Defining Coastal Resilience
Abstract
:1. Introduction
2. Origins of Resilience Theory
3. Resilience in Natural Coastal Environments
3.1. Barrier Islands And Beaches
3.2. Coastal Dunes
3.3. Tidal Wetlands
3.4. Coral Systems
4. Resilience and Resistance
5. Resilience in Coastal Human–Environmental Systems
6. Toward a Working Definition of Coastal Resilience
7. From Definitions to Frameworks and Metrics
8. Synthesis and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lazarus, E.D. Toward a global classification of coastal anthromes. Land 2017, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Environment Agency. Draft National Flood and Coastal Erosion Risk Management Strategy for England—Consultation Document. Available online: https://consult.environment-agency.gov.uk/fcrm/national-strategy-public/user_uploads/draft-national-fcerm-strategy-for-england---consultation-document.pdf (accessed on 20 October 2019).
- Beatley, T. Planning for Coastal Resilience: Best Practices for Calamitous Times; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Van Slobbe, E.; de Vriend, H.J.; Aarninkhof, S.; Lulofs, K.; de Vries, M.; Dircke, P. Building with nature: In search of resilient storm surge protection strategies. Nat. Hazards 2013, 65, 947–966. [Google Scholar] [CrossRef]
- Aerts, J.C.; Botzen, W.W.; Emanuel, K.; Lin, N.; De Moel, H.; Michel-Kerjan, E.O. Evaluating flood resilience strategies for coastal megacities. Science 2014, 344, 473–475. [Google Scholar] [CrossRef] [PubMed]
- National Hurricane Center (USA), National Oceanic and Atmospheric Administration. Costliest US Tropical Cyclones Tables Updated. Available online: https://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf (accessed on 20 October 2019).
- Environment Agency. The Costs and Impacts of the Winter 2013 to 2014 Floods. Report SC140025/R1. Available online: https://www.gov.uk/government/publications/the-costs-and-impacts-of-the-winter-2013-to-2014-floods (accessed on 20 October 2019).
- Environment Agency. Floods of Winter 2015 to 2016: Estimating the Costs. Available online: https://www.gov.uk/government/publications/floods-of-winter-2015-to-2016-estimating-the-costs (accessed on 20 October 2019).
- Barbier, E.B. Progress and challenges in valuing coastal and marine ecosystem services. Rev. Environ. Econ. Policy 2011, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- Cheong, S.M.; Silliman, B.; Wong, P.P.; Van Wesenbeeck, B.; Kim, C.K.; Guannel, G. Coastal adaptation with ecological engineering. Nat. Clim. Chang. 2013, 3, 787–791. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.; Marzeion, B.; Fettweis, X.; Ionescu CLevermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temmerman, S.; Kirwan, M.L. Building land with a rising sea. Science 2015, 349, 588–589. [Google Scholar] [CrossRef]
- Chaffin, B.C.; Scown, M. Social-ecological resilience and geomorphic systems. Geomorphology 2018, 305, 221–230. [Google Scholar] [CrossRef]
- Piégay, H.; Chabot, A.; Le Lay, Y.F. Some comments about resilience: From cyclicity to trajectory, a shift in living and non-living system theory. Geomorphology 2018. [Google Scholar] [CrossRef]
- Tooth, S. The geomorphology of wetlands in drylands: Resilience, nonresilience, or …? Geomorphology 2018, 305, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.J.T.; Nicholls, R.J.; Thomalla, F. Resilience to natural hazards: How useful is this concept? Glob. Environ. Chang. B Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Van Dongeren, A.; Ciavola, P.; Martinez, G.; Viavattene, C.; Bogaard, T.; Ferreira, O.; Higgins, R.; McCall, R. Introduction to RISC-KIT: Resilience-increasing strategies for coasts. Coast. Eng. 2018, 134, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Long, A.J.; Waller, M.P.; Plater, A.J. Coastal resilience and late Holocene tidal inlet history: The evolution of Dungeness Foreland and the Romney Marsh depositional complex (UK). Geomorphology 2006, 82, 309–330. [Google Scholar] [CrossRef] [Green Version]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Flood, S.; Schechtman, J. The rise of resilience: Evolution of a new concept in coastal planning in Ireland and the US. Ocean Coast. Manag. 2014, 102, 19–31. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.; Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, J.; Wan, J.; Jia, H. Resilience to natural hazards: A geographic perspective. Nat. Hazards 2010, 53, 21–41. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Tanner, T.; Lewis, D.; Wrathall, D.; Bronen, R.; Cradock-Henry, N.; Huq, S.; Lawless, C.; Nawrotzki, R.; Prasad, V.; Rahman, M.A.; et al. Livelihood resilience in the face of climate change. Nat. Clim. Chang. 2015, 1, 23–26. [Google Scholar] [CrossRef]
