Future Changes in Precipitation and Drought Characteristics over Bangladesh under CMIP5 Climatological Projections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Observation Data
2.2. EDI Calculation
2.3. Definitions of Drought Characteristics
2.4. CMIP5 GCM Projections
2.5. Climate Indices for Evaluations of GCMs
3. Results and Discussion
3.1. Evaluations for Retrospective Simulations of GCMs
3.2. GCM Skills in Reproducing Drought Characteristics
3.3. Changes in Precipitation
3.4. Projections of Future Changes in Drought Characteristics
3.4.1. Changes in the Drought Frequency
3.4.2. Changes in the Drought Duration
3.4.3. Changes in the Drought Intensity
3.5. Projections of Seasonal Changes in the Number of Drought Days
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Basak, J.K.; Titumir, R.A.M.; Dey, N.C. Climate Change in Bangladesh: A Historical Analysis of Temperature and Rainfall Data. J. Environ. 2013, 2, 41–46. [Google Scholar]
- Ahmad, Q.K.; Warrick, R.A.; Ericksen, N.J.; Mirza, M.Q. The Implications of Climate and Sea–Level Change for Bangladesh; Warrick, R.A., Ahmad, Q.K., Eds.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1996; ISBN 978-94-009-0241-1. [Google Scholar]
- Shahid, S. Recent trends in the climate of Bangladesh. Clim. Res. 2010, 42, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.R.; Lateh, H. Climate change in Bangladesh: A spatiotemporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Appl. Clim. 2017, 128, 27–41. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Brown, C.; Meeks, R.; Hunu, K.; Yu, W. Hydro climatic risk to economic growth in sub-Saharan Africa. Clim. Chang. 2011, 106, 621–647. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Tank, A.M.G.K.; Rusticucci, M. Climatic Change 2013: The Physical Science Basis; IPCC Fifth Assessment Report; IPCC: Geneva, Switzerland, 2013; pp. 31–39. [Google Scholar]
- Inter-Governmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Solomon, S. (Ed.) Climate Change—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC 4; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Sperber, K.R.; Annamalai, H.; Kang, I.S.; Kitoh, A.; Moise, A.; Turner, A.; Zhou, T. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 2013, 41, 2711–2744. [Google Scholar] [CrossRef]
- Bhaskaran, B.; Ramachandran, A.; Jones, R.; Moufouma-Okia, W. Regional climate model applications on sub-regional scales over the Indian monsoon region: The role of domain size on downscaling uncertainty. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Xu, C.Y.; Widen, E.; Halldin, S. Modelling hydrological consequences of climate change-progress and challenges. Adv. Atmos. Sci. 2005, 22, 789–797. [Google Scholar] [CrossRef]
- Fowler, H.J.; Kilsby, C.G. Using regional climate model data to simulate historical and future river flows in northwest England. Clim. Chang. 2007, 80, 337–367. [Google Scholar] [CrossRef]
- Hong, S.Y.; Kanamitsu, M. Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia Pac. J. Atmos. Sci. 2014, 50, 83–104. [Google Scholar] [CrossRef]
- Kang, S.; Hur, J.; Ahn, J.B. Statistical downscaling methods based on APCC multi-model ensemble for seasonal prediction over South Korea. Int. J. Clim. 2014, 34, 3801–3810. [Google Scholar] [CrossRef]
