Analysis of a Flash Flood in a Small Basin in Crete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Almyrida Hydrological Basin
2.2. Description of the Flash Flood Event of 17 October 2006 in Almyrida
2.3. Climate Model Data
2.4. Hydrological Modeling
2.5. Hydraulic Modeling
2.6. Simulation of the Precipitation Event of 17 October 2006 Using the Hydrological HEC-HMS Model
Hydrological Modeling Methods
2.7. Geometry Data in ArcGIS—Connection to 1D HEC-RAS
2.8. Analysis of the Downstream Segment of Almyrida Stream Using the Hydraulic 1D HEC-RAS Model
3. Results
3.1. Calibration of the Hydrological Modeling and Parameter Sensitivity Analysis
3.2. Hydrological Modeling Output
3.3. Hydraulic Modeling Output
3.4. Climate Change Scenarios for the Event Precipitation Depth
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hapuarachchi, H.A.P.; Wang, Q.J.; Pagano, T.C. A review of advances in flash flood forecasting. Hydrol. Process. 2011, 25, 2771–2784. [Google Scholar] [CrossRef]
- Gourley, J.J.; Flamig, Z.L.; Vergara, H.; Kirstetter, P.-E.; Clark III, R.A.; Argyle, E.; Arthur, A.; Martinaitis, S.; Terti, G.; Erlingis, J.M.; et al. The FLASH Project: Improving the Tools for Flash Flood Monitoring and Prediction across the United States. Bull. Am. Meteorol. Soc. 2017, 98, 361–372. [Google Scholar] [CrossRef]
- Terti, G.; Ruin, I.; Anquetin, S.; Gourley, J.J. A Situation-Based Analysis of Flash Flood Fatalities in the United States. Bull. Am. Meteorol. Soc. 2017, 98, 333–345. [Google Scholar] [CrossRef]
- Rozalis, S.; Morin, E.; Yair, Y.; Price, C. Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J. Hydrol. 2010, 394, 245–255. [Google Scholar] [CrossRef]
- Borga, M.; Anagnostou, E.N.; Bloschl, G.; Creutin, J.-D. Flash flood forecasting, warning and risk management: The HYDRATE project. Environ. Sci. Policy 2011, 14, 834–844. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Tsanis, I.K.; Daliakopoulos, I.N. Seasonality of floods and their hydrometeorologic characteristics in the island of Crete. J. Hydrol. 2010, 394, 90–100. [Google Scholar] [CrossRef]
- Vrochidou, A.-E.K.; Tsanis, I.K. Assessing precipitation distribution impacts on droughts on the island of Crete. Nat. Hazards Earth Syst. Sci. 2012, 12, 1159–1171. [Google Scholar] [CrossRef] [Green Version]
- Iordanidou, V.; Koutroulis, A.G.; Tsanis, I.K. Mediterranean cyclone characteristics related to precipitation occurrence in Crete, Greece. Nat. Hazards Earth Syst. Sci. 2015, 15, 1807–1819. [Google Scholar] [CrossRef] [Green Version]
- Koutroulis, A.G.; Vrohidou, A.-E.K.; Tsanis, I.K. Spatiotemporal Characteristics of Meteorological Drought for the Island of Crete. J. Hydrometeorol. 2011, 12, 206–226. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Tsanis, I.K. A method for estimating flash flood peak discharge in a poorly gauged basin: Case study for the 13–14 January 1994 flood, Giofyros basin, Crete, Greece. J. Hydrol. 2010, 385, 150–164. [Google Scholar] [CrossRef]
- Tsanis, I.K.; Seiradakis, K.D.; Daliakopoulos, I.N.; Grillakis, M.G.; Koutroulis, A.G. Assessment of GeoEye-1 stereo-pair-generated DEM in flood mapping of an ungauged basin. J. Hydroinform. 2014, 16, 1–18. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Vozinaki, A.-E.K.; Tapoglou, E.; Tsanis, I.K. Hydrometeorological impact of climate change in two Mediterranean basins. Int. J. River Basin Manag. 2018, 16, 245–257. [Google Scholar] [CrossRef]
