Development and Validation of a Low-Cost Gas Density Method for Measuring Biochemical Methane Potential (BMP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. The GD-BMP Method
2.1.1. GD-BMP Method Measurements
- (1)
- Mix the bottle by swirling, avoiding contact between the slurry and the septum;
- (2)
- Weigh the bottle and record the pre-venting mass;
- (3)
- Remove biogas with a syringe and record vented biogas volume at atmospheric pressure;
- (4)
- Weigh the bottle and record post-venting mass.
2.1.2. GD-BMP Method Calculations
2.1.3. Variations on GD-BMP Application (GDt, GDi, and GDv)
2.2. Experiments
2.2.1. Experiments 1A and 1B: Method Development and Initial Testing
2.2.2. Experiment 2: GD Method Transfer
2.2.3. Experiment 3: Inter-Laboratory Comparison
2.2.4. Data Processing
2.2.5. Evaluation of GD-BMP
3. Results and Discussion
3.1. Experiments 1A and 1B: Method Development and Initial Testing
3.1.1. Measurements Made without Biogas Leakage
3.1.2. Measurements Made with Leakage
3.2. Experiment 2: GD-BMP Method Transfer
3.3. Experiment 3: Inter-Laboratory Evaluation of GD-BMP
3.4. Recommendations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raposo, F.; De la Rubia, M.A.; Fernandez-Cegri, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- Pham, C.H.; Triolo, J.M.; Cu, T.T.T.; Pedersen, L.; Sommer, S.G. Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure. Asian-Australas. J. Anim. Sci. 2013, 26, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. Water 2019, 11, 921. [Google Scholar] [CrossRef]
- Rozzi, A.; Remigi, E. Methods of assessing microbial activity and inhibition under anaerobic conditions: A literature review. Rev. Environ. Sci. Biotechnol. 2004, 3, 93–115. [Google Scholar] [CrossRef]
- Hafner, S.D.; Rennuit, C.; Triolo, J.M.; Richards, B.K. Validation of a simple gravimetric method for measuring biogas production in laboratory experiments. Biomass Bioenergy 2015, 83, 297–301. [Google Scholar] [CrossRef]
- Hafner, S.D.; Astals, S. Systematic error in manometric measurement of biochemical methane potential: Sources and solutions. Waste Manag. 2019, 91, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Nges, I.A.; Nistor, M.; Liu, J. Determination of methane yield of cellulose using different experimental setups. Water Sci. Technol. 2014, 70, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Holliger, C.; Fruteau de Laclos, H.; Hafner, S. A new protocol and software tool for standardizing biomethane potential tests: Results of an inter-laboratory study. In Proceedings of the 15th IWA World Conference on Anaerobic Digestion, Beijing, China, 17–20 October 2017. [Google Scholar]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; de Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- VDI. Fermentation of Organic Materials: Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; Verein Deutscher Ingenieure e.V.: Düsseldorf, Germany, 2016. [Google Scholar]
- Hafner, S.D. Calculation of Biochemical Methane Potential (BMP). Available online: https://github.com/sashahafner/BMP-methods/blob/master/BMP_calculations.pdf (accessed on 19 October 2019).
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater; American Water Works Association: Denver, CO, USA, 2017; ISBN 978-1-62576-240-5. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Hafner, S.D.; Koch, K.; Carrere, H.; Astals, S.; Weinrich, S.; Rennuit, C. Software for biogas research: Tools for measurement and prediction of methane production. SoftwareX 2018, 7, 205–210. [Google Scholar] [CrossRef]
- Hafner, S.D.; Rennuit, C.; Olsen, P.J.; Pedersen, J.M. Quantification of leakage in batch biogas assays. Water Pract. Technol. 2018, 13, 52–61. [Google Scholar] [CrossRef]
- Brown, L.C.; Berthouex, P.M. Statistics for Environmental Engineers, 2 Edition; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-1-4200-5663-1. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Brulé, M.; Oechsner, H.; Jungbluth, T. Exponential model describing methane production kinetics in batch anaerobic digestion: A tool for evaluation of biochemical methane potential assays. Bioprocess Biosyst. Eng. 2014, 37, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. R package version 1.2-1. Available online: https://cran.r-project.org/web/packages/minpack.lm/index.html (accessed on 19 November 2019).
