). Env. Geol. 2007, 52, 719–729. [Google Scholar] [CrossRef]
- Bloise, A.; Belluso, E.; Critelli, T.; Catalano, M.; Apollaro, C.; Miriello, D.; Barrese, E. Amphibole asbestos and Other Fibrous Minerals in the Meta-Basalt of the Gimigliano-Mount Reventino Unit (Calabria, south-Italy). Rendiconti Online della Società Geologica Italiana 2012, 21, 847–848. [Google Scholar]
- Perri, F.; Ietto, F.; Le Pera, E.; Apollaro, C. Weathering processes affecting granitoid profiles of Capo Vaticano (Calabria, southern Italy) based on petrographic, mineralogic and reaction path modelling approaches. Geol. J. 2016, 51, 368–386. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Tao, Z.; Huang, X.; Nan, L.; Yu, K.; Wang, Z. Chemical weathering and CO2 consumption in the Xijiang River basin, South China. Geomorphology 2009, 106, 324–332. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, C.; La, J. A study of chemical properties of rains on the Tibetan Plateau. Acta Sci. Circumst. 2004, 24, 555–557. [Google Scholar]
- Pant, R.R.; Zhang, F.; Rehman, F.U.; Wang, G.; Ye, M.; Zeng, C.; Tang, H. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci. Total Environ. 2018, 622, 770–782. [Google Scholar] [CrossRef]
- Wu, W.H. Hydrochemistry of inland rivers in the north Tibetan Plateau: Constraints and weathering rate estimation. Sci. Total Environ. 2016, 541, 468–482. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, G.; Ma, H.; Yang, J.; Pan, H.; Guo, H.; Wan, Q.; Yong, L. Effects of Ecological Water Conveyance on the Hydrochemistry of a Terminal Lake in an Inland River: A Case Study of Qingtu Lake in the Shiyang River Basin. Water 2019, 11, 1673. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Shen, B.; Zeng, H.; Li, Y. Water Chemistry and Stable Isotopes of Different Water Types in Tajikistan. Environ. Process. 2018, 5, 127–137. [Google Scholar] [CrossRef]
- Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Ma, L.; Abuduwaili, J.; Li, Y.; Abdyzhaparuulu, S.; Mu, S. Hydrochemical Characteristics and Water Quality Assessment for the Upper Reaches of Syr Darya River in Aral Sea Basin, Central Asia. Water 2019, 11, 1893. [Google Scholar] [CrossRef]
- Thomas, J.; Joseph, S.; Thrivikramji, K.; Manjusree, T.; Arunkumar, K. Seasonal variation in major ion chemistry of a tropical mountain river, the southern Western Ghats, Kerala, India. Environ. Earth Sci. 2014, 71, 2333–2351. [Google Scholar] [CrossRef]
River | T | pH | EC (μS/cm) | TDS (mg/L) | K+ (mg/L) | Na+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | Cl− (mg/L) | (mg/L) | (mg/L) | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naqu, China (n = 39) | Mean | 13.14 | 8.21 | 382.69 | 270.57 | 2.91 | 24.55 | 41.64 | 15.34 | 9.43 | 44.78 | 185.88 | This study |
