Variations in Soil Water Content and Evapotranspiration in Relation to Precipitation Pulses within Desert Steppe in Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Sources and Methods
3. Results and Discussion
3.1. Precipitation Characteristics Analysis in Different Precipitation Situations
3.1.1. Amount and Number of Days of Precipitation during Different Precipitation Years
3.1.2. Precipitation Characteristics of Precipitation Events at Different Levels
3.1.3. Precipitation Interval Ratio in Different Precipitation Years
Precipitation Interval
Precipitation Interval Ratio (P/I)
3.2. SWC Dynamics in Different Precipitation Years
3.2.1. Variations in SWC Characteristics in Different Precipitation Years
3.2.2. Correlation between SWC of Each Layer in Different Precipitation Years
3.3. Response of ETa of Shallow-Rooted Vegetation to Precipitation Pulses
3.3.1. Variations in ETa during Growing Season
3.3.2. Evapotranspiration Mode during Precipitation Interval
3.4. Coupling Process Relating to Multi-Water Variations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peters, D.P.C.; Bestelmeyer, B.T.; Herrick, J.E.; Fredrickson, E.L.; Monger, H.C.; Havstad, K.M. Disentangling Complex Landscapes: New Insights into Arid and Semiarid System Dynamics. Bioscience 2006, 56, 491–501. [Google Scholar] [CrossRef]
- Smith, S.D.; Huxman, T.E.; Zitzer, S.F.; Charlet, T.N.; Housman, D.C.; Coleman, J.S.; Fenstermaker, L.K.; Seemann, J.R.; Nowak, R.S. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 2000, 408, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Rojas, M.; Erickson, T.E.; Martini, D.; Dixon, K.W.; Merritt, D.J. Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecol. Indic. 2016, 63, 14–22. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhan, H.; Yang, W.; Dang, H.; Li, W. Is annual recharge coefficient a valid concept in arid and semi-arid regions? Hydrol. Earth Syst. Sci. 2017, 21, 1–29. [Google Scholar] [CrossRef]
- Huxman, T.E.; Snyder, K.A.; Tissue, D.; Leffler, A.J.; Ogle, K.; Pockman, W.T.; Sandquist, D.R.; Potts, D.L.; Schwinning, S. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 2004, 141, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Schwinning, S.; Sala, O.E.; Loik, M.E.; Ehleringer, J.R. Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 2004, 141, 191–193. [Google Scholar] [CrossRef] [PubMed]
- Noymeir, I. Desert Ecosystems: Environment and Producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Loik, M.E.; Breshears, D.D.; Lauenroth, W.K.; Belnap, J. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 2004, 141, 269–281. [Google Scholar] [CrossRef]
- Sala, O.E.; Gherardi, L.A.; Peters, D.P.C. Enhanced precipitation variability effects on water losses and ecosystem functioning: Differential response of arid and mesic regions. Clim. Chang. 2015, 131, 213–227. [Google Scholar] [CrossRef]
- Heislerwhite, J.L.; Knapp, A.K.; Kelly, E.F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 2008, 158, 129–140. [Google Scholar] [CrossRef]
- Shafran-Nathan, R.; Svoray, P. The resilience of annual vegetation primary production subjected to different climate change scenarios. Clim. Chang. 2013, 118, 227–243. [Google Scholar] [CrossRef]