- Lee, J.W.; Hong, S.Y. Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor. Appl. Climatol. 2014, 117, 667–677. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Liang, X.Z.; Zhu, J.; Lin, Y. Can CGCMs simulate the twentieth-century “warming hole” in the central United States? J. Clim. 2006, 19, 4137–4153. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modeling to impacts studies: Recent advances in downscaling techniques for hydrological modeling. Int. J. Clim. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Wood, A.W.; Maurer, E.P.; Kumar, A.; Lettenmaier, D.P. Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res. 2002, 107, 4429. [Google Scholar] [CrossRef]
- Heo, J.H.; Ahn, H.; Shin, J.Y.; Kjeldsen, T.R.; Jeong, C. Probability Distributions for a Quantile Mapping Technique for a Bias Correction of Precipitation Data: A Case Study to Precipitation Data Under Climate Change. Water 2019, 11, 1475. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, A. Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Clim. Chang. 2016, 144, 535–548. [Google Scholar] [CrossRef]
- Cohelo, C.A.S.; Goddard, L. El Niño-Induced Tropical Droughts in Climate Change Projections. J. Clim. 2009, 22, 6456–6476. [Google Scholar] [CrossRef]
- Rhee, J.; Cho, J. Future Changes in Drought Characteristics: Regional Analysis for South Korea under CMIP5 Projections. J. Hydrometeorol. 2016, 17, 437–451. [Google Scholar] [CrossRef]
- Touma, D.; Ashfaq, M.; Nayak, M.A.; Kao, S.C.; Diffenbaugh, N.S. A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol. 2015, 526, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Orlowsky, B.; Seneviratne, S.I. Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 2013, 17, 1765–1781. [Google Scholar] [CrossRef]
- Chen, H.P.; Sun, J.Q.; Chen, X.L. Future changes of drought and flood events in China under a global warming scenario. Atmos. Ocean. Sci. Lett. 2013, 6, 8–13. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Zhou, W. Assessment of future drought in Southwest China based on CMIP5 multimodal projections. Adv. Atmos. Sci. 2014, 31, 1035–1050. [Google Scholar] [CrossRef]
- Burke, E.J.; Brown, S.J. Evaluating uncertainties in the projection of future drought. J. Hydrometeorol. 2008, 9, 292–299. [Google Scholar] [CrossRef]
- Nowreen, S.; Murshed, S.B.; Islam, A.K.M.S. Changes of rainfall extremes around the haor basin areas of Bangladesh using multi-member ensemble RCM. Appl. Clim. 2015, 119, 363–377. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.N.; Ahmed, A.U.; Georgi, F. Rainfall and temperature scenarios for Bangladesh for the middle of 21st century using RegCM. J. Earth. Syst. Sci. 2012, 121, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.A.; Saiful Islam, A.K.M.; Bokhtiar, S.M. Future change of the metrological drought over Bangladesh using high-resolution climate scenarios. In Proceedings of the International Conference on Climate Change Impact and Adaptation (I3CIA-2013), Gazipur, Bangladesh, 15–17 November 2013. [Google Scholar]
- Islam, A.R.M.T.; Shen, S.; Hu, Z.; Rahman, M.A. Drought Hazard Evaluation in Boro Paddy Cultivated Areas of Western Bangladesh at Current and Future Climate Change Conditions. Adv. Meteorol. 2017, 2017, 3514381. [Google Scholar] [CrossRef]
- Hasan, M.A.; Saiful Islam, A.K.M.; Akanda, A.S. Climate projections, and extremes in dynamically downscaled CMIP5 model output over the Bengal delta: A quartile based bias-correction approach with new gridded data. Clim. Dyn. 2018, 51, 2169–2190. [Google Scholar] [CrossRef]
- Mortuza, M.R.; Moges, E.; Demissie, Y.; Hong-Yi, L. Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis. Appl. Clim. 2019, 135, 855–871. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. Preprints. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Byun, H.R.; Kim, D.W. Comparing the Effective Drought Index and the Standardized Precipitation Index. In: López-Francos, A. (comp.), López-Francos, A. (collab.). Zaragoza: CIHEAM/FAO/ICARDA/GDAR/CEIGRAM/MARM. Econ. Drought Drought Prep. A Clim. Chang. Context 2010, 95, 85–89. [Google Scholar]