- Nathan, A.J. China’s changing of the guard: Authoritarian resilience. J. Democr. 2003, 143, 6–17. [Google Scholar] [CrossRef]
- Rose, A.; Krausman, E. An economic framework for the development of a resilience index for business recovery. Int. J. Disaster Risk Reduct. 2013, 5, 73–83. [Google Scholar] [CrossRef]
- Wohl, E.; Gerlak, A.K.; Poff, N.L.; Chin, A. Common core themes in geomorphic, ecological, and social systems. Environ. Manag. 2014, 53, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Resilience of the resilience debate. Nat. Sustain. 2019, 2, 887. [CrossRef]
- Holling, C.S. Engineering resilience versus ecological resilience. In Engineering within Ecological Constraints; Schulze, P., Ed.; National Academy of Engineering: Washington, DC, USA, 1996; pp. 31–44. [Google Scholar]
- Boeing, G. Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems 2016, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Donohue, I.; Petchey, O.L.; Montoya, J.M.; Jackson, A.L.; McNally, L.; Viana, M.; Emmerson, M.C. On the dimensionality of ecological stability. Ecol. Lett. 2013, 16, 421–429. [Google Scholar] [CrossRef]
- National Research Council. Landscapes on the Edge: New Horizons for Research on Earth’s Surface; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Beisner, B.E.; Haydon, D.T.; Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 2003, 1, 376–382. [Google Scholar] [CrossRef]
- Schröder, A.; Persson, L.; De Roos, A.M. Direct experimental evidence for alternative stable states: A review. Oikos 2005, 110, 3–19. [Google Scholar] [CrossRef]
- Scheffer, M. Critical Transitions in Nature and Society; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Perron, J.T.; Fagherazzi, S. The legacy of initial conditions in landscape evolution. Earth Surf. Process. Landf. 2012, 37, 52–63. [Google Scholar] [CrossRef]
- McGlathery, K.J.; Reidenbach, M.A.; D’Odorico, P.; Fagherazzi, S.; Pace, M.L.; Porter, J.H. Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography 2013, 26, 220–231. [Google Scholar] [CrossRef]
- Braswell, A.E.; Heffernan, J.B. Coastal wetland distributions: Delineating domains of macroscale drivers and local feedbacks. Ecosystems 2019, 22, 1–15. [Google Scholar] [CrossRef]
- Kombiadou, K.; Costas, S.; Carrasco, A.R.; Plomaritis, T.A.; Ferreira Ó Matias, A. Bridging the gap between resilience and geomorphology of complex coastal systems. Earth-Sci. Rev. 2019, 198. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Trueba, J.; Ashton, A.D. Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model. J. Geophys. Res. Earth 2014, 119, 779–801. [Google Scholar] [CrossRef] [Green Version]
- Masselink, G.; van Heteren, S. Response of wave-dominated and mixed-energy barriers to storms. Mar. Geol. 2014, 352, 321–347. [Google Scholar] [CrossRef] [Green Version]
- Mulhern, J.S.; Johnson, C.L.; Martin, J.M. Is barrier island morphology a function of tidal and wave regime? Mar. Geol. 2017, 387, 74–84. [Google Scholar] [CrossRef]
- Leatherman, S.P. Quantification of Overwash Processes. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA, 1976. [Google Scholar]
- Stéphan, P.; Suanez, S.; Fichaut, B. Long-, mid- and short-term evolution of coastal gravel spits of Brittany, France. In Sand and Gravel Spits; Randazzo, N., Jackson, D., Cooper, A., Eds.; Coastal Research Library; Springer: Basel, Switzerland, 2015; Volume 12, pp. 275–288. [Google Scholar]
- Plant, N.G.; Todd Holland, K.; Holman, R.A. A dynamical attractor governs beach response to storms. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- List, J.H.; Farris, A.S.; Sullivan, C. Reversing storm hotspots on sandy beaches: Spatial and temporal characteristics. Mar. Geol. 2006, 226, 261–279. [Google Scholar] [CrossRef]
- Phillips, M.S.; Harley, M.D.; Turner, I.L.; Splinter, K.D.; Cox, R.J. Shoreline recovery on wave-dominated sandy coastlines: The role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 2017, 385, 146–159. [Google Scholar] [CrossRef]
- Phillips, M.S.; Blenkinsopp, C.E.; Splinter, K.D.; Harley, M.D.; Turner, I.L. Modes of berm and beachface recovery following storm reset: Observations using a continuously scanning lidar. J. Geophys. Res. Earth 2019, 124, 720–736. [Google Scholar] [CrossRef]