- Pei, S.; Fu, H.; Wan, C. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agric. Ecosyst. Environ. 2008, 124, 33–39. [Google Scholar] [CrossRef]
- Li, C.; Hao, X.; Zhao, M.; Han, G.; Walterd, W. Influence of historic sheep grazing on vegetation and soil properties of a Desert Steppe in Inner Mongolia. Agric. Ecosyst. Environ. 2008, 128, 109–116. [Google Scholar] [CrossRef]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Schimel, D.S.; Hall, D.O.; Members, S.G. Impact of climate change on grassland production and soil carbon worldwide. Glob. Chang. Biol. 2010, 1, 13–22. [Google Scholar] [CrossRef]
- Song, Y.; Guo, Z.; Lu, Y.; Yan, D.; Liao, Z.; Liu, H.; Cui, Y. Pixel-Level Spatiotemporal Analyses of Vegetation Fractional Coverage Variation and Its Influential Factors in a Desert Steppe: A Case Study in Inner Mongolia, China. Water 2017, 9, 478. [Google Scholar] [CrossRef]
- Wang, K.; Deng, L.; Ren, Z.; Li, J.; Shangguan, Z. Grazing exclusion significantly improves grassland ecosystem C and N pools in a desert steppe of Northwest China. CATENA 2016, 137, 441–448. [Google Scholar] [CrossRef]
- Verstraete, M.M.; Brink, A.B.; Scholes, R.J.; Beniston, M.; Smith, M.S. Climate change and desertification: Where do we stand, where should we go? Glob. Planet. Chang. 2008, 64, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E.; Tucker, C.J.; Ba, M.B. Desertification, Drought, and Surface Vegetation: An Example from the West African Sahel. Bull. Am. Meteorol. Soc. 2010, 79, 815–829. [Google Scholar] [CrossRef]
- Zhan, X.; Li, L.; Cheng, W. Restoration of Stipa krylovii steppes in Inner Mongolia of China: Assesment of seed banks and vegetation composition. J. Arid Environ. 2007, 68, 298–307. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.; Lambin, E.F.; Turner, B.L., 2nd; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef]
- Sugita, M.; Yoshizawa, S.; Byambakhuu, I. Limiting factors for nomadic pastoralism in Mongolian steppe: A hydrologic perspective. J. Hydrol. 2015, 524, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.F.; Kemp, P.R.; Ogle, K.; Fernández, R.J. Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 2004, 141, 194–210. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Breshears, D.D.; Seyfried, M.S. Rangelands, Water Balance on. Encycl. Water Sci. 2003. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 2016, 6, 946–949. [Google Scholar] [CrossRef]
- Esch, E.H.; Lipson, D.; Cleland, E.E. Direct and indirect effects of shifting rainfall on soil microbial respiration and enzyme activity in a semi-arid system. Plant Soil 2017, 411, 333–346. [Google Scholar] [CrossRef]
- Liu, W.; Zhe, Z.; Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Chang. Biol. 2010, 15, 184–195. [Google Scholar] [CrossRef]
- Leffler, A.J.; Ryel, R.J.; Hipps, L.; Ivans, S.; Caldwell, M.M. Carbon acquisition and water use in a Northern Utah Juniperus osteosperma (Utah juniper) population. Tree Physiol. 2002, 22, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, N.; Mahmoodabadi, M.; Cerdà, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 2016, 266, 58–65. [Google Scholar] [CrossRef]