- Byun, H.R.; Wilhite, D.A. Objective quantification of drought severity and duration. J. Clim. 1999, 12, 2747–2756. [Google Scholar] [CrossRef]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of Seven Meteorological drought indices for drought monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- Pandey, R.P.; Dash, B.B.; Mishra, S.K.; Singh, R. Study of indices for drought characterization in KBK districts in Orissa (India). Hydrol. Process. 2008, 22, 1895–1907. [Google Scholar] [CrossRef]
- Dogan, S.; Berktay, A.; Singh, V.P. Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Kenya, closed basin, Turkey. J. Hydrol. 2012, 470, 255–268. [Google Scholar] [CrossRef]
- Jain, V.K.; Pandey, R.P.; Jain, M.K.; Byun, H.R. Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather Clim. Extrem. 2015, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; Cho, J.; Jang, M.; Hwang, S. Comparative Evaluation of Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) for Meteorological Drought Detection over Bangladesh. J. Korean Soc. Agric. Eng. 2019, 61, 143–157. [Google Scholar] [CrossRef]
- Mondal, M.A.H.; Ara, I.; Das, S.C. Meteorological Drought Index Mapping in Bangladesh Using Standardized Precipitation Index during 1981–2010. Adv. Meteorol. 2017, 2017, 4642060. [Google Scholar] [CrossRef]
- Murad, H.; Islam, A.S. Drought assessment using remote sensing and GIS in north-west region of Bangladesh. In Proceedings of the 3rd International Conference on Water & Flood Management, Dhaka, Bangladesh, 8–10 January 2011; pp. 797–804. [Google Scholar]
- Rafiuddin, M.; Dash, B.K.; Khanam, F. Diagnosis of Drought in Bangladesh using Standardized Precipitation Index. In Proceedings of the International Conference on Environment Science and Engineering; IACSIT Press: Singapore, 2011. [Google Scholar]
- Shahid, S.; Behrawan, H. Drought risk assessment in the western part of Bangladesh. Nat. Hazards 2008, 46, 391–413. [Google Scholar] [CrossRef]
- Rahman, A.A.; Alam, M.; Alam, S.S.; Uzzaman, M.R.; Rashid, M.; Rabbani, G. Risks, Vulnerability, and Adaptation in Bangladesh; UNDP Human Development Report, Bangladesh Centre for Advanced Studies (BCAS): Dhaka, Bangladesh, 2008. [Google Scholar]
- Paul, B.K. Coping mechanisms practiced by drought victims (1994/95) in North Bengal, Bangladesh. Appl. Geogr. 1998, 18, 355–373. [Google Scholar] [CrossRef]
- Habiba, U.; Hassan, A.W.R.; Shaw, R. Livelihood adaptation in the drought-prone areas of Bangladesh. In Climate Change Adaptation Actions in Bangladesh; Springer: Tokyo, Japan, 2013; pp. 227–252. ISBN 978-4-431-54248-3. [Google Scholar]
- Rashid, H.E. Geography of Bangladesh; University Press Limited: Dhaka, Bangladesh, 1991. [Google Scholar]
- Deo, R.C.; Sahin, M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Morid, S.; Smakhtin, V.; Bagherzadeh, K. Drought forecasting using artificial neural networks and time series of drought indices. Int. J. Climatol. 2007, 27, 2103–2111. [Google Scholar] [CrossRef]
- Kim, D.W.; Byun, H.R. Future pattern of Asian drought under global warming scenario. Appl. Clim. 2009, 98, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Cho, W.; Jung, I. RSQM: Statistical Downscaling Toolkit for Climate Change Scenario Using Nonparametric Quantile Mapping. 2018. Available online: cran.r-project.org/web/packages/rSQM/index.html (accessed on 24 May 2018).
