A Prediction–Correction Solver for Real-Time Simulation of Free-Surface Flows in River Networks
Abstract
:1. Introduction
1.1. Existing Implicit Models for River Networks
1.2. Objective
2. Methods
2.1. Governing Equations
2.2. Description of River Networks and Computational Grid
2.3. Numerical Formulation
2.3.1. Discretization of Governing Equations
2.3.2. Solution of Hydrodynamics at Junctions
2.3.3. Solution of Velocity–Pressure Coupling
2.4. Flowchart of the PCM Model
3. Results
3.1. Tests of River Networks with Regular Cross Sections
3.1.1. Test Conditions and Methods
3.1.2. Time-Step Sensitivity Study and Results
3.1.3. Comparison of PCM Model with LNS Model
3.2. Tests of Real Dendritic River Networks
3.2.1. Test Conditions and Methods
3.2.2. Test Results and Analysis
3.2.3. Comparison of PCM Model with HEC-RAS
3.3. Tests of Real Looped River Networks
3.3.1. Test Conditions and Methods
3.3.2. Test Results and Analysis
4. Discussion
4.1. Advantages of the PCM Model
4.2. Limitations of the PCM Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, S.H.; Jing, Z.; Yi, Y.J.; Wu, Y.; Zhao, Y. The dynamic capacity calculation method and the flood control ability of the Three Gorges Reservoir. J. Hydrol. 2017, 555, 361–370. [Google Scholar] [CrossRef]
- Dronkers, J.J. Tidal computations for rivers, coastal areas, and seas. J. Hydraul. Div. Proc. 1969, 95, 29–77. [Google Scholar]
- Sen, D.J.; Garg, N.K. Efficient algorithm for gradually varied flows in channel networks. J. Irrig. Drain Eng. 2002, 128, 351–357. [Google Scholar] [CrossRef]
- Zhu, D.J.; Chen, Y.C.; Wang, Z.Y.; Liu, Z.W. Simple, robust, and efficient algorithm for gradually varied subcritical flow simulation in general channel networks. J. Hydraul. Eng. 2011, 137, 766–774. [Google Scholar] [CrossRef]
- Islam, A.; Raghuwanshi, N.S.; Singh, R.; Sen, D.J. Comparison of gradually varied flow computation algorithms for open-channel network. J. Irrig. Drain Eng. 2005, 131, 457–465. [Google Scholar] [CrossRef]
- Choi, G.W.; Molinas, A. Simultaneous solution algorithm for channel networks modeling. Water Resour. Res. 1993, 29, 321–328. [Google Scholar] [CrossRef]
- Nguyen, Q.K.; Kawano, H. Simultaneous solution for flood routing in channel networks. J. Hydraul. Eng. 1995, 121, 744–750. [Google Scholar] [CrossRef]
- HEC (Hydrologic Engineering Center). River Analysis System, Hydraulics Reference Manual. (Version 4.1); Rep. No. CPD-69; US Army Corps of Engineers: Davis, CA, USA, 2010.
- Papadrakakis, M.; Bitzarakis, S. Domain decomposition PCG methods for serial and parallel processing. Adv. Eng. Softw. 1996, 25, 291–307. [Google Scholar] [CrossRef]
- Paz, R.R.; Storti, M.A. An interface strip preconditioner for domain decomposition methods: Application to hydrology. Int. J. Numer. Methods Eng. 2005, 62, 1873–1894. [Google Scholar] [CrossRef]
- Lv, M.Y.; Jiang, W.; Zhan, J.M. Study of treatment for linking conditions at junction points of river networks. Yellow River 2007, 29, 31–32. (In Chinese) [Google Scholar]
- Bai, W.; Taylor, R.E. Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition. Appl. Ocean Res. 2007, 29, 55–71. [Google Scholar] [CrossRef]
- Cai, X.; Pedersen, G.K.; Langtangen, H.P. A parallel multi-subdomain strategy for solving Boussinesq water wave equations. Adv. Water Resour. 2005, 28, 215–233. [Google Scholar] [CrossRef]
- Casulli, V.; Stelling, G.S. A semi-implicit numerical model for urban drainage systems. Int. J. Numer. Meth. Fluids 2013, 73, 600–614. [Google Scholar] [CrossRef]
- Casulli, V.; Zanolli, P. Iterative solutions of mildly nonlinear systems. J. Comput. Appl. Math. 2012, 236, 3937–3947. [Google Scholar] [CrossRef]
- Liggett, J.A.; Cunge, J.A. Numerical methods of solution of the unsteady flow equations. In Unsteady Flow in Open Channels; Mahmood, K., Yevjevich, V., Eds.; Water Resources Publication: Fort Collins, CO, USA, 1975; Volume I, Chapter 4. [Google Scholar]
- Hu, D.C.; Zhong, D.Y.; Zhang, H.W.; Wang, G.Q. Prediction–Correction Method for Parallelizing Implicit 2D Hydrodynamic Models I Scheme. J. Hydraul. Eng. 2015, 141, 04015014. [Google Scholar] [CrossRef]
- Hu, D.C.; Zhong, D.Y.; Zhu, Y.H.; Wang, G.Q. Prediction–Correction Method for Parallelizing Implicit 2D Hydrodynamic Models II Application. J. Hydraul. Eng. 2015, 141, 06015008. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Baptista, A.M.; Myers, E.P. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems, I. Formulation and skill assessment. Cont. Shelf Res. 2004, 24, 2187–2214. [Google Scholar] [CrossRef]
- Dimou, K. 3-D Hybrid Eulerian–Lagrangian/Particle Tracking Model for Simulating Mass Transport in Coastal Water Bodies. Ph.D. Thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 1992. [Google Scholar]
- Casulli, V.; Walters, R.A. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Meth. Fluids 2000, 32, 331–348. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers Waterways Experiment Station. CE-QUAL-RIV1: A Dynamic, One-Dimensional (Longitudinal) Water Quality Model for Streams: User’s Manual; Instruction Report EL-95-2; U.S. Army Corps of Engineers Waterways Experiment Station: Vicksburg, MS, USA, 1995.