- Fonseca, A.R.; Santos, J.A. Predicting hydrologic flows under climate change: The Tâmega Basin as an analog for the Mediterranean region. Sci. Total Environ. 2019, 668, 1013–1024. [Google Scholar] [CrossRef]
- Perra, E.; Piras, M.; Deidda, R.; Paniconi, C.; Mascaro, G.; Vivoni, E.R.; Cau, P.; Marras, P.A.; Ludwig, R.; Meyer, S. Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment. Hydrol. Earth Syst. Sci. 2018, 22, 4125–4143. [Google Scholar] [CrossRef] [Green Version]
- Koutroulis, A.G.; Grillakis, M.G.; Tsanis, I.K.; Jacob, D. Exploring the ability of current climate information to facilitate local climate services for the water sector. Earth Perspect. 2015, 2, 1–19. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Koutroulis, A.G.; Komma, J.; Tsanis, I.K.; Wagner, W.; Blöschl, G. Initial soil moisture effects on flash flood generation–A comparison between basins of contrasting hydro-climatic conditions. J. Hydrol. 2016, 541, 206–217. [Google Scholar] [CrossRef]
- Parisi, S.; Pascale, S.; Sdao, F.; Soupios, P. Assessment and mapping of the intrinsic vulnerability to pollution: An example from Keritis River Basin (Northwestern crete, Greece). Environ. Earth Sci. 2013, 70, 2659–2670. [Google Scholar] [CrossRef]
- Verheye, W.; de la Rosa, D. Mediterranean soils. In Land Use, Land Cover and Soil Sciences; Verheye, W., Ed.; UNESCO-EOLSS Publishers: Oxford, UK, 2006. [Google Scholar]
- Nemec, W.; Postma, G. Quaternary alluvial fans in southwestern Crete: Sedimentation processes and geomorphic evolution. In Alluvial Sedimentation; Marzo, M., Puigdefábregas, C., Eds.; Spec. Publs Int. Ass. Sediment Wiley-Blackwell: Oxford, UK, 1993; Volume 17, pp. 235–276. [Google Scholar] [CrossRef]
- Shahrukh, M.; Soupios, P.; Papadopoulos, N.; Sarris, A. Geophysical investigations at the Istron archaeological site, eastern Crete, Greece using seismic refraction and electrical resistivity tomography. J. Geophys. Eng. 2012, 9, 749–760. [Google Scholar] [CrossRef]
- European Environmental Agency. CORINE Land Cover 1990-2000 Changes (CLC2000). 2016. Available online: https://www.eea.europa.eu/data-and-maps/ (accessed on 19 December 2018).
- Daliakopoulos, I.N.; Tsanis, I.K. A weather radar data processing module for storm analysis. J. Hydroinform. 2012, 14, 332–344. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Koutroulis, A.G.; Tsanis, I.K. Multisegment statistical bias correction of daily GCM precipitation output. J. Geophys. Res. Atmos. 2013, 118, 3150–3162. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Efstathiou, D.; Giannakis, G.V.; Kritsotakis, M.; Grillakis, M.G.; Koutroulis, A.G.; Tsanis, I.K.; Nikolaidis, N.P. Climate change impact on the hydrological budget of a large Mediterranean island. Hydrol. Sci. J. 2019, 64, 1190–1203. [Google Scholar] [CrossRef]
- Tapoglou, E.; Vozinaki, A.-E.K.; Tsanis, I.K. Climate Change Impact on the Frequency of Hydrometeorological Extremes in the Island of Crete. Water 2019, 11, 587. [Google Scholar] [CrossRef]
- Scharffenberg, W. Hydrologic Modeling System HEC-HMS User’s Manual; CPD-74A, Version 4.2; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2016.
- Ford, D.T.; Hamilton, D. Computer Models for Water-Excess Management. In Water Resources Handbook; Mays, L.W., Ed.; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Feldman, A.D. Hydrologic Modeling System HEC-HMS Technical Reference Manual; CPD-74B; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2000.