SD | 2.83 | 0.38 | 174.58 | 138.19 | 1.96 | 17.94 | 19.62 | 9.39 | 6.56 | 40.51 | 77.95 | ||
Min | 8.50 | 7.50 | 156.00 | 115.00 | 0.42 | 3.75 | 20.52 | 4.05 | 0.46 | 8.09 | 52.23 | ||
Max | 19.02 | 9.02 | 870.00 | 675.78 | 8.30 | 67.68 | 92.05 | 42.03 | 29.56 | 181.79 | 324.08 | ||
Upper Huang He, China | – | 8.89 | – | 394 | 2.56 | 48.07 | 33.96 | 22.70 | 65.14 | 20.16 | 202.95 | [17] | |
Upper Yangtze, China | – | 7.60 | – | 778 | 5.50 | 157.70 | 53.40 | 22.90 | 233.70 | 114.90 | 188.50 | [16] | |
Upper Mekong, China | – | 8.42 | 370 | 302 | 1 | 12 | 49 | 14 | 14 | 69 | 138 | [48] | |
Yarlung Tangpo, China | – | – | – | 268.64 | 1.71 | 12.98 | 45.10 | 8.19 | 9.53 | 63.44 | 116.21 | [47] | |
Global mean | – | 8 | – | 120 | 2.30 | 6.30 | 15 | 4.10 | 7.80 | 11.20 | 58.40 | [45,46] |
Code | River | Location | Elevation (m) | Date (yyyy-mm-dd) | Hydrochemical Type |
---|---|---|---|---|---|
Main stream of the Naqu | |||||
NQ01 | Naqu | Upstream | 4714 | 2016-08-22 | Ca–HCO3 |
NQ04 | Naqu | Upstream | 4771 | 2017-08-21 | Ca–HCO3 |
NQ07 | Naqu | Upstream | 4764 | 2018-08-19 | Ca–HCO3 |
NQ02 | Naqu | Middle | 4555 | 2016-08-22 | Mg–HCO3 |
NQ05 | Naqu | Middle | 4551 | 2017-08-21 | Mg–HCO3 |
NQ08 | Naqu | Middle | 4546 | 2018-08-19 | Mg–HCO3 |
NQ03 | Naqu | Downstream | 4463 | 2016-08-21 | Na–HCO3 |
NQ06 | Naqu | Downstream | 4451 | 2017-08-22 | Ca–HCO3 |
NQ09 | Naqu | Downstream | 4457 | 2018-08-20 | Ca–HCO3 |
Tributaries | |||||
SQ01 | Sangqu | Main stream | 4633 | 2016-08-22 | Ca–HCO3 |
SQ02 | Sangqu | Main stream | 4626 | 2017-08-21 | Ca–HCO3 |
SQ03 | Sangqu | Main stream | 4631 | 2018-08-19 | Ca–HCO3 |
BSQ01 | Basuqou | Main stream | 4727 | 2016-08-22 | Ca–HCO3 |
BSQ02 | Basuoqu | Main stream | 4712 | 2017-08-21 | Ca–HCO3 |
BSQ03 | Basuoqu | Main stream | 4712 | 2018-08-19 | Ca–HCO3 |
MMQ01 | Mumuqu | Main stream | 4625 | 2016-08-22 | Ca–HCO3 |
MMQ02 | Mumuqu | Main stream | 4622 | 2017-08-21 | Ca–HCO3 |
MMQ03 | Mumuqu | Main stream | 4619 | 2018-08-19 | Ca–HCO3 |
CQ01 | Chengqu | Main stream | 4523 | 2016-08-22 | Na–HCO3 |
CQ03 | Chengqu | Main stream | 4519 | 2017-08-21 | Ca–HCO3 |
CQ05 | Chengqu | Main stream | 4513 | 2018-08-19 | Ca–HCO3 |
CQ02 | Chengqu | Main stream | 4497 | 2016-08-21 | Ca–HCO3 |
CQ04 | Chengqu | Main stream | 4503 | 2017-08-21 | Ca–HCO3 |
CQ06 | Chengqu | Main stream | 4503 | 2018-08-19 | Ca–HCO3 |
ZQQ01 | Zongqingqu | Main stream | 4766 | 2016-08-21 | Ca–HCO3 |
ZQQ02 | Zongqingqu | Main stream | 4567 | 2017-08-21 | Ca–HCO3 |
ZQQ03 | Zongqingqu | Main stream | 4570 | 2018-08-19 | Ca–HCO3 |
MGQ01 | Mugequ | Main stream | 4591 | 2016-08-23 | Na–HCO3 |
MGQ03 | Mugequ | Main stream | 4609 | 2017-08-20 | Ca–HCO3 |
MGQ05 | Mugequ | Main stream | 4593 | 2018-08-18 | Ca–HCO3 |