- Kuriyama, Y.; Yanagishima, S. Regime shifts in the multi-annual evolution of a sandy beach profile. Earth Surf. Process. Landf. 2018, 43, 3133–3141. [Google Scholar] [CrossRef]
- Barnard, P.L.; Hoover, D.; Hubbard, D.M.; Snyder, A.; Ludka, B.C.; Allan, J.; Kaminsky, G.M.; Ruggiero, P.; Gallien, T.W.; Gabel LMcCandless, D. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 2017, 8, 14365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, S.M.; Spencer, T.; Christie, E.K. Storm impacts and shoreline recovery: Mechanisms and controls in the southern North Sea. Geomorphology 2017, 283, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Castelle, B.; Bujan, S.; Ferreira, S.; Dodet, G. Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast. Mar. Geol. 2017, 385, 41–55. [Google Scholar] [CrossRef]
- Houser, C.; Wernette, P.; Rentschlar, E.; Jones, H.; Hammond, B.; Trimble, S. Post-storm beach and dune recovery: Implications for barrier island resilience. Geomorphology 2015, 234, 56–63. [Google Scholar] [CrossRef]
- Cohn, N.; Ruggiero, P.; de Vries, S.; Kaminsky, G.M. New insights on coastal foredune growth: The relative contributions of marine and aeolian processes. Geophys. Res. Lett. 2018, 45, 4965–4973. [Google Scholar] [CrossRef]
- Cohn, N.; Hoonhout, B.M.; Goldstein, E.B.; De Vries, S.; Moore, L.J.; Durán Vinent, O.; Ruggiero, P. Exploring marine and aeolian controls on coastal foredune growth using a coupled numerical model. J. Mar. Sci. Eng. 2019, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Maun, M.A. Adaptations of plants to burial in coastal sand dunes. Can. J. Bot. 1998, 76, 713–738. [Google Scholar] [CrossRef]
- Maun, M.A.; Perumal, J. Zonation of vegetation on lacustrine coastal dunes: Effects of burial by sand. Ecol. Lett. 1999, 2, 14–18. [Google Scholar] [CrossRef]
- Gilbert, M.E.; Ripley, B.S. Resolving the differences in plant burial responses. Austral Ecol. 2010, 35, 53–59. [Google Scholar] [CrossRef]
- Durán, O.; Moore, L.J. Vegetation controls on the maximum size of coastal dunes. Proc. Natl. Acad. Sci. USA 2013, 110, 17217–17222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolner, C.W.; Moore, L.J.; Young, D.R.; Brantley, S.T.; Bissett, S.N.; McBride, R.A. Ecomorphodynamic feedbacks and barrier island response to disturbance: Insights from the Virginia Barrier Islands, Mid-Atlantic Bight, USA. Geomorphology 2013, 199, 115–128. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.; Odériz, I.; Mendoza, E.; Feagin, R. Response of vegetated dune-beach systems to storm conditions. Coast. Eng. 2016, 109, 53–62. [Google Scholar] [CrossRef]
- Stallins, J.A.; Corenblit, D. Interdependence of geomorphic and ecologic resilience properties in a geographic context. Geomorphology 2018, 305, 76–93. [Google Scholar] [CrossRef]
- Durán, O.; Moore, L.J. Barrier island bistability induced by biophysical interactions. Nat. Clim. Chang. 2015, 5, 158–162. [Google Scholar] [CrossRef]
- Goldstein, E.B.; Moore, L.J. Stability and bistability in a one-dimensional model of coastal foredune height. J. Geophys. Res. Earth 2016, 121, 964–977. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, E.B.; Moore, L.J.; Durán Vinent, O. Lateral vegetation growth rates exert control on coastal foredune hummockiness and coalescing time. Earth Surf. Dyn. 2017, 5, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Stallins, J.A. Stability domains in barrier island dune systems. Ecol. Complex. 2005, 2, 410–430. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Hensel, P.F.; Spencer, T.; Reed, D.J.; McKee, K.L.; Saintilan, N. Coastal wetland vulnerability to relative sea-level rise: Wetland elevation trends and process controls. In Wetlands and Natural Resource Management; Verhoeven, J.T.S., Beltman, B., Bobbink, R., Whingham, D.F., Eds.; Springer: Berlin, Germany, 2016; pp. 271–292. [Google Scholar]
- Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D’Alpaos, A.; van de Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 2012, 50, 1–28. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Ganju, N.K.; Defne, Z.; Kirwan, M.L.; Fagherazzi, S.; D’alpaos, A.; Carniello, L. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorne, K.; MacDonald, G.; Guntenspergen, G.; Ambrose, R.; Buffington, K.; Dugger, B.; Freeman, C.; Janousek, C.; Brown, L.; Rosencranz, J.; et al. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 2018, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonardi, N.; Carnacina, I.; Donatelli, C.; Ganju, N.K.; Plater, A.J.; Schuerch, M.; Temmerman, S. Dynamic interactions between coastal storms and salt marshes: A review. Geomorphology 2018, 301, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Woodroffe, C.D. Coasts: Form, Process and Evolution; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Lessa, G.; Masselink, G. Evidence of a mid-Holocene sea-level highstand from the sedimentary record of a macrotidal barrier and paleoestuary system in northwestern Australia. J. Coast. Res. 2006, 22, 100–112. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Ward, G.A.; Smith, T.J., III; Whelan, K.R.T.; Doyle, T.W. Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance. Hydrobiologia 2006, 569, 517–527. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef] [Green Version]
- Fagherazzi, S.; Carniello, L.; D’Alpaos, L.; Defina, A. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proc. Natl. Acad. Sci. USA 2006, 103, 8337–8341. [Google Scholar] [CrossRef] [Green Version]
- Marani, M.; D’Alpaos, A.; Lanzoni, S.; Carniello, L.; Rinaldo, A. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Marani, M.; D’Alpaos, A.; Lanzoni, S.; Carniello, L.; Rinaldo, A. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. J. Geophys. Res. Earth 2010, 115. [Google Scholar] [CrossRef]
- Mariotti, G.; Fagherazzi, S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J. Geophys. Res. Earth 2010, 115. [Google Scholar] [CrossRef]
- Toomey, M.; Ashton, A.D.; Perron, J.T. Profiles of ocean island coral reefs controlled by sea-level history and carbonate accumulation rates. Geology 2013, 41, 731–734. [Google Scholar] [CrossRef]
- Ortiz, A.C.; Ashton, A.D. Exploring carbonate reef flat hydrodynamics and potential formation and growth mechanisms for motu. Mar. Geol. 2019, 412, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Kench, P.S.; Ford, M.R.; Owen, S.D. Patterns of island change and persistence offer alternate adaptation pathways for atoll nations. Nat. Commun. 2018, 9, 605. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.D. Changes, perturbations, and responses in geomorphic systems. Prog. Phys. Geogr. 2009, 33, 17–30. [Google Scholar] [CrossRef]
- Phillips, J.D.; van Dyke, C. Principles of geomorphic disturbance and recovery in response to storms. Earth Surf. Process. Landf. 2016, 41, 971–979. [Google Scholar] [CrossRef]
- Phillips, J.D. Coastal wetlands, sea level, and the dimensions of geomorphic resilience. Geomorphology 2018, 305, 173–184. [Google Scholar] [CrossRef]
- King, C.A.M. Feedback relationships in geomorphology. Geogr. Ann. A 1970, 52, 147–159. [Google Scholar] [CrossRef]
- Jerolmack, D.J.; Paola, C. Shredding of environmental signals by sediment transport. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, E.D.; Harley, M.D.; Blenkinsopp, C.E.; Turner, I.L. Environmental signal shredding on sandy coastlines. Earth Surf. Dyn. 2019, 7, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Werner, B.T.; Fink, T.M. Beach cusps as self-organized patterns. Science 1993, 260, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Ashton, A.; Murray, A.B.; Arnoult, O. Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature 2001, 414, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Coco, G.; Murray, A.B. Patterns in the sand: From forcing templates to self-organization. Geomorphology 2007, 91, 271–290. [Google Scholar] [CrossRef]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter Rockstrom, J. Social-ecological resilience to coastal disasters. Science 2005, 319, 1036–1039. [Google Scholar] [CrossRef] [Green Version]
- Grafton, R.Q.; Doyen, L.; Béné, C.; Borgomeo, E.; Brooks, K.; Chu, L.; Cumming, G.S.; Dixon, J.; Dovers, S.; Garrick, D.; et al. Realizing resilience for decision-making. Nat. Sustain. 2019, 2, 907–913. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Klein, R.J.T.; Smit, M.J.; Goosen, H.; Hulsbergen, C.H. Resilience and vulnerability: Coastal dynamics or Dutch dikes? Geogr. J. 1998, 164, 259–268. [Google Scholar] [CrossRef]
- Mileti, D. Disasters by Design: A Reassessment of Natural Hazards in the United States; Joseph Henry Press: Washington, DC, USA, 1999. [Google Scholar]
- Werner, B.T.; McNamara, D.E. Dynamics of coupled human-landscape systems. Geomorphology 2007, 91, 393–407. [Google Scholar] [CrossRef]
- City of New York. A Stronger, More Resilient New York. Available online: https://www.nycedc.com/resource/stronger-more-resilient-new-york (accessed on 20 October 2019).
