Nitrogen Removal Characteristics and Comparison of the Microbial Community Structure in Different Anaerobic Ammonia Oxidation Reactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor Configuration
2.2. Operational Strategies
2.3. Sample Collection, DNA Extraction, and High-Throughput Sequencing
2.4. Analytical Methods
3. Results and Discussion
3.1. Nitrogen Removal at Different Stages
3.1.1. ASBR Reactor
3.1.2. Biofilter Reactor
3.2. Microbial Community Analysis in Different Systems
3.2.1. Microbial Community Richness and Alpha Diversity
3.2.2. Changes in Microbial Community Structure During Operation
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Mulder, A.; Graaf, A.A.; Robertson, L.A.; Kuenen, J.G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 1995, 16, 177–183. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, P.; Dong, H.; Li, J. Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process. J. Biosci. Bioeng. 2016, 123, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhang, H.; Zhang, F.; Yang, F. Fast start-up anammox process using Acyl-homoserine lactones (AHLs) containing supernatant. J. Environ. Sci. 2018, 65, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Qiao, S.; Zhou, J.; Tang, X.; Zhang, J. Fast start-up of Anammox process with appropriate ferrous iron concentration. Bioresour. Technol. 2014, 170, 506–512. [Google Scholar] [CrossRef]
- Yin, X.; Qiao, S.; Zhou, J.; Tang, X. Fast start-up of the anammox process with addition of reduced graphene oxides. Chem. Eng. J. 2016, 283, 160–166. [Google Scholar] [CrossRef]
- Isanta, E.; Bezerra, T.; Fernández, I.; Suárez-Ojeda, M.E.; Pérez, J.; Carrera, J. Microbial community shifts on an anammox reactor after a temperature shock using 454-pyrosequencing analysis. Bioresour. Technol. 2015, 181, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zhang, D.; Xu, Y.; Hua, Y.; Dai, X. Comparing two start up strategies and the effect of temperature fluctuations on the performance of mainstream anammox reactors. Chemosphere 2018, 209, 632–639. [Google Scholar] [CrossRef]
- Han, Y.; Liu, F.; Xu, X.; Yan, Z.; Liu, Z. Nitrogen removal via a single-stage PN-Anammox process in a novel combined biofilm reactor. Water Sci. Technol. 2018, 77, 1483–1492. [Google Scholar] [CrossRef]
- Sri, S.S.; Joseph, K. Combined SHARON and ANAMMOX processes for ammoniacal nitrogen stabilisation in landfill bioreactors. Bioresour. Technol. 2017, 250, 723–732. [Google Scholar]
- Waki, M.; Yasuda, T.; Suzuki, K.; Sakai, T.; Suzuki, N.; Suzuki, R.; Matsuba, K.; Yokoyama, H.; Ogino, A.; Tanaka, Y. Rate determination and distribution of anammox activity in activated sludge treating swine wastewater. Bioresour. Technol. 2010, 101, 2685–2690. [Google Scholar] [CrossRef]
- Ding, S.; Bao, P.; Wang, B.; Zhang, Q.; Peng, Y. Long-term stable simultaneous partial nitrification, anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge. Chem. Eng. J. 2018, 339, 180–188. [Google Scholar] [CrossRef]
- Jin, R.C.; Zheng, P.; Hu, A.H.; Mahmood, Q.; Hu, B.L.; Jilani, G. Performance comparison of two anammox reactors: sbr and ubf. Chem. Eng. J. 2008, 138, 224–230. [Google Scholar] [CrossRef]
- Dapenacmora, A.; Arrojo, B.; Campos, J.L.; Mosqueraxorral, A.; Méndez, R. Improvement of the settling properties of anammox sludge in an sbr. J. Chem. Technol. Biotechnol. 2004, 79, 1417–1420. [Google Scholar] [CrossRef]
- Furukawa, K.; Rouse, J.D.; Yoshida, N.; Hatanaka, H. Mass Cultivation of Anaerobic Ammonium-Oxidizing Sludge Using a Novel Nonwoven Biomass Carrier. J. Chem. Eng. Jpn. 2003, 36, 1163–1169. [Google Scholar] [CrossRef]
- Date, Y.; Isaka, K.; Ikuta, H.; Sumino, T.; Kaneko, N.; Yoshie, S. Microbial diversity of anammox bacteria enriched from different types of seed sludge in an anaerobic continuous-feeding cultivation reactor. J. Biosci. Bioeng. 2009, 107, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, H.M.; Gao, D.W.; Yang, F.L.; Yang, S.A.; Jiang, T. Enrichment of anammox bacteria in seed sludges from different wastewater treating processes and start-up of anammox process. Desalination 2011, 271, 193–198. [Google Scholar] [CrossRef]