MGQ02 | Mugequ | Tributary | 4708 | 2016-08-20 | Na–HCO3 |
MGQ04 | Mugequ | Tributary | 4681 | 2017-08-20 | Ca–HCO3 |
MGQ06 | Mugequ | Tributary | 4687 | 2018-08-18 | Ca–HCO3 |
GQ01 | Gongqu | Main stream | 4580 | 2016-08-21 | Ca–SO4 |
GQ03 | Gongqu | Main stream | 4578 | 2017-08-22 | Ca–SO4 |
GQ05 | Gongqu | Main stream | 4574 | 2018-08-20 | Ca–SO4 |
GQ02 | Gongqu | Tributary | 4498 | 2016-08-21 | Ca–HCO3 |
GQ04 | Gongqu | Tributary | 4498 | 2017-08-22 | Ca–HCO3 |
GQ06 | Gongqu | Tributary | 4487 | 2018-08-20 | Ca–HCO3 |
Ca | Mg | K | Na | Cl | HCO3 | SO4 | TDS | T | EC | Elevation | |
---|---|---|---|---|---|---|---|---|---|---|---|
Ca | 1 | ||||||||||
Mg | 0.503 ** | 1 | |||||||||
K | 0.104 | 0.566 ** | 1 | ||||||||
Na | 0.224 | 0.750 ** | 0.937 ** | 1 | |||||||
Cl | 0.341 * | 0.723 ** | 0.629 ** | 0.802 ** | 1 | ||||||
HCO3 | 0.742 ** | 0.663 ** | 0.670 ** | 0.676 ** | 0.526 ** | 1 | |||||
SO4 | 0.554 ** | 0.791 ** | 0.150 | 0.404 * | 0.647 ** | 0.331 * | 1 | ||||
TDS | 0.648 ** | 0.847 ** | 0.676 ** | 0.828 ** | 0.725 ** | 0.789 ** | 0.635 ** | 1 | |||
T | –0.062 | 0.328 * | 0.547 ** | 0.583 ** | 0.257 | 0.296 | –0.078 | 0.484 ** | 1 | ||
EC | 0.733 ** | 0.907 ** | 0.616 ** | 0.777 ** | 0.751 ** | 0.831 ** | 0.743 ** | 0.960 ** | 0.337 * | 1 | |
Elevation | 0.563 ** | 0.051 | –0.240 | –0.108 | 0.115 | 0.167 | 0.325 * | 0.227 | –0.109 | 0.248 | 1 |
Parameter | NQ1-1 | NQ1-2 | NQ1-3 | SQ | BSQ | MMQ | CQ | ZQQ | MGQ 1-1 | MGQ 2-1 | GQ1-1 | GQ2-1 | Naqu River Basin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na+/Cl− | Mean | 2.96 | 4.69 | 4.02 | 5.07 | 5.91 | 4.59 | 7.29 | 5.77 | 4.03 | 2.83 | 3.70 | 2.74 | 4.68 |
Min | 2.87 | 4.45 | 3.55 | 3.04 | 1.98 | 1.63 | 5.32 | 0.87 | 3.60 | 1.04 | 0.91 | 1.57 | 0.82 | |
Max | 3.10 | 4.97 | 4.94 | 7.87 | 12.08 | 9.63 | 11.36 | 14.73 | 4.43 | 4.52 | 8.71 | 4.44 | 14.73 | |
K+/Cl− | Mean | 0.16 | 0.27 | 0.28 | 0.33 | 0.37 | 0.46 | 0.61 | 0.59 | 0.31 | 0.20 | 0.23 | 0.20 | 0.35 |
Min | 0.12 | 0.26 | 0.21 | 0.21 | 0.14 | 0.19 | 0.42 | 0.09 | 0.30 | 0.09 | 0.10 | 0.13 | 0.09 | |
Max | 0.19 | 0.28 | 0.41 | 0.48 | 0.70 | 0.90 | 0.93 | 1.46 | 0.32 | 0.28 | 0.42 | 0.28 | 1.46 | |
(Ca2++Mg2+)/(Na++K+) | Mean | 3.87 | 1.84 | 2.17 | 4.08 | 7.07 | 5.95 | 2.22 | 8.92 | 1.22 | 5.52 | 10.18 | 6.40 | 4.74 |
Min | 2.86 | 1.63 | 1.72 | 3.17 | 6.58 | 5.25 | 1.61 | 7.07 | 0.64 | 1.70 | 9.26 | 5.92 | 0.64 | |
Max | 4.99 | 2.06 | 2.65 | 4.64 | 7.75 | 6.44 | 2.68 | 10.10 | 1.57 | 7.60 | 11.12 | 6.93 | 11.12 | |
Mean | 2.65 | 1.59 | 2.18 | 3.50 | 6.85 | 5.46 | 2.53 | 8.05 | 1.77 | 4.17 | 5.11 | 4.87 | 3.94 | |
Min | 1.55 | 1.23 | 1.63 | 2.72 | 6.21 | 4.88 | 1.74 | 6.61 | 1.26 | 1.60 | 4.27 | 4.26 | 1.23 | |
Max | 3.73 | 2.04 | 2.76 | 3.95 | 7.53 | 6.20 | 2.95 | 8.83 | 2.04 | 5.63 | 6.39 | 5.42 | 8.83 |