- United States Department of Agriculture. Urban Hydrology for Small Watersheds, TR-55, 2nd ed.; Natural Resources Conservation Service: Springfield, VA, USA, 1986.
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied hydrology; McGraw-Hill: New York, NY, USA, 1988; ISBN 0 07-010810-2. [Google Scholar]
- Brunner, G.W. CEIWR-HEC. HEC-RAS, River Analysis System User’s Manual; CPD-68, Version 5.0; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2016.
- Brunner, G.W. HEC-RAS, River Analysis System Hydraulic Reference Manual; CPD-69, Version 5.0; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2016.
- Tsanis, I.K.; Boyle, S. A 2D Hydrodynamic/Pollutant Transport GIS Model. Adv. Eng. Softw. 2001, 32, 353–361. [Google Scholar] [CrossRef]
- Naoum, S.; Tsanis, I.K. A Multiple Linear Regression GIS Module using Spatial Variables to Model Orographic Rainfall. J. Hydroinform. 2004, 6, 39–56. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Engineering Hydrology Training Series, Module 104: Runoff Curve Number Computations; Soil Conservation Service: Washington, DC, USA, 1989.
- United States Department of Agriculture. National Engineering Handbook, Chapter 7: Hydrologic Soil Groups; 210-VI-NEH; Natural Resources Conservation Service: Washington, DC, USA, 2009.
- United States Department of Agriculture. National Engineering Handbook, Hydrology, Supplement A, Section 4; Soil Conservation Service: Washington, DC, USA, 1956; Chapter 10.
- Giandotti, M. Previsione delle piene e delle magre dei corsi d’acqua. Ist. Poligr. Dello Stato 1934, 8, 107–117. [Google Scholar]
- Kirpich, P.Z. Time of concentration of small agricultural watershed. ASCE Civ. Eng. 1940, 10, 362–370. [Google Scholar] [CrossRef]
- Sharifi, S.; Hosseini, S.M. Methodology for Identifying the Best Equations for Estimating the Time of Concentration of Watersheds in a Particular Region. J. Irrig. Drain. Eng. 2011, 137, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Efstratiadis, A.; Koussis, A.D.; Koutsoyiannis, D.; Mamassis, N. Flood design recipes vs. reality: Can predictions for ungauged basins be trusted? Nat. Hazards Earth Syst. Sci. 2014, 14, 1417–1428. [Google Scholar] [CrossRef]
- Perdikaris, J.; Gharabaghi, B.; Rudra, R. Reference Time of Concentration Estimation for Ungauged Catchments. Earth Sci. Res. 2018, 7, 58–73. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Flood-Runoff Analysis Engineer Manual; EM 1110-2-1417; Engineering and Design: Washington, DC, USA, 1994. [Google Scholar]
- Pilgrim, D.H.; Cordery, I. Flood runoff. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Cameron, T.; Ackerman, P.E. HEC-GeoRAS GIS Tools for Support of HEC-RAS using ArcGIS® 10 User’s Manual; CPD-83, Version 10; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2012.
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Tsanis, I.K.; Koutroulis, A.G.; Daliakopoulos, I.N.; Jacob, D. Severe climate-induced water shortage and extremes in Crete. Clim. Chang. 2011, 106, 667–677. [Google Scholar] [CrossRef]
- Directive on the Assessment and Management of Flood Risks; Official Journal of the European Union: Strasbourg, France, 2007; pp. L288/27–L288/34, EP & CEU (2007/60/EC).
