Jointly Modeling Drought Characteristics with Smoothed Regionalized SPI Series for a Small Island
Abstract
:1. Introduction
2. Study Region and Data
3. Methods
3.1. Standardized Precipitation Index (SPI) Calculation and Drought Recognition
3.2. Moving Average Filter (MA)
3.3. Regionalized SPI Series Based on Principal Components Analysis (PCA)
3.4. Univariate Analysis of Drought Duration and Magnitude; Selection of Probability Distribution Functions
3.5. Bivariate Analysis of Drought Duration and Magnitude
3.5.1. Copula Parameters Estimation
3.5.2. Best-Fitted Copula
3.6. Drought Return Periods
3.6.1. Univariate Return Period
3.6.2. Bivariate Drought Return Periods
3.6.3. Conditional Drought Return Periods
4. Results
4.1. Smoothed Regionalized SPI3 and SPI6
4.2. Estimation of Drought Characteristics and Univariate Analysis
4.3. Estimation of Bivariate Joint Distributions
4.4. Regional Bivariate Return Period of Drought Events
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tallaksen, L.M.; Van Lanen, H. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater; Elsevier: Amsterdam, The Netherlands, 2004; Volume 48. [Google Scholar]
- Herrera, D.A.; Ault, T.R.; Fasullo, J.T.; Coats, S.J.; Carrillo, C.M.; Cook, B.I.; Williams, A.P. Exacerbation of the 2013–2016 Pan-Caribbean Drought by Anthropogenic Warming. Geophys. Res. Lett. 2018, 45, 10,619–10,626. [Google Scholar] [CrossRef]
- Barnett, J.; Waters, E. Rethinking the vulnerability of small island states: Climate change and development in the Pacific Islands. In The Palgrave Handbook of International Development; Springer: Berlin, Germany, 2016; pp. 731–748. [Google Scholar]
- Sadoff, C.W.; Borgomeo, E.; De Waal, D. Turbulent Waters: Pursuing Water Security in Fragile Contexts; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Parry, M.; Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Barros, V.; Field, C.; Dokke, D.; Mastrandrea, M.; Mach, K.; Bilir, T.E.; Chatterjee, M.; Ebi, K.; Estrada, Y.; Genova, R.; et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability-Part B: Regional Aspects-Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Falkland, A.; Custodio, E. Hydrology and Water Resources of Small Islands: A Practical Guide; Number 49 in Studies and Reports in Hydrology; UNESCO: Paris, France, 1991. [Google Scholar]
- Nurse, L.A.; Sem, G.; Hay, J.E.; Suarez, A.G.; Wong, P.P.; Briguglio, L.; Ragoonaden, S. Small island states. Clim. Chang. 2001, 843–875. Available online: https://pdfs.semanticscholar.org/1cca/75e53f7931510a4cbdb2b8582a4e3c8e8348.pdf (accessed on 21 June 2019).
- Masson-Delmotte, V. Global Warming of 1.5 OC: An IPCC Special Report on the Impacts of Global Warming of 1.5C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Liberato, M.; Ramos, A.; Gouveia, C.; Sousa, P.; Russo, A.; Trigo, R.; Santo, F. Exceptionally extreme drought in Madeira Archipelago in 2012: Vegetation impacts and driving conditions. Agric. For. Meteorol. 2017, 232, 195–209. [Google Scholar] [CrossRef]
- Santos, F.; Valente, M.; Miranda, P.; Aguiar, A.; Azevedo, E.; Tomé, A.; Coelho, F. Climate change scenarios in the Azores and Madeira islands. World Resour. Rev. 2004, 16, 473–491. [Google Scholar]
- Tallaksen, L.M.; Hisdal, H.; Van Lanen, H.A. Space–time modelling of catchment scale drought characteristics. J. Hydrol. 2009, 375, 363–372. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Wang, W.; Ertsen, M.W.; Svoboda, M.D.; Hafeez, M. Propagation of drought: From meteorological drought to agricultural and hydrological drought. Adv. Meteorol. 2016, 2016. [Google Scholar] [CrossRef]
- Van Loon, A.; Van Lanen, H.; Tallaksen, L.; Hanel, M.; Fendekova, M.; Machlica, A.; Sapriza, G.; Koutroulis, A.; Huijgevoort, M.; Jódar, J.; et al. Propagation of Drought through the Hydrological Cycle; The WATCH Project: Oxfordshire, UK, 2011. [Google Scholar]
- Tallaksen, L.M. Streamflow drought frequency analysis. In Drought and Drought Mitigation in Europe; Springer: Berlin, Germany, 2000; pp. 103–117. [Google Scholar]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; US Department of Commerce Weather Bureau: Washington, DC, USA, 1965; p. 59.