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Fahad, M.G.R.; Saiful Islam, A.K.M.; Nazari, R.; Hasan, M.A.; Tarekul Islam, G.M.; Bala, S.K. Regional changes of precipitation and temperature over Bangladesh using bias-corrected multi-model ensemble projections considering high-emission pathways. Int. J. Climatol. 2007, 38, 1634–1648. [Google Scholar] [CrossRef]
Station Name | Data Period | Location | Mean Monthly Rainfall of Multiple Stations During 1976–2005 (mm) | Annual Avg. Precip. (mm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lon. | Lat. | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |||
Rangpur | 1954 to present | 89.23 | 25.73 | 8 | 11 | 25 | 117 | 274 | 453 | 498 | 356 | 383 | 176 | 8 | 9 | 2318 |
Dinajpur | 1948 to present | 88.68 | 25.65 | 10 | 11 | 14 | 76 | 222 | 358 | 471 | 373 | 370 | 160 | 9 | 10 | 2082 |
Bogra | 1948 to present | 89.37 | 24.85 | 8 | 13 | 21 | 79 | 209 | 320 | 402 | 293 | 309 | 152 | 12 | 11 | 1828 |
Rajshahi | 1964 to present | 88.70 | 24.37 | 10 | 16 | 25 | 65 | 140 | 261 | 327 | 255 | 285 | 127 | 14 | 11 | 1536 |
Ishwardi | 1961 to present | 89.05 | 24.13 | 6 | 21 | 33 | 86 | 194 | 292 | 326 | 230 | 288 | 117 | 16 | 9 | 1616 |
Jessore | 1948 to present | 89.17 | 23.18 | 14 | 26 | 46 | 77 | 176 | 318 | 316 | 274 | 269 | 138 | 29 | 13 | 1695 |
Khulna | 1948 to present | 89.53 | 22.78 | 12 | 39 | 53 | 84 | 193 | 355 | 304 | 329 | 251 | 131 | 37 | 8 | 1795 |
Shatkhira | 1948 to present | 89.08 | 22.72 | 13 | 39 | 42 | 90 | 159 | 295 | 335 | 296 | 280 | 127 | 33 | 9 | 1717 |
Barishal | 1949 to present | 90.37 | 22.75 | 10 | 25 | 55 | 119 | 212 | 418 | 419 | 362 | 282 | 178 | 46 | 8 | 2132 |
Patuakhali | 1973 to present | 90.33 | 22.33 | 8 | 22 | 43 | 115 | 238 | 535 | 540 | 450 | 342 | 185 | 53 | 6 | 2536 |
Khepupara | 1974 to present | 90.23 | 21.98 | 9 | 24 | 49 | 97 | 259 | 513 | 606 | 490 | 369 | 243 | 55 | 8 | 2721 |
Bhola | 1966 to present | 90.65 | 22.68 | 10 | 30 | 53 | 131 | 265 | 471 | 447 | 388 | 291 | 172 | 43 | 7 | 2308 |
Maizdi Court | 1951 to present | 91.10 | 22.87 | 10 | 27 | 76 | 154 | 335 | 574 | 750 | 631 | 384 | 181 | 44 | 7 | 3172 |
Swandip | 1966 to present | 91.43 | 22.48 | 9 | 22 | 68 | 146 | 349 | 699 | 860 | 621 | 436 | 256 | 50 | 9 | 3526 |
Dhaka | 1953 to present | 90.38 | 23.77 | 7 | 22 | 69 | 146 | 318 | 346 | 359 | 298 | 326 | 183 | 29 | 12 | 2115 |
Mymensingh | 1948 to present | 90.43 | 24.72 | 7 | 22 | 38 | 145 | 359 | 395 | 453 | 326 | 322 | 216 | 18 | 10 | 2309 |