% Karst Mainly at High Altitudes | % Clays Mainly at Plain | % Rainfall at High Altitudes | % Rainfall at Plain | % Impervious at High Altitudes | % Impervious at Plain | % Range of Total Basin’s Impervious |
---|---|---|---|---|---|---|
64 | 36 | 60 | 40 | 10 | 85 | 16.08 |
64 | 36 | 60 | 40 | 10 | 90 | 16.8 |
64 | 36 | 60 | 40 | 10 | 95 | 17.52 |
64 | 36 | 60 | 40 | 15 | 85 | 18 |
64 | 36 | 60 | 40 | 15 | 90 | 18.72 |
64 | 36 | 60 | 40 | 15 | 95 | 19.44 |
64 | 36 | 60 | 40 | 20 | 85 | 19.92 |
64 | 36 | 60 | 40 | 20 | 90 | 20.64 |
64 | 36 | 60 | 40 | 20 | 95 | 21.36 |
64 | 36 | 60 | 40 | 25 | 85 | 21.84 |
64 | 36 | 60 | 40 | 25 | 90 | 22.56 |
64 | 36 | 60 | 40 | 25 | 95 | 23.28 |
64 | 36 | 60 | 40 | 30 | 85 | 23.76 |
64 | 36 | 60 | 40 | 30 | 90 | 24.48 |
64 | 36 | 60 | 40 | 30 | 95 | 25.2 |
64 | 36 | 60 | 40 | 35 | 85 | 25.68 |
64 | 36 | 60 | 40 | 35 | 90 | 26.4 |
64 | 36 | 60 | 40 | 35 | 95 | 27.12 |
64 | 36 | 60 | 40 | 40 | 85 | 27.6 |
64 | 36 | 60 | 40 | 40 | 90 | 28.32 |
64 | 36 | 60 | 40 | 40 | 95 | 29.04 |
A/A | Impervious (%) | CN | Time of Concentration Tc (h) | Storage Coefficient R (h) | Peak Discharge (m3/s) | Time of Peak | Depth in Downstream Cross Section (m) | |
---|---|---|---|---|---|---|---|---|
1 | 16.08 | 56.73 | 2.535 | 0.3 | 1.09 | 101.4 | 12:00 | 2.21 |
2 | 16.8 | 56.73 | 2.535 | 0.3 | 1.09 | 102.2 | 12:00 | 2.22 |
3 | 17.52 | 56.73 | 2.535 | 0.3 | 1.09 | 103.1 | 12:00 | 2.22 |
4 | 18 | 56.73 | 2.535 | 0.3 | 1.09 | 103.6 | 12:00 | 2.22 |
5 | 18.72 | 56.73 | 2.535 | 0.3 | 1.09 | 104.5 | 12:00 | 2.22 |
6 | 19.44 | 56.73 | 2.535 | 0.3 | 1.09 | 105.3 | 12:00 | 2.23 |
7 | 19.92 | 56.73 | 2.535 | 0.3 | 1.09 | 105.9 | 12:00 | 2.23 |
8 | 20.64 | 56.73 | 2.535 | 0.3 | 1.09 | 106.7 | 12:00 | 2.23 |
9 | 21.36 | 56.73 | 2.535 | 0.3 | 1.09 | 107.6 | 12:00 | 2.23 |
10 | 21.84 | 56.73 | 2.535 | 0.3 | 1.09 | 108.1 | 12:00 | 2.23 |
11 | 22.56 | 56.73 | 2.535 | 0.3 | 1.09 | 109 | 12:00 | 2.24 |
12 | 23.28 | 56.73 | 2.535 | 0.3 | 1.09 | 109.8 | 12:00 | 2.24 |
13 | 23.76 | 56.73 | 2.535 | 0.3 | 1.09 | 110.4 | 12:00 | 2.24 |
14 | 24.48 | 56.73 | 2.535 | 0.3 | 1.09 | 111.2 | 12:00 | 2.24 |
15 | 25.2 | 56.73 | 2.535 | 0.3 | 1.09 | 112 | 12:00 | 2.25 |
16 | 25.68 | 56.73 | 2.535 | 0.3 | 1.09 | 112.6 | 12:00 | 2.25 |
