Metals Leaching in Permeable Asphalt Pavement with Municipal Solid Waste Ash Aggregate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. MSWI-BAA
2.1.2. PAC-13 Mixture Containing MSWI-BAA
2.2. Methods
2.2.1. Leaching Test of MSWI-BAA
2.2.2. Simulated Leaching Experiment of PAC-13 Mixture Containing MSWI-BAA
2.2.3. Sample Determination and Data Analysis
3. Results
3.1. HVEP Results
3.2. Simulated Leaching Experiment Results
3.2.1. Leaching Process of MSWI-BAA
3.2.2. Leaching Process of PAC-13 with MSWI-BAA
4. Discussion
4.1. Leaching of Heavy Metals from MSWI-BAA by HVEP Test
4.2. Leaching of Heavy Metals from MSWI-BAA by Simulated Experiment
4.3. Leaching of Heavy Metals from PAC-13 containing MSWI-BAA
4.4. Environmental Risk Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ji, Z.; Pei, Y. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals. Chemosphere 2019, 225, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Hjelmar, O. Disposal strategies for municipal solid waste incineration residues. J. Hazard. Mater. 1996, 47, 345–368. [Google Scholar] [CrossRef]
- Seniunaite, J.; Vasarevicius, S. Leaching of copper, lead and zinc from municipal solid waste incineration bottom ash. Energy Procedia 2017, 113, 442–449. [Google Scholar] [CrossRef]
- Gao, X.; Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. J. Clean. Prod. 2017, 164, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Florea, M.V.A.; Spiesz, P.; Brouwers, H.J.H. Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Constr. Build. Mater. 2015, 83, 77–94. [Google Scholar] [CrossRef]
- Department for Environment Food and Rural Affairs of UK. Incineration of Municipal Solid Waste. 2013. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/221036/pb13889-incineration-municipal-waste.pdf (accessed on 17 July 2019).
- Brück, F.; Fröhlich, C.; Mansfeldt, T.; Weigand, H. A fast and simple method to monitor carbonation of MSWI bottom ash under static and dynamic conditions. Waste Manag. 2018, 78, 588–594. [Google Scholar] [CrossRef]
- Zekkos, D.; Kabalan, M.; Syal, S.M.; Hambright, M.; Sahadewa, A. Geotechnical characterization of a municipal solid waste incineration ash from a Michigan monofill. Waste Manag. 2013, 33, 1442–1450. [Google Scholar] [CrossRef]
- Margallo, M.; Taddei, M.B.M.; Hernández-Pellón, A.; Aldaco, R.; Irabien, A. Environmental sustainability assessment of the management of municipal solid waste incineration residues: A review of the current situation. Clean Technol. Environ. Policy 2015, 17, 1333–1353. [Google Scholar] [CrossRef]
- National Statistical Bureau of the People’s Republic of China. Chinese Statistical Yearbook-2018; China Statistics Press: Beijing, China, 2018.
- National Bureau of Statistics and Ministry of Ecology and Environment of the People’s Republic of China. China’s Environmental Statistic Yearbook-2018; China Statistics Press: Beijing, China, 2019.
- National Development and Reform Commission and Ministry of Housing and Urban-Rural Development of the People’s Republic of China. National Thirteenth Five-Year Plan for the Municipal Solid Waste Harmless Treatment Facilities Development. Available online: http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/W020170122611891359020.pdf (accessed on 14 February 2018).