- Hu, Q.; Kang, D.; Wang, R.; Ding, A.; Abbas, G.; Zhang, M.; Qiu, L.; Lu, H.; Lu, H.; Zheng, P. Characterization of oligotrophic AnAOB culture: Morphological, physiological, and ecological features. Appl. Microbiol. Biotechnol. 2018, 102, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Laura, V.; Speth, D.R.; Theo, V.A.; Alexander, H.; Jetten, M.S.M. Shotgun metagenomic data reveals significant abundance but low diversity of “CandidatusScalindua” marine anammox bacteria in the Arabian Sea oxygen minimum zone. Front. Microbiol. 2014, 5, 31. [Google Scholar]
- Zhou, Z.; Chen, J.; Meng, H.; Dvornyk, V.; Gu, J. New PCR primers targeting hydrazine synthase and cytochrome c biogenesis proteins in anammox bacteria. Appl. Microbiol. Biotechnol. 2017, 101, 1–21. [Google Scholar] [CrossRef]
- Park, H.; Murthy, S.; Bott, C.; Loosdrecht, M.C.M.V.; Chandran, K. Nationwide metagenome survey of anammox processes via high-throughput next generation sequencing (NGS): 2012–2013. Water Environ. Res. 2014, 600, 2366–2371. [Google Scholar] [CrossRef]
- Babaei, A.A.; Azadi, R.; Jaafarzadeh, N.; Alavi, N. Application and kinetic evaluation of upflow anaerobic biofilm reactor for nitrogen removal from wastewater by Anammox process. Iran J. Environ. Health 2013, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, R.; Cao, S.; Li, B.; Niu, M.; Wang, S.; Peng, Y. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Res. 2016, 108, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Xing, B.; Yu, J.; Qin, T.; Chen, S. The importance of the substrate ratio in the operation of the Anammox process in upflow biofilter. Ecol. Eng. 2013, 53, 130–137. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Zeng, L.; Hu, S.; Cui, P.; Ma, J.; Chen, Y. Quick start-up of low-substrate Anammox ASBR reactor at normal temperature. Ind. Water Treat. 2017, 37, 43–47. (In Chinese) [Google Scholar]
- Kindaichi, T.; Yuri, S.; Ozaki, N.; Ohashi, A. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Sci. Technol. 2012, 66, 2556–2561. [Google Scholar] [CrossRef] [PubMed]
Trace element solution | Reagent | Concentration |
---|---|---|
I | FeSO4·7H2O | 45 g·L−1 |
EDTA | 25 g·L−1 | |
II | KCl | 3.5 g·L−1 |
NaCl | 2.5 g·L−1 | |
CaCl2·2H2O | 3.5 g·L−1 | |
MgSO4·7H2O | 2.5 g·L−1 | |
III | EDTA | 75 g·L−1 |
ZnSO4·7H2O | 2.15 g·L−1 | |
CoCl2·6H2O | 1.2 g·L−1 | |
MnCl2·4H2O | 4.95 g·L−1 | |
CuSO4·5H2O | 1.25 g·L−1 | |
Na2MoO4·2H2O | 1.1 g·L−1 | |
NiCl2·6H2O | 0.95 g·L−1 | |
Na2SeO4·10H2O | 1.05 g·L−1 | |
H3PO4 | 0.07 g·L−1 |
A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|
Time/d | 1–98 | 99–109 | 110–134 | 135–172 | 173–197 | 198–234 | 235–246 |
TN/mg·L−1 | 72.28 | 116.96 | 163.36 | 232.96 | 279.36 | 348.96 | 418.56 |
A1 | A2 | A3 | A4 | A5 | A6 | A7 | B1 | B2 | B3 | B4 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Time/d | 1–51 | 52–89 | 90–99 | 100–114 | 115–129 | 130–145 | 150–169 | 170–187 | 188–205 | 206–228 | 229–240 |
TN/mg·L−1 | 70 | 37.08 | 46.28 | 70 | 112.28 | 156.28 | 234.28 | 234.28 | 234.28 | 234.28 | 234.28 |
HRT/h | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 20 | 16 | 12 | 8 |
Estimator index | a | b | c |
---|---|---|---|
ACE index | 107,031.0 | 267,200.6 | 420,401.1 |
Chao index | 47,726.38 | 88,476.66 | 138,852.20 |
Shannon index | 6.75 | 5.10 | 5.18 |
Simpson index | 6.3×10−3. | 0.04 | 0.06 |
Coverage index | 0.86 | 0.86 | 0.84 |
Sample a | Sample b | Sample c | |
---|---|---|---|
Proteobacteria | 33.46% | 23.72% | 36.42% |
Planctomycetes | 9.7% | 31.08% | 33.79% |
Nitrospirae | 0.37% | 6.91% | 0.39% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Lv, W.; Li, S.; Geng, Z.; Yao, H. Nitrogen Removal Characteristics and Comparison of the Microbial Community Structure in Different Anaerobic Ammonia Oxidation Reactors. Water 2019, 11, 230. https://doi.org/10.3390/w11020230
Zhang L, Lv W, Li S, Geng Z, Yao H. Nitrogen Removal Characteristics and Comparison of the Microbial Community Structure in Different Anaerobic Ammonia Oxidation Reactors. Water. 2019; 11(2):230. https://doi.org/10.3390/w11020230
Chicago/Turabian StyleZhang, Liqiu, Wei Lv, Shugeng Li, Zhongxuan Geng, and Hainan Yao. 2019. "Nitrogen Removal Characteristics and Comparison of the Microbial Community Structure in Different Anaerobic Ammonia Oxidation Reactors" Water 11, no. 2: 230. https://doi.org/10.3390/w11020230