- Van Holm, E.J.; Wyczalkowski, C.K. Gentrification in the wake of a hurricane: New Orleans after Katrina. Urban Stud. 2019, 56, 2763–2778. [Google Scholar] [CrossRef]
- Gaul, G.M. The Geography of Risk; Macmillan: London, UK, 2019. [Google Scholar]
- Steneck, R.S.; Hughes, T.P.; Cinner, J.E.; Adger, W.N.; Arnold, S.N.; Berkes, F.; Boudreau, S.A.; Brown, K.; Folke, C.; Gunderson, L.; et al. Creation of a gilded trap by the high economic value of the Maine lobster fishery. Conserv. Biol. 2011, 25, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.C.; Klein Goldewijk, K.; Siebert, S.; Lightman, D.; Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 2010, 19, 589–606. [Google Scholar] [CrossRef]
- Lazarus, E.D. Threshold effects of hazard mitigation in coastal human-environmental systems. Earth Surf. Dyn. 2014, 2, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- McNamara, D.E.; Werner, B.T. Coupled barrier island-resort model: 1. Emergent instabilities induced by strong human-landscape interactions. J. Geophys. Res. Earth 2008, 113. [Google Scholar] [CrossRef]
- McNamara, D.E.; Werner, B.T. Coupled barrier island-resort model: 2. Tests and predictions along Ocean City and Assateague Island National Seashore, Maryland. J. Geophys. Res. Earth 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, E.D.; McNamara, D.E.; Smith, M.D.; Gopalakrishnan, S.; Murray, A.B. Emergent behavior in a coupled economic and coastline model for beach nourishment. Nonlinear Process. Geophys. 2011, 18, 989–999. [Google Scholar] [CrossRef]
- Lazarus, E.D.; Ellis, M.A.; Murray, A.B.; Hall, D.M. An evolving research agenda for human-coastal systems. Geomorphology 2016, 256, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, S.B.; Lazarus, E.D.; Limber, P.W.; Goldstein, E.B.; Thorpe, C.; Ballinger, R.C. Indications of a positive feedback between coastal development and beach nourishment. Earths Future 2016, 4, 626–635. [Google Scholar] [CrossRef]
- Lazarus, E.D.; Limber, P.W.; Goldstein, E.B.; Dodd, R.; Armstrong, S.B. Building back bigger in hurricane strike zones. Nat. Sustain. 2018, 1, 759–762. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, S.B.; Lazarus, E.D. Masked shoreline erosion at large spatial scales as a collective effect of beach nourishment. Earths Future 2019, 7, 74–84. [Google Scholar] [CrossRef]
- Burby, R.J. Hurricane Katrina and the paradoxes of government disaster policy: Bringing about wise governmental decisions for hazardous areas. Am. Acad. Political Soc. Sci. 2006, 604, 171–191. [Google Scholar] [CrossRef] [Green Version]
- McNamara, D.E.; Keeler, A. A coupled physical and economic model of the response of coastal real estate to climate risk. Nat. Clim. Chang. 2013, 3, 559–562. [Google Scholar] [CrossRef]
- Keeler, A.G.; McNamara, D.E.; Irish, J.L. Responding to sea level rise: Does short-term risk reduction inhibit successful long-term adaptation? Earths Future 2018, 6, 618–621. [Google Scholar] [CrossRef] [Green Version]
- Kabat, P.; Fresco, L.O.; Stive, M.J.; Veerman, C.P.; Van Alphen, J.S.; Parmet, B.W.; Hazeleger, W.; Katsman, C.A. Dutch coasts in transition. Nat. Geosci. 2009, 2, 450–452. [Google Scholar] [CrossRef]
- Bernstein, A.; Gustafson, M.T.; Lewis, R. Disaster on the horizon: The price effect of sea level rise. J. Financ. Econ. 2019. [Google Scholar] [CrossRef]
- Meadows, D.; Randers, J. The Limits to Growth: The 30-Year Update; Routledge: Abingdon, UK, 2012. [Google Scholar]
- Turner, G.M. A comparison of The Limits to Growth with 30 years of reality. Glob. Environ. Chang. 2008, 18, 397–411. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Beaches and dunes of human-altered coasts. Prog. Phys. Geogr. 1994, 18, 497–516. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Beaches and Dunes of Developed Coasts; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Smith, M.D.; Slott, J.M.; McNamara, D.; Murray, A.B. Beach nourishment as a dynamic capital accumulation problem. J. Environ. Econ. Manag. 2009, 58, 58–71. [Google Scholar] [CrossRef]