- Goutal, N.; Lacombe, J.-M.; Zaoui, F.; El-Kadi-Adberrezzak, K. MASCARET: A 1-D open-souce software for flow hydrodynamic and water quality in open channel networks. In River Flow; Murillo, Ed.; Taylor & Francis Group: London, UK, 2012; pp. 1169–1174. [Google Scholar]
Branch Number | Length (m) | Bed Width (m) | Side Slope | Bed Slope | nm | Number of Reaches |
---|---|---|---|---|---|---|
1, 2, 8, 9 | 1500 | 10 | 1:1 | 0.00027 | 0.022 | 15 |
3, 4 | 3000 | 10 | 1:1 | 0.00047 | 0.025 | 30 |
5, 6, 7, 10 | 2000 | 10 | 1:1 | 0.0003 | 0.022 | 20 |
11 | 1200 | 10 | Vertical | 0.00033 | 0.022 | 12 |
12 | 3600 | 20 | Vertical | 0.00025 | 0.022 | 36 |
13 | 2000 | 20 | Vertical | 0.00025 | 0.022 | 20 |
14 | 2500 | 30 | Vertical | 0.00016 | 0.022 | 25 |
Δt | Stability | Accuracy | Efficiency | |||||
---|---|---|---|---|---|---|---|---|
RCFL1>1 | RCFL2>10 | Large-u | EP | EP vs. L | EQpeak | PCM | Ref. [4] | |
(%) | (%) | quantity | (cm) | (m) | (%) | (s) | (s) | |
90 | 3.9 | 21.8 | None | 5.837 | > | 2.55 | 0.668 | 3.023 |
60 | 2.6 | 7.1 | None | 1.729 | ≈ | 1.62 | 0.754 | - |
45 | 0.0 | 1.0 | None | 0.730 | < | 1.42 | 0.970 | - |
30 | 0.0 | 0.0 | None | 0.216 | < | 1.27 | 1.313 | - |
15 | 0.0 | 0.0 | None | 0.027 | < | 1.19 | 2.520 | - |
Δt | Stability | Accuracy | Efficiency | ||||||
---|---|---|---|---|---|---|---|---|---|
RCFL1>1 | RCFL2>10 | Large-u | EQ1 | EZ1 | I3-3220 | E5-2697 | |||
(%) | (%) | Quantity | (%) | (m) | tPCM (s) | tHec (s) | tPCM (s) | tHec (s) | |
600 | 0.3 | 5.8 | None | 0.6–0.9 | 0.022–0.029 | 54.74 | 69.72 | 47.54 | 66.05 |
900 | 3.3 | 19.1 | None | 0.6–0.9 | 0.022–0.029 | 40.14 | 48.50 | 33.59 | 45.19 |
1200 | 9.5 | 47.4 | None | 0.6–0.9 | 0.022–0.029 | 31.58 | 37.85 | 26.81 | 34.70 |
Δt | Stability | Accuracy | Efficiency | |||||
---|---|---|---|---|---|---|---|---|
RCFL1>1 | RCFL2>10 | Large-u | EQ2 | EZ2 | Em | ti3-3220 | tE5-2697 | |
(%) | (%) | Quantity | (%) | (m) | (s) | (s) | ||
600 | 5.5 | 1.0 | None | 0.13–4.92 | 0.065–0.234 | 2.2 × 10−4 | 51.78 | 40.71 |
900 | 40.5 | 10.5 | None | 0.33–4.94 | 0.068–0.233 | 2.7 × 10−4 | 38.13 | 28.71 |
1200 | 69.8 | 49.6 | None | 0.46–4.83 | 0.073–0.237 | 2.8 × 10−4 | 30.31 | 23.07 |
1440 | 80.9 | 70.3 | None | 0.52–4.76 | 0.077–0.247 | 4.6 × 10−4 | 26.58 | 20.26 |
1800 | 89.1 | 88.6 | A few | 0.64–4.60 | 0.083–0.262 | 3.3 × 10−3 | 23.31 | 17.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Lu, C.; Yao, S.; Yuan, S.; Zhu, Y.; Duan, C.; Liu, Y. A Prediction–Correction Solver for Real-Time Simulation of Free-Surface Flows in River Networks. Water 2019, 11, 2525. https://doi.org/10.3390/w11122525
Hu D, Lu C, Yao S, Yuan S, Zhu Y, Duan C, Liu Y. A Prediction–Correction Solver for Real-Time Simulation of Free-Surface Flows in River Networks. Water. 2019; 11(12):2525. https://doi.org/10.3390/w11122525
Chicago/Turabian StyleHu, Dechao, Chengwei Lu, Shiming Yao, Shuai Yuan, Yonghui Zhu, Chengkun Duan, and Yi Liu. 2019. "A Prediction–Correction Solver for Real-Time Simulation of Free-Surface Flows in River Networks" Water 11, no. 12: 2525. https://doi.org/10.3390/w11122525
APA StyleHu, D., Lu, C., Yao, S., Yuan, S., Zhu, Y., Duan, C., & Liu, Y. (2019). A Prediction–Correction Solver for Real-Time Simulation of Free-Surface Flows in River Networks. Water, 11(12), 2525. https://doi.org/10.3390/w11122525