- Schimel, D.S.; Braswell, B.H.; Holland, E.A.; Mckeown, R.; Ojima, D.S.; Painter, T.H.; Parton, W.J.; Townsend, A.R. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob. Biogeochem. Cycles 1994, 8, 279–293. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H.; Li, Y. Spatial heterogeneity of soil moisture, microbial biomass carbon and soil respiration at stand scale of an arid scrubland. Environ. Earth Sci. 2013, 70, 3217–3224. [Google Scholar] [CrossRef]
- Olivera-Guerra, L.; Mattar, C.; Merlin, O.; Durán-Alarcón, C.; Santamaría-Artigas, A.; Fuster, R. An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile. ISPRS J. Photogramm. 2017, 128, 170–181. [Google Scholar] [CrossRef]
- Olivera-Guerra, L.E.; Merlin, O.; Mattar, C.; Durán-Alarcón, C.; Santamaría-Artigas, A.; Stefan, V. Combining meteorological and lysimeter data to evaluate energy and water fluxes over a row crop for remote sensing applications. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Vargas, R.; Detto, M.; Baldocchi, D.D.; Allen, M.F. Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Glob. Chang. Biol. 2010, 16, 1589–1605. [Google Scholar] [CrossRef]
- Belnap, J.; Phillips, S.L.; Miller, M.E. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 2004, 141, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, L.E.; Armas, C.; Cea, A.P.; Gutiérrez, J.R.; Meserve, P.L.; Kelt, D.A. Rainfall, microhabitat, and small mammals influence the abundance and distribution of soil microorganisms in a Chilean semi-arid shrubland. J. Arid Environ. 2016, 126, 37–46. [Google Scholar] [CrossRef]
- Zörner, J.; de Vries, M.P.; Beirle, S.; Sihler, H.; Veres, P.R.; Williams, J.; Wagner, T. Multi-satellite sensor study on precipitation-induced emission pulses of NOx from soils in semi-arid ecosystems. Atmos. Chem. Phys. 2016, 18, 1–39. [Google Scholar]
- Sala, O.E.; Lauenroth, W.K. Small rainfall events: An ecological role in semiarid regions. Oecologia 1982, 53, 301–304. [Google Scholar] [CrossRef]
- Nobel, P.S.; Sanderson, J. Rectifier-like Activities of Roots of Two Desert Succulents. J. Exp. Bot. 1984, 35, 727–737. [Google Scholar] [CrossRef]
- Agam, N.; Berliner, P.R. Dew formation and water vapor adsorption in semi-arid environments—A review. J. Arid Environ. 2006, 65, 572–590. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Yang, F.L.; Yue, P.; Yao, T.; Wang, W.Y. Characteristics of Dew Formation and Distribution, and Its Contribution to the Surface Water Budget in a Semi-arid Region in China. Bound-Lay Meteorol. 2015, 154, 317–331. [Google Scholar] [CrossRef]
- Li, X.Y. Effects of gravel and sand mulches on dew deposition in the semiarid region of China. J. Hydrol. 2002, 260, 151–160. [Google Scholar] [CrossRef]
Month | 2016 | 2017 | ||
---|---|---|---|---|
Precipitation (mm)/% | Rain Days (d) | Precipitation (mm)/% | Rain days (d) | |
April | 1.4/0.5 | 2 | 11.5/5.6 | 5 |
May | 26.6/9.0 | 8 | 39.8/19.3 | 5 |
June | 71.2/24.2 | 13 | 55.6/27.0 | 14 |
July | 93.2/31.7 | 11 | 32.4/15.7 | 10 |
August | 28.4/9.7 | 8 | 18.6/9.0 | 8 |
September | 39.3/13.4 | 11 | 37.2/18.1 | 8 |
October | 34.2/11.6 | 7 | 10.9/5.3 | 5 |
Growing season (mm) | 294.3 | 60 | 206 | 55 |
Year | Period | Rain Days (d) | Mean Precipitation Intervals (d) | Mean Precipitation per Event (mm/d) |
---|---|---|---|---|
2016 | June–August | 9 | 7.7 | 19.7 |
Growing season | 16 | 10.5 | 16.4 | |
2017 | June–August | 7 | 10.3 | 11.2 |
Growing season | 12 | 16.4 | 12.8 |