17 | 26.4 | 56.73 | 2.535 | 0.3 | 1.09 | 113.4 | 12:00 | 2.25 |
18 | 27.12 | 56.73 | 2.535 | 0.3 | 1.09 | 114.3 | 12:00 | 2.25 |
19 | 27.6 | 56.73 | 2.535 | 0.3 | 1.09 | 114.8 | 12:00 | 2.26 |
20 | 28.32 | 56.73 | 2.535 | 0.3 | 1.09 | 115.7 | 12:00 | 2.26 |
21 | 29.04 | 56.73 | 2.535 | 0.3 | 1.09 | 116.5 | 12:00 | 2.26 |
22 | 22.56 | 56.73 | 2.535 | 0.2 | 0.63 | 122 | 11:45 | 2.28 |
23 | 22.56 | 56.73 | 2.535 | 0.25 | 0.85 | 115.6 | 12:00 | 2.26 |
24 | 22.56 | 56.73 | 2.535 | 0.35 | 1.37 | 101.6 | 12:15 | 2.21 |
25 | 22.56 | 65.24 | 2.535 | 0.3 | 1.09 | 131.9 | 12:00 | 2.31 |
26 | 22.56 | 48.22 | 2.535 | 0.3 | 1.09 | 86.1 | 12:00 | 2.15 |
27 | 22.56 | 56.73 | 3.28 | 0.2 | 0.82 | 106 | 12:15 | 2.23 |
28 | 22.56 | 56.73 | 3.28 | 0.25 | 1.09 | 99.9 | 12:30 | 2.21 |
29 | 22.56 | 56.73 | 3.28 | 0.3 | 1.41 | 93.4 | 12:30 | 2.19 |
30 | 22.56 | 56.73 | 3.28 | 0.35 | 1.77 | 86.9 | 12:45 | 2.16 |
31 | 22.56 | 56.73 | 1.79 | 0.2 | 0.45 | 145.2 | 11:30 | 2.35 |
32 | 22.56 | 56.73 | 1.79 | 0.25 | 0.60 | 139.2 | 11:30 | 2.33 |
33 | 22.56 | 56.73 | 1.79 | 0.3 | 0.77 | 131.8 | 11:30 | 2.31 |
34 | 22.56 | 56.73 | 1.79 | 0.35 | 0.96 | 123.8 | 11:30 | 2.28 |
35 | 22.56 | 56.73 | 2.06 | 0.2 | 0.52 | 135.7 | 11:30 | 2.32 |
36 | 22.56 | 56.73 | 2.06 | 0.25 | 0.69 | 128.7 | 11:45 | 2.3 |
37 | 22.56 | 56.73 | 2.06 | 0.3 | 0.88 | 122.5 | 11:45 | 2.28 |
38 | 22.56 | 56.73 | 2.06 | 0.35 | 1.11 | 114.9 | 11:45 | 2.26 |
39 | 22.56 | 56.73 | 2.33 | 0.2 | 0.58 | 127.7 | 11:45 | 2.3 |
40 | 22.56 | 56.73 | 2.33 | 0.25 | 0.78 | 121.1 | 11:45 | 2.27 |
41 | 22.56 | 56.73 | 2.33 | 0.3 | 1.00 | 114 | 12:00 | 2.25 |
42 | 22.56 | 56.73 | 2.33 | 0.35 | 1.25 | 107.3 | 12:00 | 2.23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarchani, S.; Tsanis, I. Analysis of a Flash Flood in a Small Basin in Crete. Water 2019, 11, 2253. https://doi.org/10.3390/w11112253
Sarchani S, Tsanis I. Analysis of a Flash Flood in a Small Basin in Crete. Water. 2019; 11(11):2253. https://doi.org/10.3390/w11112253
Chicago/Turabian StyleSarchani, Sofia, and Ioannis Tsanis. 2019. "Analysis of a Flash Flood in a Small Basin in Crete" Water 11, no. 11: 2253. https://doi.org/10.3390/w11112253
APA StyleSarchani, S., & Tsanis, I. (2019). Analysis of a Flash Flood in a Small Basin in Crete. Water, 11(11), 2253. https://doi.org/10.3390/w11112253