- Godschalk, D.R.; Brower, D.J.; Beatley, T. Catastrophic Coastal Storms: Hazard Mitigation and Development Management; Duke University Press: Durham, NC, USA, 1989. [Google Scholar]
- Suding, K.; Higgs, E.; Palmer, M.; Callicott, J.B.; Anderson, C.B.; Baker, M.; Gutrich, J.J.; Hondula, K.L.; LaFevor, M.C.; Larson, B.M.; et al. Committing to ecological restoration. Science 2015, 348, 638–640. [Google Scholar] [CrossRef] [Green Version]
- Nordstrom, K. Beach and Dune Restoration; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Nordstrom, K. Beach nourishment and coastal habitats: Research needs to improve compatibility. Restor. Ecol. 2005, 13, 215–222. [Google Scholar] [CrossRef]
- Jackson, N.L.; Nordstrom, K.F. Aeolian sediment transport and landforms in managed coastal systems: A review. Aeolian Res. 2011, 3, 181–196. [Google Scholar] [CrossRef]
- Arens, S.M.; Geelen, L.H.W.T. Dune landscape rejuvenation by intended destabilisation in the Amsterdam water supply dunes. J. Coast. Res. 2006, 22, 1094–1107. [Google Scholar] [CrossRef]
- Leege, L.M.; Kilgore, J.S. Recovery of foredune and blowout habitats in a freshwater dune following removal of invasive Austrian Pine (Pinus nigra). Restor. Ecol. 2014, 22, 641–648. [Google Scholar] [CrossRef]
- Konlechner, T.M.; Hilton, M.; Arens, S. Transgressive dune development following deliberate de-vegetation for dune restoration in The Netherlands and New Zealand. Dyn. Environ. 2014, 33, 141–154. [Google Scholar]
- Ruessink, B.G.; Arens, S.M.; Kuipers, M.; Donker, J.J.A. Coastal dune dynamics in response to excavated foredune notches. Aeolian Res. 2018, 31, 3–17. [Google Scholar] [CrossRef]
- Walker, I.J.; Eamer, J.B.R.; Darke, I.B. Assessing significant geomorphic changes and effectiveness of dynamic restoration in a coastal dune ecosystem. Geomorphology 2013, 119, 192–204. [Google Scholar] [CrossRef]
- Masselink, G.; Hanley, M.; Halwyn, A.C.; Blake, W.; Kingston, K.; Newton, T.; Williams, M. Evaluation of salt marsh restoration by means of self-regulating tidal gate: Avon Estuary, south Devon, UK. Ecol. Eng. 2017, 106, 174–190. [Google Scholar] [CrossRef]
- Smith, J.A.M.; Hafner, S.F.; Niles, L.J. The impact of past management practices on tidal marsh resilience to sea level rise in the Delaware Estuary. Ocean Coast. Manag. 2017, 149, 33–41. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Tian, B.; Huang, Y.; Zhou, Y.; Zhang, T. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuar. Coast. Shelf Sci. 2018, 210, 153–161. [Google Scholar] [CrossRef]
- Brunsden, D.; Thornes, J.B. Landscape sensitivity and change. Trans. Inst. Br. Geogr. 1979, 4, 463–484. [Google Scholar] [CrossRef] [Green Version]
- Werner, B.T. Modeling landforms as self-organized, hierarchical dynamical systems. In Prediction in Geomorphology; Wilcock, P.R., Iverson, R.M., Eds.; American Geophysical Union Geophysical Monograph Series, 135; American Geophysical Union: Washington, DC, USA, 2003; pp. 133–150. [Google Scholar]
- Bijlsma, L.; Ehler, C.N.; Klein, R.J.T.; Kulshrestha, S.M.; McLean, R.F.; Mimura, N.; Nicholls, R.J.; Nurse, L.A.; Perez Nieto, H.; Stakhiv, E.Z.; et al. Coastal zones and small islands. In Impacts, Adaptations and Mitigation of Climate Change. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Watson, R.T., Zinyowera, M.C., Moss, R.H., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 289–324. [Google Scholar]
- EUROSION. Available online: http://www.eurosion.org/ (accessed on 20 October 2019).