- Heim, R.R., Jr. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; Volume 17, pp. 179–183. [Google Scholar]
- Demuth, S.; Stahl, K. Assessment of the Regional. Impact of Droughts in Europe (ARIDE)-Final Report; University of Freiburg/Institute of Hydrology: Freiburg im Breisgau, Germany, 2001. [Google Scholar]
- Vicente-Serrano, S. El Niño and La Niña influence on droughts at different timescales in the Iberian Peninsula. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Vicente-Serrano, S. Differences in spatial patterns of drought on different time scales: an analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Santos, J.; Pulido-Calvo, I.; Portela, M. Spatial and temporal variability of droughts in Portugal. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Yevjevich, V.M. Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts, An; Hydrology Papers No. 23; Colorado State University: Fort Collins, CO, USA, 1967. [Google Scholar]
- Santos, J.; Portela, M.; Pulido-Calvo, I. Regional frequency analysis of droughts in Portugal. Water Resour. Manag. 2011, 25, 3537. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Beguería, S.; García-Ruiz, J.M.; Portela, M.M.; Almeida, A. Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Demuth, S. A global evaluation of streamflow drought characteristics. Hydrol. Earth Syst. Sci. Discuss. 2006, 10, 535–552. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G.; Vezzoli, R.; Pecora, S. Multivariate assessment of droughts: Frequency analysis and dynamic return period. Water Resour. Res. 2013, 49, 6985–6994. [Google Scholar] [CrossRef]
- Smith, S.W. The Scientist and Engineer’s Guide to Digital Signal Processing; California Technical Publishing: Poway, CA, USA, 1997. [Google Scholar]
- Baeriswyl, P.A.; Rebetez, M. Regionalization of precipitation in Switzerland by means of principal component analysis. Theor. Appl. Climatol. 1997, 58, 31–41. [Google Scholar] [CrossRef]
- White, D.; Richman, M.; Yarnal, B. Climate regionalization and rotation of principal components. Int. J. Climatol. 1991, 11, 1–25. [Google Scholar] [CrossRef]
- Briggs, R.; Lemin, J. Delineation of climatic regions in Maine. Can. J. For. Res. 1992, 22, 801–811. [Google Scholar] [CrossRef]
- Corte-Real, J.; Qian, B.; Xu, H. Regional climate change in Portugal: Precipitation variability associated with large-scale atmospheric circulation. Int. J. Climatol. 1998, 18, 619–635. [Google Scholar] [CrossRef]
- Unal, Y.; Kindap, T.; Karaca, M. Redefining the climate zones of Turkey using cluster analysis. Int. J. Climatol. 2003, 23, 1045–1055. [Google Scholar] [CrossRef]
- Vicente-Serrano, S. Las sequías climáticas en el valle medio del Ebro: Factores atmosféricos, evolución temporal y variabilidad espacial; Consejo de Protección de la Naturaleza de Aragón: 2005. Zaragoza, Spain, 2005. [Google Scholar]
- Raziei, T.; Martins, D.; Bordi, I.; Santos, J.; Portela, M.M.; Pereira, L.; Sutera, A. SPI Modes of Drought Spatial and Temporal Variability in Portugal: Comparing Observations, PT02 and GPCC Gridded Datasets. Water Resour. Manag. 2015, 29, 487–504. [Google Scholar] [CrossRef]
- Chebana, F.; Ouarda, T.B. Multivariate quantiles in hydrological frequency analysis. Environmetrics 2011, 22, 63–78. [Google Scholar] [CrossRef]
- Shiau, J.T. Fitting drought duration and severity with two-dimensional copulas. Water Resour. Manag. 2006, 20, 795–815. [Google Scholar] [CrossRef]
- Chazarra, A.; Mestre, A.; Pires, V.; Cunha, S.; Silva, A.; Marques, J.; Carvalho, F.; Mendes, M.; Neto, J.; Mendes, L.; et al. Climate Atlas of the Achipelagos of the Canary Islands, Madeira and the Azores: Air Temperature and Precipitation (1971–2000); Production Department of the State Meteorological Agency of Spain: Madrid, Spain, 2011; pp. 15–62. [Google Scholar]
- Fragoso, M.; Trigo, R.; Pinto, J.; Lopes, S.; Lopes, A.; Ulbrich, S.; Magro, C. The 20 February 2010 Madeira flash-floods: Synoptic analysis and extreme rainfall assessment. Nat. Hazards Earth Syst. Sci. 2012, 12, 715–730. [Google Scholar] [CrossRef]
- Prada, S.N.; Da Silva, M.O.; Cruz, J.V. Groundwater behaviour in Madeira, volcanic island (Portugal). Hydrogeol. J. 2005, 13, 800–812. [Google Scholar] [CrossRef]
- Duarte, R. Prospecção e captação de águas subterrâneas em terrenos vulcânicos, arquipélago da Madeira. 4º Congresso da Água-A Água como Recurso Estruturante do Desenvolvimento” Coimbra 1998. Available online: http://www.aprh.pt/congressoagua98/Index.htm (accessed on 25 June 2019).
- Espinosa, L.A.; Portela, M.M.; Rodrigues, R. Spatio-temporal variability of droughts over past 80 years in Madeira Island. J. Hydrol. Reg. Stud. 2019, 25, 100623. [Google Scholar] [CrossRef]
- Van-Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2010, 1–68. [Google Scholar] [CrossRef]
- Edwards, D.C.; McKee, T. Characteristics of 20th Century Drought in the United States at Multiple Time Scales; Dept. of Atmospheric Science, Colorado State University: Fort Collins, CO, USA, 1997; Volume 2. [Google Scholar]
- Hayes, M.J.; Svoboda, M.D.; Wiihite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Agnew, C. Using the SPI to identify drought. Drought Netw. News 2000, 12. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1000&context=droughtnetnews (accessed on 21 June 2019).