Hatiya | 1966 to present | 91.10 | 22.43 | 4 | 14 | 42 | 116 | 237 | 541 | 557 | 484 | 322 | 193 | 36 | 12 | 2559 |
Chandpur | 1964 to present | 90.70 | 23.27 | 6 | 20 | 61 | 139 | 247 | 341 | 375 | 326 | 259 | 138 | 39 | 7 | 1956 |
Comilla | 1964 to present | 91.18 | 23.43 | 7 | 24 | 70 | 149 | 322 | 359 | 411 | 318 | 250 | 154 | 34 | 10 | 2108 |
Feni | 1973 to present | 91.42 | 23.03 | 6 | 28 | 69 | 180 | 369 | 535 | 652 | 496 | 330 | 181 | 45 | 9 | 2900 |
Sylhet | 1956 to present | 91.88 | 24.9 | 7 | 34 | 149 | 367 | 571 | 769 | 833 | 602 | 529 | 222 | 28 | 13 | 4124 |
Srimangal | 1948 to present | 91.73 | 24.3 | 5 | 30 | 89 | 221 | 445 | 442 | 371 | 336 | 296 | 163 | 32 | 15 | 2445 |
Chittagong | 1949 to present | 91.81 | 22.35 | 4 | 23 | 50 | 128 | 292 | 560 | 645 | 486 | 227 | 179 | 60 | 13 | 2669 |
Rangamati | 1957 to present | 92.20 | 22.53 | 5 | 23 | 62 | 139 | 333 | 504 | 575 | 442 | 294 | 154 | 57 | 13 | 2601 |
Cox’es Bazar | 1948 to present | 91.97 | 21.45 | 5 | 18 | 32 | 117 | 301 | 812 | 869 | 668 | 357 | 198 | 95 | 14 | 3486 |
Mean | 8 | 23 | 53 | 131 | 281 | 459 | 508 | 405 | 322 | 173 | 37 | 10 | 2410 | |||
± | ± | ± | ± | ± | ± | ± | ± | ± | ± | ± | ± | ± | ± | |||
STDV | 3 | 8 | 27 | 61 | 96 | 148 | 176 | 126 | 66 | 36 | 20 | 3 | 649 |
Duration (Days) | Category |
---|---|
Less than or equal to 30 | Very short-term |
31 to 90 | Short-term |
91 to 180 | Medium-term |
Greater than 180 | Long-term |
Model Name | Modeling Center | Resolution (Lon × Lat) |
---|---|---|
bcc-csm1-1 | Beijing Climate Center, China Meteorological Administration, China | 2.81° × 2.79° |
bcc-csm1-1-m | 1.13° × 1.12° | |
CanESM2 | Canadian Centre for Climate Modelling and Analysis, Canada | 2.81° × 2.79° |
CCSM4 | National Center for Atmospheric Research, USA | 1.25° × 0.94° |
CESM1-BGC | National Science Foundation, Department of Energy, National Center for Atmospheric Research, USA | 1.25° × 0.94° |
CESM1-CAM5 | ||
CMCC-CM | Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy | 0.75° × 0.75° |
CMCC-CMS | 1.88° × 1.86° | |
CNRM-CM5 | Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique, France | 1.41° × 1.40° |
CSIRO-Mk3-6-0 | Commonwealth Scientific and Industrial Research Organisation in collaboration with the Queensland Climate Change Centre of Excellence, Australia | 1.88° × 1.86° |
FGOALS-g2 | Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University, China | 2.81° × 3.05° |
FGOALS-s2 | Institute of Atmospheric Physics, Chinese Academy of Sciences, China | 2.81° × 1.66° |
GFDL-CM3 | Geophysical Fluid Dynamics Laboratory, USA | 2.50° × 2.00° |