- Koch, K.; Hafner, S.D.; Weinrich, S.; Astals, S. Identification of critical problems in biochemical methane potential (BMP) tests from methane production curves. Front. Environ. Sci. 2019, 7, 178. [Google Scholar] [CrossRef]
- Raposo, F.; Fernandez-Cegri, V.; De la Rubia, M.A.; Borja, R.; Beline, F.; Cavinato, C.; Demirer, G.; Fernandez, B.; Fernandez-Polanco, M.; Frigon, J.C.; et al. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
Experiment | ||||
---|---|---|---|---|
1A | 1B | 2 | 3 | |
Institution abbreviation | SDU | SDU | UQ | AU, TUM, DBFZ |
Substrates* | FI1, FI2, FI3, ethanol, cellulose | RS, HS1, HS2, ethanol, cellulose | FI3, cellulose | FI3, WS, cellulose |
Measuring methods | Volumetric, manometric, gravimetric, GD | Volumetric, manometric, gravimetric, GD | Manometric, gravimetric, GD | GD (AU), AMPTS II (TUM and DBFZ) |
Biogas composition by GC | Measured | Measured | Measured † | Not measured ‡ |
Biogas leakage | Yes ‖ | Yes § | No | No |
Substrate | Gravimetric | Manometric | Volumetric | Gas density (GDt) | ||||
---|---|---|---|---|---|---|---|---|
Mean * | SD † | Mean | SD | Mean | SD | Mean | SD | |
Cellulose | 362 | 13.3 | 368 | 12.6 | 367 | 15.5 | 386 | 56.2 |
Ethanol | 734 | 30.9 | 736 | 20.7 | 734 | 28.5 | 664 | 81.5 |
FI1 | 379 | 8.6 | 381 | 10.7 | 389 | 9.7 | 375 | 33.1 |
FI2 | 381 | 9.8 | 378 | 7.6 | 382 | 12.7 | 364 | 57.1 |
FI3 | 522 | 15.3 | 498 | 35.2 | 537 | 26.2 | 496 | 80.4 |
Substrate | Gravimetric | Gas Density (GDt) | Gas Density (GDv) | |||
---|---|---|---|---|---|---|
Mean * | SD † | Mean | SD | Mean | SD | |
Cellulose | 372 | 13.6 | 325 | 158 | 399 | 38.9 |
Ethanol | 740 | 21.5 | 620 | 53.2 | 645 | 49.8 |
HS1 | 347 | 7.0 | 280 | 61.1 | 349 | 10.7 |
HS2 | 327 | 4.8 | 219 | 66.4 | 315 | 29.8 |
RS | 266 | 5.0 | 251 | 28.1 | 275 | 8.8 |
Substrate | Gravimetric | Manometric | Gas Density (GDt) | |||
---|---|---|---|---|---|---|
Mean * | SD † | Mean | SD | Mean | SD | |
FI3 | 506 | 6.2 | 485 | 23.8 | 502 | 9.4 |
Cellulose | 371 | 8.6 | 323 | 11.3 | 358 | 5.9 |
Substrate | AU (GDt) | TUM (AMPTS II) | DBFZ (AMPTS II) | ||||||
---|---|---|---|---|---|---|---|---|---|
t * | Mean † | SD ‡ | t | Mean | SD | t | Mean | SD | |
Cellulose | 27.9 | 386 | 8.5 | 25.0 | 350 | 7.7 | 25.0 | 371 | 3.2 |
FI1 | 27.9 | 480 | 8.0 | 25.0 | 520 | 3.3 | 25.0 | 485 | 6.6 |
Wheat straw | 27.9 | 303 | 6.2 | 25.0 | 287 | 7.2 | 25.0 | 280 | 2.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justesen, C.G.; Astals, S.; Mortensen, J.R.; Thorsen, R.; Koch, K.; Weinrich, S.; Triolo, J.M.; Hafner, S.D. Development and Validation of a Low-Cost Gas Density Method for Measuring Biochemical Methane Potential (BMP). Water 2019, 11, 2431. https://doi.org/10.3390/w11122431
Justesen CG, Astals S, Mortensen JR, Thorsen R, Koch K, Weinrich S, Triolo JM, Hafner SD. Development and Validation of a Low-Cost Gas Density Method for Measuring Biochemical Methane Potential (BMP). Water. 2019; 11(12):2431. https://doi.org/10.3390/w11122431
Chicago/Turabian StyleJustesen, Camilla G., Sergi Astals, Jacob R. Mortensen, Rasmus Thorsen, Konrad Koch, Sören Weinrich, Jin Mi Triolo, and Sasha D. Hafner. 2019. "Development and Validation of a Low-Cost Gas Density Method for Measuring Biochemical Methane Potential (BMP)" Water 11, no. 12: 2431. https://doi.org/10.3390/w11122431
APA StyleJustesen, C. G., Astals, S., Mortensen, J. R., Thorsen, R., Koch, K., Weinrich, S., Triolo, J. M., & Hafner, S. D. (2019). Development and Validation of a Low-Cost Gas Density Method for Measuring Biochemical Methane Potential (BMP). Water, 11(12), 2431. https://doi.org/10.3390/w11122431