- An, J.; Golestani, B.; Nam, B.H.; Lee, J.L. Sustainable utilization of MSWI bottom ash as road construction materials, part Ⅰ: Physical and mechanical evaluation. Airfield Highw. Pavements 2015, 9, 225–235. [Google Scholar] [CrossRef]
- Kim, J.; Tasneem, K.; Nam, B.H. Material characterization of municipal solid waste incinerator (MSWI) ash as road construction material. Pavement Perform. Monit. Model. Manag. 2014, 100–108. [Google Scholar] [CrossRef]
- Sorlini, S.; Collivignarelli, M.C.; Abba, A. Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete. Waste Manag. Res. 2017, 35, 978–990. [Google Scholar] [CrossRef]
- Del Valle-Zermeño, R.; Chimenos, J.M.; Giró-Paloma, J.; Formosa, J. Use of weathered and fresh bottom ash mix layers as a subbase in road construction: Environmental behavior enhancement by means of a retaining barrier. Chemosphere 2014, 117, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.V.; De Brito, J.; Lynn, C.J.; Dhir, R.K. Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resour. Conserv. Recycl. 2019, 140, 23–35. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Wasiak, D.; Zawadzka, A. The use of sequential extraction for assessing environmental risks of waste incineration bottom ash. Ecol. Chem. Eng. S 2014, 21, 413–423. [Google Scholar] [CrossRef]
- Loginova, E.; Volkov, D.S.; Van De Wouw, P.M.F.; Florea, M.V.A.; Brouwers, H.J.H. Detailed characterization of particle size fraction of municipal solid waste incineration bottom ash. Clean. Prod. 2019, 207, 866–874. [Google Scholar] [CrossRef]
- Yong, J.Y.; Lee, J.Y.; Kim, J.H. Use of raw-state bottom ash for aggregates in construction materials. J. Mater. Cycles Waste Manag. 2019, 21, 838. [Google Scholar] [CrossRef]
- Chen, J.; Chu, P.; Chang, J.; Lu, H.; Wu, Z.; Lin, K. Engineering and environmental characterization of municipal solid waste bottom ash as an aggregate substitute utilized for asphalt concrete. J. Mater. Civ. Eng. 2008, 20, 432–439. [Google Scholar] [CrossRef]
- Hassan, H.F. Recycling of municipal solid waste incinerator ash in hot-mix asphalt concrete. Constr. Build. Mater. 2005, 19, 91–98. [Google Scholar] [CrossRef]
- Luo, H.; Chen, S.; Lin, D.; Cai, X. Use of incinerator bottom ash in open-graded asphalt concrete. Constr. Build. Mater. 2017, 149, 497–506. [Google Scholar] [CrossRef]
- He, J.; Valeo, C.; Bouchart, F.J.C. Enhancing urban infrastructure investment planning practice for a changing climate. Water Sci. Technol. 2006, 53, 13–20. [Google Scholar] [CrossRef]
- Huang, J.; Valeo, C.; He, J. The influence of design parameters on stormwater pollutant removal in permeable pavements. Water Air Soil Pollut. 2016, 227, 311. [Google Scholar] [CrossRef]
- Valeo, C.; Gupta, R. Determining surface infiltration rate of permeable pavements with digital imaging. Water 2018, 10, 133. [Google Scholar] [CrossRef]
- Xue, H.; Yang, T.; Liu, X.; Wu, S. Analysis of heavy metal contamination in urban road-deposited sediments in Nanjing, China. Fresenius Environ. Bull. 2018, 27, 6661–6667. [Google Scholar]
- Huang, J.; He, J.; Valeo, C.; Chu, A. Temporal evolution modeling of hydraulic and water quality performance of permeable pavements. J. Hydrol. 2016, 533, 15–27. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, S.Y.; Zhao, C.; Valeo, C. The influence of geotextile type and position in a porous asphalt pavement system on Pb(Ⅱ) removal from stormwater. Water 2018, 10, 1205. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, L.; Zhu, Y. Investigation on the properties and distribution of air voids in porous asphalt within relevant to the Pb(II) removal performance. Adv. Mater. Sci. Eng. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Ma, X.; Li, Q.; Cui, Y.C.; Ni, A.Q. Performance of porous asphalt mixture with various additives. Int. J. Pavement Eng. 2018, 19, 355–361. [Google Scholar] [CrossRef]
- Huang, C.M.; Chiu, C.T.; Li, K.C.; Yang, W.F. Physical and environmental properties of asphalt mixtures containing incinerator bottom ash. J. Hazard. Mater. 2006, 137, 1742–1749. [Google Scholar] [CrossRef]
- Toraldo, E.; Saponaro, S. A road pavement full-scale test track containing stabilized bottom ash. Environ. Technol. 2015, 36, 1114–1122. [Google Scholar] [CrossRef]
- Tasneem, K.M.; Eun, J.; Nam, B.H. Leaching behaviour of municipal solid waste incineration bottom ash mixed with hot-mix asphalt and Portland cement concrete used as road construction materials. Road Mater. Pavement Des. 2016, 6. [Google Scholar] [CrossRef]
- National Environmental Protection Administration of the People’s Republic of China. Technical Specifications on Sampling and Sample Preparation from Industry Solid Waste HJ/T 20-1998; China Environmental Science Press: Beijing, China, 1998.
- National Environmental Protection Administration of the People’s Republic of China. Technical Specification on Identification for Hazardous Waste HJ/T 298-2007; China Environmental Science Press: Beijing, China, 2007.
- Ministry of Communications of the People’s Republic of China. Test Methods of Aggregate for Highway Engineering JTG E42-2005; China Communications Press: Beijing, China, 2005.
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical Specification for Permeable Asphalt Pavement CJJ/T 190-2012; China Architecture and Building Press: Beijing, China, 2012.