GFDL-ESM2G | ||
GFDL-ESM2M | ||
HadGEM2-AO | National Institute of Meteorological Research/Korea Meteorological Administration, South Korea | 1.88° × 1.25° |
HadGEM2-CC | Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas Espaciais), UK | 1.88° × 1.25° |
HadGEM2-ES | ||
inmcm4 | Institute of Numerical Mathematics, Russia | 2° × 1. 5° |
IPSL-CM5A-LR | Institut Pierre-Simon Laplace, France | 3.75° × 1.89° |
IPSL-CM5A-MR | 2.50° × 1.27° | |
IPSL-CM5B-LR | 3.75° × 1.89° | |
MIROC5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan | 1.41°×1.40° |
MIROC-ESM | Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies, Japan | 2.81° × 2.79° |
MIROC-ESM-CHEM | ||
MPI-ESM-LR | Max Planck Institute for Meteorology (MPI-M), Germany | 1.88° × 1.86° |
MPI-ESM-MR | ||
MRI-CGCM3 | Meteorological Research Institute, Japan | 1.13° × 1.12° |
NorESM1-M | Norwegian Climate Centre, Norway | 2.50° × 1.89° |
ID | Indicator Name | Definition | Unit |
---|---|---|---|
PRCPTOT | Annual total wet-day precipitation | Annual total PRCP in wet days (RR ≥ 1 mm) | mm |
CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | days |
CWD | Consecutive wet days | Maximum number of consecutive days with RR ≥ 1 mm | days |
R10mm | Number of heavy precipitation days | The annual count of days when PRCP ≥ 10 mm | days |
R1mm | Number of days above 1 mm | The annual count of days when PRCP ≥ 1 mm | days |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days (defined as PRCP ≥ 1.0 mm) in the year | mm/day |
Stations | Moderate Drought | Severe Drought | Extreme Drought | ||||||
---|---|---|---|---|---|---|---|---|---|
Observed | Historical (Raw) | Historical (Bias-Corr.) | Observed | Historical (Raw) | Historical (Bias-Corr.) | Observed | Historical (Raw) | Historical (Bias-Corr.) | |
Rangpur | 43 | 52 (±12.3) | 58 (±13.5) | 3 | 8 (±4.2) | 8 (±2.8) | 2 | 2 (±1.7) | 1 (±1.2) |
Dinajpur | 48 | 50 (±13.2) | 58 (±13.3) | 11 | 7 (±4.4) | 7 (±2.7) | 4 | 2 (±1.8) | 1 (±1.2) |
Bogra | 54 | 50 (±12.0) | 51 (±13.3) | 11 | 8 (±3.7) | 9 (±2.9) | 3 | 2 (±1.8) | 1 (±0.8) |
Rajsahi | 55 | 46 (±11.0) | 56 (±11.9) | 10 | 8 (±4.2) | 7 (±3.5) | 3 | 2 (±1.6) | 1 (±1.4) |
Ishwardi | 60 | 48 (±08.7) | 55 (±11.2) | 5 | 8 (±4.0) | 8 (±3.1) | 2 | 2 (±1.6) | 1 (±1.2) |
Jessore | 86 | 47 (±10.1) | 56 (±10.2) | 10 | 9 (±4.2) | 8 (±3.4) | 2 | 2 (±1.6) | 2 (±1.1) |
Khulna | 65 | 49 (±11.4) | 52 (±10.8) | 13 | 9 (±4.8) | 8 (±3.5) | 2 | 2 (±1.5) | 1 (±1.0) |
Satkhira | 65 | 46 (±10.6) | 54 (±11.3) | 13 | 9 (±4.2) | 8 (±3.5) | 5 | 3 (±1.8) | 2 (±1.4) |