- European Commission. An EU Strategy on Adaptation to Climate Change: Climate Change Adaptation, Coastal and Marine Issues. Available online: http://ec.europa.eu/clima/policies/adaptation/what/docs/swd_2013_133_en.pdf (accessed on 20 October 2019).
- Baan, P.J.A.; Hulsbergen, C.H.; Marchand, M. Veerkracht van de Kust-Ontwikkeling en Operationalisering van een ‘Veerkrachtmeter’; Publ. Z2136; Delft Waterloopkundig Laboratorium: Delft, The Netherlands, 1997. [Google Scholar]
- Klein, R.J.; Nicholls, R.J. Assessment of coastal vulnerability to climate change. Ambio 1999, 28, 182–187. [Google Scholar]
- Besset, M.; Anthony, E.J.; Dussouillez, P.; Goichot, M. The impact of Cyclone Nargis on the Ayeyarwady (Irrawaddy) River delta shoreline and nearshore zone (Myanmar): Towards degraded delta resilience? C. R. Geosci. 2017, 349, 238–247. [Google Scholar] [CrossRef]
- Miller, F.; Osbahr, H.; Boyd, E.; Thomalla, F.; Bharawani, S.; Ziervogel, G.; Walker, B.; Birkmann, J.; Van der Leeuw, S.; Rockström, J.; et al. Resilience and vulnerability: Complementary or conflicting concepts? Ecol. Soc. 2010, 15, 1–25. [Google Scholar] [CrossRef]
- Pimm, S.L.; Donohue, I.; Montoya, J.M.; Loreau, M. Measuring resilience is essential to understand it. Nat. Sustain. 2019, 2, 895–897. [Google Scholar] [CrossRef]
- Best, S.N.; Van der Wegen, M.; Dijkstra, J.; Willemsen, P.W.J.M.; Borsje, B.W.; Roelvink, D.J.A. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics. Environ. Model. Softw. 2018, 109, 152–166. [Google Scholar] [CrossRef]
- Sánchez-Arcilla, A.; García-León, M.; Gracia, V.; Devoy, R.; Stanica, A.; Gault, J. Managing coastal environments under climate change: Pathways to adaptation. Sci. Total Environ. 2016, 572, 1336–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowlands, G.; Purkis, S.; Bruckner, A. Tight coupling between coral reef morphology and mapped resilience in the Red Sea. Mar. Pollut. Bull. 2016, 105, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Gornitz, V. Global coastal hazards from future sea level rise. Glob. Planet. Chang. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Szlafsztein, C.; Sterr, H. A GIS-based vulnerability assessment of coastal natural hazards, State of Para, Brazil. J. Coast. Conserv. 2007, 11, 53–66. [Google Scholar] [CrossRef]
- McLaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Ramieri, E.; Hartley, A.; Barbanti, A.; Duarte Santos, F.; Gomes, A.; Hilden, M.; Laihonen, P.; Marinova, N.; Santini, M. Methods for Assessing Coastal Vulnerability to Climate Change; ETC/CCA Technical Paper 1/2011; Fondacione CMCC: Bologna, Italy, 2011. [Google Scholar]
- US Geological Survey. Coastal Change Hazards Portal: Coastal Vulnerability Index. Available online: https://marine.usgs.gov/coastalchangehazardsportal/ui/info/item/CDKmLpj (accessed on 20 October 2019).
- British Geological Survey. Coastal Vulnerability. Available online: https://www.bgs.ac.uk/products/geohazards/coastalVulnerability.html (accessed on 20 October 2019).