- Tallaksen, L.M.; Madsen, H.; Clausen, B. On the definition and modelling of streamflow drought duration and deficit volume. Hydrol. Sci. J. 1997, 42, 15–33. [Google Scholar] [CrossRef]
- Zelenhasić, E.; Salvai, A. A method of streamflow drought analysis. Water Resour. Res. 1987, 23, 156–168. [Google Scholar] [CrossRef]
- Byzedi, M.; Saghafian, B. Analysis of hydrological drought based on daily flow series. Proc. World Acad. Sci. Eng. Technol 2010, 70, 249–252. [Google Scholar]
- Li, S.; Xiong, L.; Dong, L.; Zhang, J. Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011. Hydrol. Process. 2013, 27, 3981–3993. [Google Scholar] [CrossRef]
- Shin, J.Y.; Chen, S.; Lee, J.H.; Kim, T.W. Investigation of drought propagation in South Korea using drought index and conditional probability. Terr. Atmos. Ocean. Sci. 2018, 29. [Google Scholar] [CrossRef] [Green Version]
- Golestan, S.; Ramezani, M.; Guerrero, J.M.; Freijedo, F.D.; Monfared, M. Moving average filter based phase-locked loops: Performance analysis and design guidelines. IEEE Trans. Power Electron. 2013, 29, 2750–2763. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.; Black, W.; Babin, B.; Anderson, R.; Tatham, R. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998; Volume 5, pp. 207–219. [Google Scholar]
- Bonaccorso, B.; Bordi, I.; Cancelliere, A.; Rossi, G.; Sutera, A. Spatial variability of drought: An analysis of the SPI in Sicily. Water Resour. Manag. 2003, 17, 273–296. [Google Scholar] [CrossRef]
- Raziei, T.; Saghafian, B.; Paulo, A.A.; Pereira, L.S.; Bordi, I. Spatial patterns and temporal variability of drought in western Iran. Water Resour. Manag. 2009, 23, 439. [Google Scholar] [CrossRef]
- Deng, X.; Tian, X. Entropy principal component analysis and its application to nonlinear chemical process fault diagnosis. Asia-Pac. J. Chem. Eng. 2014, 9, 696–706. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Abdi, H. Factor rotations in factor analyses. Encyclopedia for Research Methods for the Social Sciences; Sage: Thousand Oaks, CA, USA, 2003; pp. 792–795. [Google Scholar]
- Rencher, A.C. Methods of Multivariate Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002; Volume 492, pp. 380–404. [Google Scholar]
- Grice, J.W. Computing and evaluating factor scores. Psychol. Methods 2001, 6, 430. [Google Scholar] [CrossRef] [PubMed]
- Ayantobo, O.O.; Li, Y.; Song, S. Multivariate drought frequency analysis using four-variate symmetric and asymmetric Archimedean copula functions. Water Resour. Manag. 2018, 33, 103–127. [Google Scholar] [CrossRef] [Green Version]
- Montaseri, M.; Amirataee, B.; Rezaie, H. New approach in bivariate drought duration and severity analysis. J. Hydrol. 2018, 559, 166–181. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol. 2007, 332, 93–109. [Google Scholar] [CrossRef]
- Goel, N.; Seth, S.; Chandra, S. Multivariate modeling of flood flows. J. Hydraul. Eng. 1998, 124, 146–155. [Google Scholar] [CrossRef]
- Shiau, J.T. Return period of bivariate distributed extreme hydrological events. Stoch. Environ. Res. Risk Assess. 2003, 17, 42–57. [Google Scholar] [CrossRef]
- Bacchi, B.; Becciu, G.; Kottegoda, N.T. Bivariate exponential model applied to intensities and durations of extreme rainfall. J. Hydrol. 1994, 155, 225–236. [Google Scholar] [CrossRef]
- Salas, J.D.; Fu, C.; Cancelliere, A.; Dustin, D.; Bode, D.; Pineda, A.; Vincent, E. Characterizing the severity and risk of drought in the Poudre River, Colorado. J. Water Resour. Plan. Manag. 2005, 131, 383–393. [Google Scholar] [CrossRef]
- González, J.; Valdés, J.B. Bivariate drought recurrence analysis using tree ring reconstructions. J. Hydrol. Eng. 2003, 8, 247–258. [Google Scholar] [CrossRef]
- Kao, S.C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Xu, X.; Lei, H. Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. J. Hydrol. 2015, 527, 630–640. [Google Scholar] [CrossRef]
- Chang, J.; Li, Y.; Wang, Y.; Yuan, M. Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. J. Hydrol. 2016, 540, 824–834. [Google Scholar] [CrossRef]
- Fan, L.; Wang, H.; Liu, Z.; Li, N. Quantifying the relationship between drought and water scarcity using Copulas: Case study of Beijing–Tianjin–Hebei metropolitan areas in China. Water 2018, 10, 1622. [Google Scholar] [CrossRef] [Green Version]
- Pontes Filho, J.D.; Portela, M.M.; Marinho de Carvalho Studart, T.; Souza Filho, F.d.A. A Continuous Drought Probability Monitoring System, CDPMS, Based on Copulas. Water 2019, 11, 1925. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, E.; Saghafian, B.; Steinacker, R. Copula-based stochastic uncertainty analysis of satellite precipitation products. J. Hydrol. 2019, 570, 739–754. [Google Scholar] [CrossRef]
- Sklar, M. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Joe, H. Multivariate Models and Multivariate Dependence Concepts; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Brechmann, E.; Schepsmeier, U. Cdvine: Modeling dependence with c-and d-vine copulas in r. J. Stat. Softw. 2013, 52, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Shiau, J.T.; Shen, H.W. Recurrence analysis of hydrologic droughts of differing severity. J. Water Resour. Plan. Manag. 2001, 127, 30–40. [Google Scholar] [CrossRef]
- Kwon, H.H.; Lall, U. A copula-based nonstationary frequency analysis for the 2012–2015 drought in California. Water Resour. Res. 2016, 52, 5662–5675. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Singh, V.P.; Guo, S.; Mishra, A.K.; Guo, J. Drought analysis using copulas. J. Hydrol. Eng. 2012, 18, 797–808. [Google Scholar] [CrossRef]
- Tosunoglu, F.; Can, I. Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey. Nat. Hazards 2016, 82, 1457–1477. [Google Scholar] [CrossRef]
- Burrough, P.; McDonnell, R. Spatial Information Systems and Geostatistics. In Principle of Geographic Information Systems; Oxford University Press: Oxford, UK, 1998; Volume 333. [Google Scholar]
- Venter, G. Tails of Copulas. Proc. Casualty Actuar. Soc. 2002, 89. Available online: https://www.casact.org/library/studynotes/Venter_Tails_of_Copulas.pdf (accessed on 20 August 2019).