Year | SWC | Month | 10 cm | 20 cm | 30 cm | 40 cm | 50 cm |
---|---|---|---|---|---|---|---|
2016 | SWC (vol. %) | April | 5.61 | 5.94 | 6.74 | 6.26 | 7.41 |
May | 4.70 | 4.15 | 7.01 | 7.00 | 8.25 | ||
June | 7.40 | 5.88 | 8.45 | 8.26 | 8.53 | ||
July | 10.16 | 8.14 | 10.78 | 11.59 | 11.23 | ||
August | 8.56 | 7.16 | 9.43 | 13.32 | 12.82 | ||
September | 8.07 | 7.39 | 7.67 | 10.53 | 11.56 | ||
October | 10.69 | 9.40 | 8.54 | 10.73 | 11.31 | ||
Growing season | 8.35 | 7.08 | 8.69 | 10.32 | 10.68 | ||
CV (%) | 41.4 | 40.3 | 34.7 | 30.3 | 19.9 | ||
2017 | SWC (vol. %) | April | 9.91 | 8.65 | 10.78 | 10.30 | 9.64 |
May | 8.56 | 6.63 | 9.48 | 10.50 | 10.34 | ||
June | 6.67 | 5.32 | 7.53 | 8.01 | 9.12 | ||
July | 4.95 | 3.89 | 6.50 | 7.28 | 8.64 | ||
August | 4.90 | 4.36 | 5.51 | 6.17 | 8.15 | ||
September | 7.37 | 7.08 | 7.30 | 6.14 | 7.80 | ||
October | 7.38 | 7.19 | 3.35 | 6.08 | 6.25 | ||
Growing season | 7.09 | 6.15 | 7.19 | 7.78 | 8.56 | ||
CV (%) | 39.0 | 35.8 | 36.5 | 24.8 | 15.6 |
2016 | 10 cm | 20 cm | 30 cm | 40 cm | 50 cm | |
---|---|---|---|---|---|---|
2017 | ||||||
10 cm | 1.00 | 0.95 ** | 0.76 ** | 0.75 ** | 0.68 ** | |
20 cm | 0.93 ** | 1.00 | 0.77 ** | 0.79 ** | 0.73 ** | |
30 cm | 0.53 ** | 0.46 ** | 1.00 | 0.80 ** | 0.64 ** | |
40 cm | 0.44 ** | 0.33 ** | 0.82 ** | 1.00 | 0.95 ** | |
50 cm | 0.16 * | −0.02 ns | 0.79 ** | 0.83 ** | 1.00 |
Period | ETa (mm) | Precipitation (mm) | ETmax (mm/d) | ETmin (mm/d) | ETave (mm/d) |
---|---|---|---|---|---|
April | −23.34 | 1.40 | −1.60 | −0.39 | −0.78 |
May | −40.63 | 26.60 | −2.70 | −0.59 | −1.31 |
June | −83.55 | 71.20 | −4.85 | −0.67 | −2.78 |
July | −87.61 | 93.20 | −5.65 | −0.23 | −2.83 |
August | −58.44 | 28.40 | −5.78 | −0.46 | −1.89 |
September | −19.33 | 39.30 | −2.17 | −0.10 | −0.62 |
October | −27.50 | 34.20 | −2.52 | −0.10 | −0.89 |
Growing season | −340.40 | 294.30 | −5.78 | −0.10 | −1.59 |
Correlation | 10 cm | 20 cm | 30 cm | 40 cm | 50 cm |
---|---|---|---|---|---|
ETa (mm) | 0.47 ** | 0.38 * | 0.40 * | 0.49 ** | 0.50 ** |
CV of SWC | 50.6% | 55.8% | 50.6% | 43.4% | 27.5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Lu, Y.; Guo, Z.; Xu, X.; Liu, T.; Wang, J.; Wang, W.; Hao, W.; Wang, J. Variations in Soil Water Content and Evapotranspiration in Relation to Precipitation Pulses within Desert Steppe in Inner Mongolia, China. Water 2019, 11, 198. https://doi.org/10.3390/w11020198
Song Y, Lu Y, Guo Z, Xu X, Liu T, Wang J, Wang W, Hao W, Wang J. Variations in Soil Water Content and Evapotranspiration in Relation to Precipitation Pulses within Desert Steppe in Inner Mongolia, China. Water. 2019; 11(2):198. https://doi.org/10.3390/w11020198
Chicago/Turabian StyleSong, Yifan, Yajing Lu, Zhongxiao Guo, Xiaomin Xu, Tiejun Liu, Jun Wang, Wenjun Wang, Weigang Hao, and Jian Wang. 2019. "Variations in Soil Water Content and Evapotranspiration in Relation to Precipitation Pulses within Desert Steppe in Inner Mongolia, China" Water 11, no. 2: 198. https://doi.org/10.3390/w11020198
APA StyleSong, Y., Lu, Y., Guo, Z., Xu, X., Liu, T., Wang, J., Wang, W., Hao, W., & Wang, J. (2019). Variations in Soil Water Content and Evapotranspiration in Relation to Precipitation Pulses within Desert Steppe in Inner Mongolia, China. Water, 11(2), 198. https://doi.org/10.3390/w11020198