Barisal | 71 | 49 (±11.4) | 51 (±15.1) | 20 | 9 (±5.0) | 9 (±3.1) | 4 | 2 (±1.6) | 2 (±1.2) |
Patuakhali | 21 | 48 (±11.8) | 57 (±12.1) | 2 | 9(±4.0) | 9 (±3.4) | 2 | 3 (±1.7) | 2 (±1.4) |
Khepupara | 60 | 48 (±12.4) | 54 (±11.0) | 11 | 9 (±3.7) | 9 (±3.4) | 7 | 3 (±1.7) | 2 (±1.3) |
Bhola | 43 | 48 (±12.2) | 54 (±12.8) | 8 | 10 (±5.1) | 9 (±3.7) | 2 | 2 (±1.7) | 2 (±1.3) |
Maizdicourt | 68 | 52 (±13.7) | 54 (±13.4) | 16 | 9 (±5.1) | 9 (±4.1) | 1 | 2 (±1.4) | 2 (±1.0) |
Sawndip | 61 | 54 (±16.6) | 54 (±17.1) | 4 | 8 (±4.1) | 8 (±3.3) | 3 | 3 (±1.8) | 2 (±1.4) |
Dhaka | 102 | 47 (±10.9) | 57 (±10.5) | 10 | 9 (±4.2) | 8 (±3.2) | 3 | 2 (±1.9) | 2 (±1.3) |
Mymensingh | 49 | 51 (±14.8) | 57 (±13.4) | 12 | 8 (±4.4) | 8 (±3.2) | 2 | 2 (±1.6) | 2 (±1.0) |
Hatiya | 61 | 51 (±15.7) | 54 (±09.7) | 2 | 9 (±4.6) | 8 (±3.6) | 1 | 2 (±1.7) | 2 (±1.1) |
Chandpur | 17 | 48 (±11.0) | 54 (±11.5) | 0 | 9 (±5.0) | 7 (±3.9) | 1 | 2 (±1.5) | 1 (±0.9) |
Comilla | 64 | 52 (±13.6) | 54 (±13.1) | 11 | 9 (±4.8) | 8 (±3.3) | 4 | 2 (±1.5) | 1 (±1.0) |
Feni | 45 | 55 (±14.3) | 56 (±15.5) | 6 | 9 (±4.9) | 9 (±3.9) | 5 | 2 (±1.8) | 2 (±1.3) |
Sylhet | 84 | 54 (±14.4) | 51 (±11.8) | 9 | 8 (±4.6) | 9 (±3.6) | 3 | 2 (±1.4) | 2 (±1.3) |
Srimongal | 53 | 54 (±13.7) | 57 (±12.8) | 5 | 8 (±4.1) | 8 (±3.5) | 2 | 2 (±1.7) | 2 (±1.3) |
Rangamati | 54 | 53 (±15.9) | 58 (±17.3) | 9 | 8 (±4.1) | 7 (±2.7) | 3 | 2 (±1.7) | 2 (±1.3) |
Cox’s bazar | 19 | 46 (±12.9) | 56 (±13.3) | 3 | 10 (±3.7) | 9 (±4.2) | 1 | 2 (±1.5) | 2 (±1.5) |
Chittagong | 24 | 52 (±15.6) | 58 (±15.5) | 0 | 9 (±4.6) | 8 (±4.0) | 0 | 2 (±1.9) | 2 (±1.2) |
Bangladesh | 54.88 | 49.94 | 55.04 | 8.16 | 8.60 | 8.2 | 2.68 | 2.29 | 1.68 |
In percent (%) | Under-estimate 9% | Match | Over-estimate 5% | Match | Under-estimate 15% | Under-estimate 37% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamruzzaman, M.; Jang, M.-W.; Cho, J.; Hwang, S. Future Changes in Precipitation and Drought Characteristics over Bangladesh under CMIP5 Climatological Projections. Water 2019, 11, 2219. https://doi.org/10.3390/w11112219
Kamruzzaman M, Jang M-W, Cho J, Hwang S. Future Changes in Precipitation and Drought Characteristics over Bangladesh under CMIP5 Climatological Projections. Water. 2019; 11(11):2219. https://doi.org/10.3390/w11112219
Chicago/Turabian StyleKamruzzaman, Mohammad, Min-Won Jang, Jaepil Cho, and Syewoon Hwang. 2019. "Future Changes in Precipitation and Drought Characteristics over Bangladesh under CMIP5 Climatological Projections" Water 11, no. 11: 2219. https://doi.org/10.3390/w11112219