- Sharma, T. A drought frequency formula. Hydrol. Sci. J. 1997, 42, 803–814. [Google Scholar] [CrossRef]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G., Jr. On the definition of droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar] [CrossRef]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1089. [Google Scholar] [CrossRef]
- Halbert, K.; Nguyen, C.C.; Payrastre, O.; Gaume, E. Reducing uncertainty in flood frequency analyses: A comparison of local and regional approaches involving information on extreme historical floods. J. Hydrol. 2016, 541, 90–98. [Google Scholar] [CrossRef]
- Archer, D.R.; Parkin, G.; Fowler, H.J. Assessing long term flash flooding frequency using historical information. Hydrol. Res. 2016, 48, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bracewell, R.N.; Bracewell, R.N. The Fourier Transform and Its Applications; McGraw-Hill: New York, NY, USA, 1986; Volume 31999. [Google Scholar]
Code | Name | Lat-N | Lon-W | Elev. (m.a.s.l.) | HDY (mm) | ATP (km) | Region |
---|---|---|---|---|---|---|---|
M01 | Areeiro | 32.7200 | −16.9170 | 1610.00 | 2592.20 | 13.67 | RG3 |
M02 | Bica da Cana | 32.7562 | −17.0554 | 1560.00 | 2605.70 | 22.06 | RG3 |
M03 | Camacha-Valparaiso | 32.6763 | −16.8421 | 675.00 | 1406.80 | 28.58 | RG2 |
M04 | Encumeada de São Vicente | 32.7503 | −17.0169 | 900.00 | 2410.50 | 1.12 | RG3 |
M05 | Funchal Observatório | 32.6476 | −16.8924 | 58.00 | 608.40 | 7.08 | RG2 |
M06 | Lugar de Baixo | 32.6790 | −17.0832 | 15.00 | 597.70 | 10.94 | RG2 |
M07 | Ponta Delgada | 32.8213 | −16.9920 | 123.00 | 1070.20 | 17.27 | RG1 |
M08 | Sanatório | 32.6687 | −16.9006 | 384.00 | 809.70 | 11.76 | RG2 |
M09 | Santana | 32.7220 | −16.7742 | 80.00 | 1338.90 | 16.47 | RG1 |
M10 | Canhas | 32.6942 | −17.1098 | 400.00 | 779.20 | 25.20 | RG2 |
M11 | Caniçal | 32.7374 | −16.7387 | 15.00 | 674.60 | 11.35 | RG1 |
M12 | Caramujo | 32.7694 | −17.0585 | 1214.00 | 2653.00 | 30.43 | RG3 |
M13 | Curral das Freiras | 32.7456 | −16.9599 | 787.00 | 1754.70 | 20.09 | RG3 |
M14 | Loural | 32.7727 | −17.0292 | 368.00 | 1600.60 | 19.38 | RG3 |
M16 | Montado do Pereiro | 32.7019 | −16.8839 | 1260.00 | 2080.40 | 6.54 | RG3 |
M18 | Ponta do Pargo | 32.8108 | −17.2589 | 339.00 | 817.80 | 40.68 | RG1 |
M19 | Porto do Moniz | 32.8492 | −17.1628 | 64.00 | 1234.20 | 52.22 | RG1 |
M20 | Queimadas | 32.7831 | −16.9022 | 881.00 | 2207.30 | 34.68 | RG1 |
M21 | Rabaçal | 32.7585 | −17.1311 | 1233.00 | 2005.30 | 88.95 | RG2 |
M22 | Ribeira Brava | 32.6740 | −17.0630 | 25.00 | 703.10 | 24.14 | RG2 |
M23 | Ribeiro Frio | 32.7309 | −16.8830 | 1167.00 | 2276.10 | 19.08 | RG3 |
M24 | Santo António | 32.6768 | −16.9459 | 525.00 | 929.80 | 10.83 | RG2 |
M25 | Santo da Serra | 32.7260 | −16.8170 | 660.00 | 1790.10 | 36.10 | RG1 |
M26 | Bom Sucesso | 32.6620 | −16.8960 | 291.00 | 719.60 | 6.98 | RG2 |
M27 | Santa Catarina | 32.6936 | −16.7731 | 49.00 | 660.30 | 7.75 | RG2 |
M28 | Cascalho | 32.8290 | −16.9250 | 430.00 | 1537.80 | 1.83 | RG1 |
M29 | Poiso e Posto Florestal | 32.7130 | −16.8870 | 1360.00 | 2134.50 | 4.60 | RG3 |
M30 | Vale da Lapa | 32.8270 | −16.9280 | 346.00 | 1882.30 | 5.32 | RG1 |
M32 | Lapa Branca-Curral das Freiras | 32.7190 | −16.9650 | 610.00 | 1360.00 | 22.46 | RG2 |
M34 | Serra de Água | 32.7420 | −17.0200 | 573.00 | 1971.00 | 24.35 | RG3 |
M35 | Chão dos Louros E. | 32.7570 | −17.0180 | 895.00 | 2509.70 | 9.55 | RG3 |
M37 | Lombo Furão | 32.7490 | −16.9110 | 994.00 | 2416.20 | 13.62 | RG3 |