- Lam, N.S.N.; Qiang, Y.; Arenas, H.; Brito, P.; Liu, K.B. Mapping and assessing coastal resilience in the Caribbean region. Cartogr. Geogr. Inf. Sci. 2015, 42, 315–322. [Google Scholar] [CrossRef]
- Raposa, K.B.; Wasson, K.; Smith, E.; Crooks, J.A.; Delgado, P.; Fernald, S.H.; Ferner, M.C.; Helms, A.; Hice, L.A.; Mora, J.W.; et al. Assessing tidal marsh resilience to sea level rise at broad geographical scales with multi-metric indices. Biol. Conserv. 2016, 204, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Mumby, P.J.; Hastings, A.; Edwards, J.G. Thresholds and the resilience of Caribbean coral reefs. Nature 2007, 450, 98–101. [Google Scholar] [CrossRef]
- Anthony, K.; Marshall, P.A.; Abdulla, A.; Beeden, R.; Bergh, C.; Black, R.; Eakin, C.M.; Game, E.T.; Gooch, M.; Graham, N.A.; et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Chang. Biol. 2015, 21, 48–61. [Google Scholar] [CrossRef]
- Maynard, J.A.; McKagan, S.; Raymundo, L.; Johnson, S.; Ahmadia, G.N.; Johnston, L.; Houk, P.; Williams, G.J.; Kendall, M.; Heron, S.F.; et al. Assessing relative resilience potential of coral reefs to inform management. Biol. Conserv. 2015, 192, 109–119. [Google Scholar] [CrossRef]
- Lam, V.Y.Y.; Doropoulos, C.; Mumby, P.J. The influence of resilience-based management on coral reef monitoring: A systematic review. PLoS ONE 2017, 12, e0172064. [Google Scholar] [CrossRef] [PubMed]
- McClanahan, T.R.; Donner, S.D.; Maynard, J.A.; MacNeil, M.A.; Graham, N.A.; Maina, J.; Baker, A.C.; Beger, M.; Campbell, S.J.; Darling, E.S.; et al. Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS ONE 2012, 7, e42884. [Google Scholar] [CrossRef] [PubMed]
- Lotze, H.K.; Lenihan, H.S.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.G.; Kay, M.C.; Kidwell, S.M.; Kirby, M.X.; Peterson, C.H.; Jackson, J.B. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 2006, 312, 1806–1809. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Gedan, K.B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Chang. 2019, 9, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, M.L.; Temmerman, S.; Skeehan, E.E.; Guntenspergen, G.R.; Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Chang. 2016, 6, 253–260. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. Earth 2010, 115. [Google Scholar] [CrossRef]
- Spencer, T.; Schuerch, M.; Nicholls, R.J.; Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Reef, R.; McFadden, L.; Brown, S. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Glob. Planet. Chang. 2016, 139, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate change: Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Roeland, H.; Piet, R. Dynamic preservation of the coastline in the Netherlands. J. Coast. Conserv. 1995, 1, 17–28. [Google Scholar] [CrossRef]
- Hapke, C.J.; Kratzmann, M.G.; Himmelstoss, E.A. Geomorphic and human influence on large-scale coastal change. Geomorphology 2013, 199, 160–170. [Google Scholar] [CrossRef]
- Samuels, P.; Gouldby, B. Language of Risk: Project Definitions, Floodsite: Integrated Flood Risk Analysis and Management Methodologies. Report T32-04-01. 2005. Available online: http://www.floodsite.net/html/partner_area/project_docs/floodsite_language_of_risk_v4_0_p1.pdf (accessed on 20 November 2019).
- Cutter, S.L.; Emrich, C.T. Moral hazard, social catastrophe: The changing face of vulnerability along the hurricane coasts. Ann. Am. Acad. Political Soc. Sci. 2006, 604, 102–112. [Google Scholar] [CrossRef]
- National Research Council. Reducing Coastal Risks on the East and Gulf Coasts; National Academy Press: Washington, DC, USA, 2014. [Google Scholar]
- Scott, T.; Masselink, G.; O’Hare, T.; Saulter, A.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England. Mar. Geol. 2016, 382, 224–241. [Google Scholar] [CrossRef] [Green Version]
- Graham, E.; Hall, W.; Schuhmann, P. Hurricanes, catastrophic risk, and real estate market recovery. J. Real Estate Portf. Manag. 2007, 13, 179–190. [Google Scholar]
- Côté, I.M.; Darling, E.S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 2010, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J.; Branson, J. Coastal resilience and planning for an uncertain future: An introduction. Geogr. J. 1998, 164, 255–258. [Google Scholar] [CrossRef]
- Ostrom, E.; Janssen, M.A.; Anderies, J.M. Going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15176–15178. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masselink, G.; Lazarus, E.D. Defining Coastal Resilience. Water 2019, 11, 2587. https://doi.org/10.3390/w11122587
Masselink G, Lazarus ED. Defining Coastal Resilience. Water. 2019; 11(12):2587. https://doi.org/10.3390/w11122587
Chicago/Turabian StyleMasselink, Gerd, and Eli D Lazarus. 2019. "Defining Coastal Resilience" Water 11, no. 12: 2587. https://doi.org/10.3390/w11122587
APA StyleMasselink, G., & Lazarus, E. D. (2019). Defining Coastal Resilience. Water, 11(12), 2587. https://doi.org/10.3390/w11122587