- Ministry of Transport of the People’s Republic of China. Standard Test Method for Bitumen and Bituminous Mixtures for Highway Engineering JTG E20-2011; China Communication Press: Beijing, China, 2011; China Environmental Science Press: Beijing, China, 2010.
- Ministry of Environmental Protection of the People’s Republic of China. Solid Waste-Extraction Procedure for Leaching Toxicity-Horizontal Vibration Method NJ 557-2009; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2009.
- Bendz, D.; Suer, P.; Sloot, H.; Kosson, D.; Flyhammar, P. Modelling of Leaching and Geochemical Processes in an Aged MSWIBA Subbase Layer; Värmeforsk Service AB: Stockholm, Sweden, 2009. [Google Scholar]
- Saikia, N.; Kato, S.; Kojima, T. Composition and leaching behaviours of combustion residues. Fuel 2006, 85, 264–272. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yama, S.; Ozbek, N.; Kucukbayrak, S. Mobilization of some trace elements from ashes of Turkish lignites in rain water. Fuel 2011, 90, 3447–3455. [Google Scholar] [CrossRef]
- Bayuseno, A.P.; Schmahl, W.W. Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manag. 2010, 30, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhao, Y.; Zhao, C. Experimental study on environmental safety of cement stabilized MSWI-BA macadam base. Bull. Chin. Ceram. Soc. 2018, 37, 3296–3302. [Google Scholar]
- National Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Environmental Quality Standards for Surface Water GB 3838-2002; China Environmental Science Press: Beijing, China, 2002.
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standard for Groundwater Quality GB/T 14848-2017; China Standard Press: Beijing, China, 2017.
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standards for Irrigation Water Quality GB 5084-2005; China Standard Press: Beijing, China, 2005.
Element | MSWI-BAA (% by Weight) | ||
---|---|---|---|
0.075–2.36 mm | 2.36–4.75 mm | 4.75–9.5 mm | |
Ca | 51.55 | 44.56 | 43.97 |
Si | 12.85 | 17.27 | 19.60 |
Al | 6.94 | 8.65 | 8.82 |
Cl | 4.78 | 4.88 | 5.67 |
Fe | 5.92 | 5.65 | 4.77 |
S | 4.49 | 3.49 | 3.61 |
Mg | 2.26 | 2.44 | 2.61 |
P | 2.66 | 3.90 | 2.23 |
Ti | 1.98 | 1.65 | 1.63 |
K | 2.16 | 2.46 | 2.53 |
Na | 1.59 | 2.14 | 3.22 |
Zn | 1.32 | 1.92 | 0.48 |
Cu | 0.22 | 0.12 | 0.10 |
Cr | 0.17 | 0.13 | 0.10 |
Pb | 0.19 | 0.03 | 0.03 |
Sr | 0.12 | 0.08 | 0.04 |
Ba | 0.60 | 0.41 | 0.44 |
Total | 99.80 | 99.78 | 99.85 |
Heavy Metal 1 | Leaching Concentration (μg/L) | Limit Value (μg/L) | ||||
---|---|---|---|---|---|---|
0.075–2.36 mm | 2.36–4.75 mm | 4.75–9.5 mm | GB/T 14848 (Class Ⅲ) | GB 3838 (Class Ⅱ) | GB 5084 | |
Cr | 45.64 | 50.73 | 106.08 | 50 (VI) 2 | 50 (VI) 2 | 100 (VI) 2 |
Cu | 28.93 | 20.49 | 26.88 | 1000 | 1000 | 1000 |
Zn | 4.77 | 7.04 | 6.79 | 1000 | 1000 | 2000 |
Pb | 5.35 | 0.32 | 0.24 | 10 | 10 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhu, Y.-T. Metals Leaching in Permeable Asphalt Pavement with Municipal Solid Waste Ash Aggregate. Water 2019, 11, 2186. https://doi.org/10.3390/w11102186
Zhao Y, Zhu Y-T. Metals Leaching in Permeable Asphalt Pavement with Municipal Solid Waste Ash Aggregate. Water. 2019; 11(10):2186. https://doi.org/10.3390/w11102186
Chicago/Turabian StyleZhao, Yao, and Ya-Ting Zhu. 2019. "Metals Leaching in Permeable Asphalt Pavement with Municipal Solid Waste Ash Aggregate" Water 11, no. 10: 2186. https://doi.org/10.3390/w11102186
APA StyleZhao, Y., & Zhu, Y.-T. (2019). Metals Leaching in Permeable Asphalt Pavement with Municipal Solid Waste Ash Aggregate. Water, 11(10), 2186. https://doi.org/10.3390/w11102186