M43 | Meia Serra | 32.7020 | −16.8700 | 115.00 | 2444.00 | 12.48 | RG3 |
M44 | Covão ETA | 32.6750 | −16.9630 | 510.00 | 930.30 | 22.46 | RG2 |
M45 | Encumeadas Casa EEM | 32.7540 | −17.0210 | 1010.00 | 2202.40 | 2.32 | RG3 |
M46 | Santa Quitéria ETA | 32.6610 | −16.9510 | 320.00 | 726.50 | 9.20 | RG2 |
M48 | ETA São Jorge | 32.8160 | −16.9260 | 500.00 | 2093.70 | 10.43 | RG1 |
M49 | Fajã Penedo | 32.7920 | −16.9600 | 620.00 | 2378.80 | 23.84 | RG3 |
M50 | Cabeço do Meio-Nogueira | 32.7357 | −16.8987 | 995.00 | 2477.90 | 4.08 | RG3 |
M51 | Ponta de São Jorge | 32.8337 | −16.9067 | 266.00 | 779.30 | 6.15 | RG1 |
M53 | Lido-Cais do Carvão | 32.6366 | −16.9365 | 20.00 | 340.10 | 4.99 | RG2 |
Category | Probability | SPI |
---|---|---|
No drought | 0.60 | ≥ and <0.84 |
Moderate drought | 0.20 | < |
Severe drought | 0.10 | < |
Extreme drought | 0.05 | < |
Copula Family | Mathematical Formulation | |
---|---|---|
Meta-elliptic | Gaussian | |
t-Student | ||
Clayton | ||
Archimedean | Frank | |
Gumbel |
Factor | SPI3 Unsmoothed | SPI3 with | SPI3 with | SPI6 Unsmoothed | SPI6 with | SPI6 with | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
%Var | %Var | %Var | %Var | %Var | %Var | %Var | %Var | %Var | %Var | %Var | %Var | |||||||
1 | 31.47 | 76.76 | 76.76 | 31.48 | 76.77 | 76.77 | 31.28 | 76.29 | 76.29 | 31.69 | 77.30 | 77.30 | 31.40 | 76.58 | 76.58 | 31.00 | 75.62 | 75.62 |
2 | 2.42 | 5.91 | 82.67 | 2.41 | 5.87 | 82.64 | 2.39 | 5.84 | 82.13 | 2.23 | 5.43 | 82.73 | 2.26 | 5.51 | 82.09 | 2.30 | 5.61 | 81.23 |
3 | 1.06 | 2.59 | 85.26 | 1.07 | 2.61 | 85.25 | 1.10 | 2.69 | 84.82 | 1.13 | 2.77 | 85.50 | 1.18 | 2.89 | 84.98 | 1.24 | 3.02 | 84.25 |
4 | 0.65 | 1.59 | 86.85 | 0.68 | 1.67 | 86.92 | 0.74 | 1.80 | 86.62 | 0.81 | 1.97 | 87.47 | 0.90 | 2.19 | 87.17 | 1.00 | 2.43 | 86.68 |
5 | 0.58 | 1.42 | 88.27 | 0.59 | 1.45 | 88.37 | 0.60 | 1.47 | 88.09 | 0.63 | 1.54 | 89.01 | 0.66 | 1.61 | 88.78 | 0.72 | 1.75 | 88.43 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
39 | 0.02 | 0.05 | 85.17 | 0.02 | 0.04 | 85.18 | 0.02 | 0.04 | 84.76 | 0.02 | 0.05 | 85.42 | 0.01 | 0.02 | 84.94 | 0.01 | 0.02 | 84.22 |
40 | 0.02 | 0.05 | 85.22 | 0.02 | 0.04 | 85.22 | 0.01 | 0.03 | 84.80 | 0.01 | 0.02 | 85.47 | 0.01 | 0.02 | 84.96 | 0.01 | 0.02 | 84.24 |
41 | 0.02 | 0.04 | 85.26 | 0.01 | 0.03 | 85.25 | 0.01 | 0.02 | 84.82 | 0.01 | 0.02 | 85.49 | 0.01 | 0.01 | 84.97 | 0.00 | 0.01 | 84.25 |
Region | Code | SPI3 Unsmoothed | SPI3 with | SPI3 with | SPI6 Unsmoothed | SPI6 with | SPI6 with | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | F1 | F2 | F3 | ||
RG1 | M07 | *0.75 | 0.41 | 0.39 | *0.75 | 0.41 | 0.39 | *0.74 | 0.40 | 0.41 | *0.73 | 0.41 | 0.43 | *0.71 | 0.40 | 0.45 | *0.70 | 0.40 | 0.47 |
M09 | *0.88 | 0.26 | 0.22 | *0.88 | 0.26 | 0.22 | *0.88 | 0.26 | 0.23 | *0.87 | 0.27 | 0.24 | *0.87 | 0.26 | 0.25 | *0.87 | 0.25 | 0.27 | |
M11 | *0.65 | 0.54 | 0.28 | *0.65 | 0.55 | 0.28 | *0.64 | 0.55 | 0.29 | *0.62 | 0.52 | 0.31 | *0.60 | 0.53 | 0.32 | *0.61 | 0.52 | 0.33 | |
M18 | *0.61 | 0.45 | 0.38 | *0.60 | 0.44 | 0.39 | *0.70 | 0.42 | 0.40 | *0.62 | 0.34 | 0.45 | *0.70 | 0.30 | 0.46 | *0.60 | 0.27 | 0.48 | |
M19 | *0.61 | 0.38 | 0.39 | *0.60 | 0.36 | 0.40 | *0.63 | 0.35 | 0.42 | *0.61 | 0.35 | 0.42 | *0.61 | 0.34 | 0.44 | *0.62 | 0.33 | 0.46 | |
M20 | *0.76 | 0.24 | 0.39 | *0.75 | 0.24 | 0.40 | *0.74 | 0.24 | 0.41 | *0.72 | 0.24 | 0.40 | *0.71 | 0.23 | 0.41 | *0.69 | 0.22 | 0.42 | |