Parameter | NQ1-1 | NQ1-2 | NQ1-3 | SQ | BSQ | MMQ | CQ | ZQQ | MGQ1-1 | MGQ2-1 | GQ1-1 | GQ2-1 | Naqu River Basin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAR | Mean | 0.99 | 1.41 | 1.16 | 0.73 | 0.40 | 0.31 | 1.17 | 0.19 | 1.79 | 0.67 | 0.18 | 0.30 | 0.81 |
SD | 0.31 | 0.19 | 0.28 | 0.17 | 0.03 | 0.05 | 0.26 | 0.02 | 1.00 | 0.71 | 0.02 | 0.03 | 0.59 | |
Min | 0.71 | 1.23 | 0.89 | 0.62 | 0.37 | 0.28 | 0.97 | 0.17 | 1.21 | 0.25 | 0.16 | 0.27 | 0.16 | |
Max | 1.32 | 1.60 | 1.46 | 0.92 | 0.43 | 0.36 | 1.60 | 0.22 | 2.94 | 1.49 | 0.21 | 0.33 | 2.94 | |
Na% | Mean | 21.21 | 35.39 | 31.98 | 20.05 | 12.44 | 14.48 | 31.48 | 10.28 | 46.90 | 20.25 | 8.98 | 13.56 | 22.96 |
SD | 4.62 | 2.66 | 4.66 | 3.40 | 0.91 | 1.36 | 4.30 | 1.84 | 12.35 | 14.52 | 0.75 | 0.93 | 12.31 | |
Min | 16.69 | 32.67 | 27.39 | 17.73 | 11.43 | 13.43 | 27.20 | 9.01 | 38.96 | 11.63 | 8.25 | 12.61 | 8.25 | |
Max | 25.92 | 37.98 | 36.71 | 23.95 | 13.20 | 16.01 | 38.36 | 12.39 | 61.13 | 37.01 | 9.75 | 14.45 | 61.13 |
Parameter | Threshold | Class | NQ1-1 | NQ1-2 | NQ1-3 | SQ | BSQ | MMQ | CQ | ZQQ | MGQ1-1 | MGQ2-1 | GQ1-1 | GQ2-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SAR | <10 | Excellent | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 3 | 3 | 3 | 3 | 3 |
10–18 | Good | – | – | – | – | – | – | – | – | – | – | – | – | |
18–26 | Fair | – | – | – | – | – | – | – | – | – | – | – | – | |
>26 | Poor | – | – | – | – | – | – | – | – | – | – | – | – | |
Na% | <20 | Excellent | 1 | – | – | 2 | 3 | 3 | – | 3 | – | 2 | 3 | 3 |
20–40 | Good | 2 | 3 | 3 | 1 | – | – | 6 | – | 1 | 1 | – | – | |
40–60 | Permissible | – | – | – | – | – | – | – | – | 1 | - | – | – | |
60–80 | Doubtful | – | – | – | – | – | – | – | – | 1 | - | – | – | |
>80 | Unsuitable | – | – | – | – | – | – | – | – | – | – | – | – |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Zhao, Y.; Chen, X.; Zhao, H. Hydrochemistry and Its Controlling Factors of Rivers in the Source Region of the Nujiang River on the Tibetan Plateau. Water 2019, 11, 2166. https://doi.org/10.3390/w11102166
Wang F, Zhao Y, Chen X, Zhao H. Hydrochemistry and Its Controlling Factors of Rivers in the Source Region of the Nujiang River on the Tibetan Plateau. Water. 2019; 11(10):2166. https://doi.org/10.3390/w11102166
Chicago/Turabian StyleWang, Fuqiang, Yang Zhao, Xi Chen, and Heng Zhao. 2019. "Hydrochemistry and Its Controlling Factors of Rivers in the Source Region of the Nujiang River on the Tibetan Plateau" Water 11, no. 10: 2166. https://doi.org/10.3390/w11102166
APA StyleWang, F., Zhao, Y., Chen, X., & Zhao, H. (2019). Hydrochemistry and Its Controlling Factors of Rivers in the Source Region of the Nujiang River on the Tibetan Plateau. Water, 11(10), 2166. https://doi.org/10.3390/w11102166