M25 | *0.70 | 0.31 | 0.40 | *0.68 | 0.31 | 0.42 | *0.67 | 0.31 | 0.43 | *0.66 | 0.30 | 0.43 | *0.64 | 0.30 | 0.43 | *0.62 | 0.29 | 0.44 | |
M28 | *0.80 | 0.28 | 0.43 | *0.79 | 0.28 | 0.44 | *0.77 | 0.28 | 0.46 | *0.77 | 0.30 | 0.46 | *0.75 | 0.30 | 0.49 | *0.72 | 0.30 | 0.51 | |
M30 | *0.76 | 0.32 | 0.49 | *0.76 | 0.31 | 0.50 | *0.74 | 0.31 | 0.51 | *0.74 | 0.31 | 0.51 | *0.72 | 0.30 | 0.53 | *0.70 | 0.29 | 0.52 | |
M48 | *0.83 | 0.32 | 0.33 | *0.82 | 0.33 | 0.34 | *0.81 | 0.33 | 0.34 | *0.80 | 0.35 | 0.33 | *0.79 | 0.36 | 0.33 | *0.78 | 0.37 | 0.33 | |
M51 | *0.80 | 0.41 | 0.19 | *0.81 | 0.41 | 0.18 | *0.81 | 0.41 | 0.17 | *0.81 | 0.41 | 0.18 | *0.82 | 0.40 | 0.17 | *0.82 | 0.39 | 0.16 | |
RG2 | M03 | 0.38 | *0.65 | 0.48 | 0.37 | *0.65 | 0.48 | 0.36 | *0.64 | 0.48 | 0.38 | *0.64 | 0.50 | 0.37 | *0.64 | 0.49 | 0.37 | *0.64 | 0.48 |
M05 | 0.35 | *0.85 | 0.27 | 0.35 | *0.85 | 0.28 | 0.35 | *0.85 | 0.29 | 0.35 | *0.84 | 0.33 | 0.33 | *0.85 | 0.33 | 0.32 | *0.85 | 0.33 | |
M06 | 0.28 | *0.84 | 0.27 | 0.28 | *0.84 | 0.27 | 0.29 | *0.84 | 0.28 | 0.30 | *0.83 | 0.29 | 0.30 | *0.83 | 0.29 | 0.30 | *0.83 | 0.30 | |
M08 | 0.36 | *0.77 | 0.37 | 0.37 | *0.77 | 0.37 | 0.36 | *0.76 | 0.38 | 0.36 | *0.76 | 0.40 | 0.35 | *0.76 | 0.41 | 0.34 | *0.76 | 0.41 | |
M10 | 0.32 | *0.81 | 0.38 | 0.32 | *0.81 | 0.38 | 0.32 | *0.81 | 0.38 | 0.33 | *0.80 | 0.40 | 0.33 | *0.80 | 0.40 | 0.33 | *0.80 | 0.40 | |
M21 | 0.39 | *0.63 | 0.55 | 0.39 | *0.64 | 0.56 | 0.39 | *0.63 | 0.56 | 0.39 | *0.64 | 0.52 | 0.39 | *0.63 | 0.52 | 0.38 | *0.62 | 0.52 | |
M22 | 0.28 | *0.85 | 0.30 | 0.27 | *0.85 | 0.29 | 0.27 | *0.86 | 0.29 | 0.29 | *0.85 | 0.29 | 0.27 | *0.86 | 0.28 | 0.25 | *0.86 | 0.27 | |
M24 | 0.27 | *0.79 | 0.45 | 0.27 | *0.79 | 0.45 | 0.26 | *0.79 | 0.46 | 0.29 | *0.78 | 0.49 | 0.27 | *0.77 | 0.50 | 0.25 | *0.77 | 0.50 | |
M26 | 0.37 | *0.80 | 0.36 | 0.37 | *0.81 | 0.37 | 0.36 | *0.81 | 0.38 | 0.35 | *0.81 | 0.41 | 0.34 | *0.81 | 0.42 | 0.33 | *0.81 | 0.43 | |
M27 | 0.54 | *0.61 | 0.36 | 0.55 | *0.60 | 0.36 | 0.55 | *0.60 | 0.36 | 0.53 | *0.62 | 0.40 | 0.52 | *0.63 | 0.40 | 0.51 | *0.64 | 0.40 | |
M32 | 0.36 | *0.68 | 0.46 | 0.36 | *0.68 | 0.46 | 0.35 | *0.68 | 0.47 | 0.34 | *0.68 | 0.49 | 0.33 | *0.68 | 0.50 | 0.31 | *0.67 | 0.50 | |
M44 | 0.31 | *0.82 | 0.40 | 0.31 | *0.82 | 0.40 | 0.31 | *0.82 | 0.41 | 0.32 | *0.81 | 0.44 | 0.31 | *0.81 | 0.44 | 0.31 | *0.81 | 0.44 | |
M46 | 0.33 | *0.86 | 0.32 | 0.32 | *0.86 | 0.32 | 0.32 | *0.86 | 0.32 | 0.33 | *0.86 | 0.33 | 0.32 | *0.87 | 0.33 | 0.31 | *0.87 | 0.32 | |
M53 | 0.38 | *0.84 | 0.27 | 0.38 | *0.85 | 0.27 | 0.37 | *0.85 | 0.27 | 0.36 | *0.86 | 0.28 | 0.35 | *0.86 | 0.28 | 0.34 | *0.87 | 0.28 | |
RG3 | M01 | 0.42 | 0.45 | *0.68 | 0.41 | 0.44 | *0.69 | 0.39 | 0.42 | *0.71 | 0.39 | 0.38 | *0.73 | 0.37 | 0.36 | *0.75 | 0.34 | 0.34 | *0.76 |
M02 | 0.44 | 0.37 | *0.71 | 0.44 | 0.37 | *0.71 | 0.42 | 0.37 | *0.72 | 0.39 | 0.38 | *0.73 | 0.37 | 0.37 | *0.75 | 0.35 | 0.37 | *0.75 | |
M04 | 0.47 | 0.50 | *0.62 | 0.47 | 0.50 | *0.63 | 0.46 | 0.50 | *0.64 | 0.44 | 0.51 | *0.65 | 0.43 | 0.51 | *0.67 | 0.41 | 0.50 | *0.69 | |
M12 | 0.50 | 0.46 | *0.62 | 0.50 | 0.46 | *0.62 | 0.49 | 0.46 | *0.62 | 0.47 | 0.46 | *0.63 | 0.47 | 0.44 | *0.63 | 0.46 | 0.43 | *0.64 | |
M13 | 0.30 | 0.53 | *0.62 | 0.30 | 0.59 | *0.62 | 0.29 | 0.52 | *0.63 | 0.33 | 0.53 | *0.68 | 0.33 | 0.53 | *0.69 | 0.32 | 0.55 | *0.70 | |
M14 | 0.50 | 0.51 | *0.61 | 0.51 | 0.51 | *0.64 | 0.50 | 0.51 | *0.66 | 0.52 | 0.50 | *0.62 | 0.51 | 0.49 | *0.62 | 0.50 | 0.49 | *0.63 | |
M16 | 0.46 | 0.50 | *0.64 | 0.46 | 0.50 | *0.64 | 0.45 | 0.50 | *0.65 | 0.46 | 0.50 | *0.66 | 0.44 | 0.49 | *0.67 | 0.42 | 0.49 | *0.68 | |
M23 | 0.52 | 0.33 | *0.63 | 0.54 | 0.32 | *0.69 | 0.52 | 0.32 | *0.70 | 0.51 | 0.36 | *0.66 | 0.49 | 0.36 | *0.60 | 0.46 | 0.36 | *0.60 | |
M29 | 0.48 | 0.41 | *0.67 | 0.47 | 0.40 | *0.68 | 0.45 | 0.38 | *0.70 | 0.45 | 0.39 | *0.70 | 0.42 | 0.38 | *0.72 | 0.40 | 0.38 | *0.74 | |
M34 | 0.42 | 0.55 | *0.61 | 0.42 | 0.55 | *0.64 | 0.41 | 0.55 | *0.67 | 0.40 | 0.53 | *0.68 | 0.39 | 0.53 | *0.68 | 0.38 | 0.53 | *0.68 | |
M35 | 0.44 | 0.47 | *0.71 | 0.44 | 0.47 | *0.71 | 0.43 | 0.46 | *0.71 | 0.41 | 0.46 | *0.73 | 0.40 | 0.45 | *0.74 | 0.39 | 0.45 | *0.75 | |
M37 | 0.54 | 0.43 | *0.64 | 0.54 | 0.44 | *0.64 | 0.53 | 0.44 | *0.64 | 0.52 | 0.47 | *0.63 | 0.50 | 0.47 | *0.64 | 0.48 | 0.48 | *0.64 | |
M43 | 0.46 | 0.47 | *0.67 | 0.46 | 0.48 | *0.67 | 0.44 | 0.47 | *0.68 | 0.45 | 0.47 | *0.69 | 0.43 | 0.47 | *0.70 | 0.41 | 0.46 | *0.71 | |
M45 | 0.45 | 0.51 | *0.65 | 0.45 | 0.51 | *0.65 | 0.44 | 0.50 | *0.66 | 0.43 | 0.51 | *0.68 | 0.42 | 0.51 | *0.68 | 0.41 | 0.51 | *0.68 | |
M49 | 0.57 | 0.40 | *0.64 | 0.57 | 0.41 | *0.64 | 0.58 | 0.41 | *0.63 | 0.52 | 0.42 | *0.61 | 0.55 | 0.43 | *0.62 | 0.53 | 0.43 | *0.62 | |
M50 | 0.55 | 0.49 | *0.60 | 0.55 | 0.49 | *0.61 | 0.53 | 0.49 | *0.63 | 0.54 | 0.49 | *0.62 | 0.53 | 0.49 | *0.63 | 0.51 | 0.49 | *0.64 | |
Rotated = | 11.48 | 13.48 | 9.99 | 11.38 | 13.49 | 10.09 | 11.00 | 13.37 | 10.42 | 10.82 | 13.33 | 10.90 | 10.40 | 13.22 | 11.22 | 9.83 | 13.15 | 11.56 | |
%Var = | 85.26 | 85.25 | 84.82 | 85.49 | 84.97 | 84.25 |
Time Series | No. Events | Average | Kendall’s | (Month) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Month) | (Year) | Mean | Max | SD | CV | Mean | Max | SD | CV | ||||
SPI3-RG1 | 63 | 15.17 | 1.26 | 0.83 | 3.00 | 11 | 1.89 | 0.63 | 4.06 | 20.85 | 3.29 | 0.81 | |
SPI3-RG2 | 58 | 16.48 | 1.37 | 0.89 | 3.07 | 11 | 1.88 | 0.61 | 4.43 | 18.57 | 3.78 | 0.85 | |
SPI3-RG3 | 65 | 14.71 | 1.23 | 0.87 | 2.95 | 11 | 2.06 | 0.70 | 3.98 | 19.33 | 3.57 | 0.90 | |
SPI6-RG1 | 35 | 27.17 | 2.26 | 0.91 | 5.63 | 27 | 5.55 | 0.99 | 7.87 | 39.49 | 9.07 | 1.15 | |
SPI6-RG2 | 32 | 29.72 | 2.48 | 0.93 | 5.53 | 16 | 3.77 | 0.68 | 7.95 | 24.93 | 7.18 | 0.90 | |
SPI6-RG3 | 29 | 32.79 | 2.73 | 0.92 | 6.52 | 20 | 5.15 | 0.79 | 9.00 | 34.90 | 9.39 | 1.04 |
Time Series | Copula | Drought Duration, | Magnitude, | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Selected Family | Par | Kendall’s | AIC | Marginal | Par1 | Par2 | AIC | Marginal | Par1 | Par2 | AIC | |||
SPI3-RG1 | Survival Gumbel | 5.78 | 0.82 | −166.77 | log-normal | 0.91 | 0.62 | 238.06 | log-normal | 1.12 | 0.77 | 290.57 | ||
SPI3-RG2 | Survival Gumbel | 6.67 | 0.85 | −171.54 | log-normal | 0.96 | 0.58 | 216.12 | log-normal | 1.18 | 0.79 | 278.28 | ||
SPI3-RG3 | Survival Gumbel | 7.57 | 0.86 | −210.22 | log-normal | 0.88 | 0.62 | 242.15 | log-normal | 1.06 | 0.80 | 296.83 | ||
SPI6-RG1 | Survival Gumbel | 12.40 | 0.91 | −143.60 | log-normal | 1.34 | 0.88 | 188.58 | log-normal | 1.50 | 1.09 | 214.26 | ||
SPI6-RG2 | Clayton | 16.47 | 0.89 | −121.63 | Gamma | 2.22 | 0.40 | 168.00 | log-normal | 1.66 | 0.96 | 197.97 | ||
SPI6-RG3 | Gaussian | 0.98 | 0.89 | −104.17 | log-normal | 1.60 | 0.76 | 163.02 | log-normal | 1.78 | 0.91 | 184.06 |
Time Series | Start Date | (Month) | Univariate (Year) | Bivariate (Year) | Conditional (Year) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SPI3-RG1 | Sep 1943 | 11 | 20.85 | 148.5 | 201.7 | 115.7 | 327.9 | 52,293.8 | 38,496.1 | ||
Aug 1963 | 8 | 9.64 | 41.5 | 18.7 | 17.8 | 47.0 | 694.3 | 1544.0 | |||
Feb 1937 | 3 | 12.14 | 3.3 | 34.6 | 3.3 | 34.7 | 948.8 | 90.6 | |||
Sep 2011 | 6 | 9.66 | 16.0 | 18.8 | 13.4 | 24.4 | 361.6 | 308.6 | |||
May 2004 | 6 | 9.25 | 16.0 | 16.9 | 12.8 | 22.8 | 303.5 | 288.6 | |||
SPI3-RG2 | Jul 1947 | 11 | 14.63 | 215.5 | 47.7 | 47.0 | 230.8 | 8014.6 | 36,215.6 | ||
Jul 1950 | 8 | 18.57 | 52.5 | 98.8 | 48.0 | 119.9 | 8630.8 | 4582.3 | |||
Oct 2011 | 6 | 14.25 | 18.4 | 44.3 | 17.9 | 47.5 | 1531.7 | 637.7 | |||
Jul 1944 | 7 | 12.58 | 31.4 | 31.4 | 24.4 | 44.3 | 1011.6 | 1013.1 | |||
Sep 1982 | 6 | 10.89 | 18.4 | 21.6 | 15.8 | 27.0 | 424.6 | 361.9 | |||
SPI3-RG3 | Sep 2013 | 10 | 19.33 | 106.3 | 144.6 | 89.0 | 196.4 | 23,167.7 | 17,033.1 | ||
Jan 2010 | 11 | 14.85 | 160.2 | 61.7 | 59.2 | 179.5 | 9034.1 | 23,459.4 | |||
Aug 2007 | 8 | 12.48 | 44.2 | 37.0 | 31.2 | 57.0 | 1721.7 | 2052.5 | |||
Feb 1998 | 8 | 11.79 | 44.2 | 31.6 | 28.2 | 53.4 | 1377.4 | 1922.3 | |||
Mar 2012 | 5 | 11.55 | 10.0 | 29.9 | 9.9 | 30.5 | 744.1 | 248.3 | |||
SPI6-RG1 | Jun 2002 | 27 | 39.49 | 167.5 | 99.7 | 96.1 | 178.7 | 7867.7 | 13,218.2 | ||
Apr 1963 | 19 | 27.46 | 64.9 | 47.3 | 45.1 | 69.7 | 1456.5 | 1997.2 | |||
May 1943 | 12 | 30.54 | 23.1 | 58.3 | 23.1 | 58.5 | 1505.9 | 597.8 | |||
Dec 1993 | 14 | 21.46 | 31.9 | 30.2 | 27.2 | 36.1 | 481.6 | 508.4 | |||
May 1998 | 11 | 14.55 | 19.5 | 16.2 | 15.6 | 20.5 | 147.0 | 176.9 | |||
SPI6-RG2 | Jun 1960 | 16 | 19.52 | 147.3 | 29.3 | 28.0 | 193.6 | 2290.6 | 11,515.8 | ||
Apr 1947 | 14 | 24.27 | 75.8 | 45.5 | 35.9 | 136.2 | 2500.7 | 4166.6 | |||
May 1950 | 11 | 24.93 | 29.0 | 48.2 | 24.6 | 68.4 | 1329.3 | 799.6 | |||
Apr 1982 | 11 | 19.66 | 29.0 | 29.7 | 21.4 | 46.4 | 556.2 | 542.7 | |||
Jun 2011 | 9 | 19.75 | 15.8 | 30.0 | 14.9 | 33.5 | 405.1 | 213.1 | |||
SPI6-RG3 | Oct 2012 | 20 | 34.90 | 83.6 | 105.4 | 79.5 | 112.8 | 4353.9 | 3452.8 | ||
Nov 2010 | 19 | 34.57 | 72.0 | 102.9 | 70.2 | 106.8 | 4020.8 | 2814.0 | |||
Sep 2006 | 19 | 31.74 | 72.0 | 83.2 | 67.0 | 91.1 | 2772.6 | 2399.7 | |||
Nov 2014 | 13 | 17.43 | 26.9 | 23.2 | 22.1 | 28.5 | 241.3 | 280.6 | |||
Apr 1956 | 8 | 11.56 | 10.4 | 11.8 | 10.1 | 12.3 | 53.0 | 46.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, L.A.; Portela, M.M.; Pontes Filho, J.D.; Studart, T.M.d.C.; Santos, J.F.; Rodrigues, R. Jointly Modeling Drought Characteristics with Smoothed Regionalized SPI Series for a Small Island. Water 2019, 11, 2489. https://doi.org/10.3390/w11122489
Espinosa LA, Portela MM, Pontes Filho JD, Studart TMdC, Santos JF, Rodrigues R. Jointly Modeling Drought Characteristics with Smoothed Regionalized SPI Series for a Small Island. Water. 2019; 11(12):2489. https://doi.org/10.3390/w11122489
Chicago/Turabian StyleEspinosa, Luis Angel, Maria Manuela Portela, João Dehon Pontes Filho, Ticiana Marinho de Carvalho Studart, João Filipe Santos, and Rui Rodrigues. 2019. "Jointly Modeling Drought Characteristics with Smoothed Regionalized SPI Series for a Small Island" Water 11, no. 12: 2489. https://doi.org/10.3390/w11122489
APA StyleEspinosa, L. A., Portela, M. M., Pontes Filho, J. D., Studart, T. M. d. C., Santos, J. F., & Rodrigues, R. (2019). Jointly Modeling Drought Characteristics with Smoothed Regionalized SPI Series for a Small Island. Water, 11(12), 2489. https://doi.org/10.3390/w11122489