Orographic Effects of Geomorphology on Precipitation in a Pluvial Basin of the Eastern Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
3. Results
3.1. Horn-Mouth Geomorphology
3.2. Westward Variation in Precipitation
3.3. Extremely High Level of Precipitation
3.4. Decrease in Runoff Depth and ET
4. Discussion
4.1. Controls of Geomorphology on Precipitation
4.2. Changes in the Water Balance
4.3. Uncertainties in the Precipitation Estimation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Duan, A.; Liu, Y.; Mao, J.; Ren, R.; Bao, Q.; He, B.; Liu, B.; Hu, W. Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev. 2015, 2, 100–116. [Google Scholar] [CrossRef]
- Zheng, D. The Zoning of Ecographical Systems in China; The Commercial Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Dahri, Z.H.; Ludwig, F.; Moors, E.; Ahmad, B.; Khan, A.; Kabat, P. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Sci. Total Environ. 2016, 548–549, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.-A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, X. Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method. Atmos. Sci. Lett. 2015, 16, 177–183. [Google Scholar] [CrossRef]
- Li, Q.; Yang, G. Temporal distribution characteristics of alpine precipitation and their vertical differentiation: A case study from the upper Shule River. Water 2017, 9, 284. [Google Scholar] [CrossRef]
- Smith, R.B.; Jiang, Q.; Fearon, M.G.; Tabary, P.; Dorninger, M.; Doyle, J.D.; Benoit, R. Orographic precipitation and air mass transformation: An alpine example. Q. J. R. Meteorol. Soc. 2003, 129, 433–454. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chou, M.-D. Tibetan Plateau westerly forcing on the cloud amount over Sichuan Basin and the early Asian summer monsoon. J. Geophys. Res. Atmos. 2013, 118, 7558–7568. [Google Scholar] [CrossRef]
- Zangl, G. Small-scale variability of orographic precipitation in the Alps: Case studies and semi-idealized numerical simulations. Q. J. R. Meteorol. Soc. 2007, 133, 1701–1716. [Google Scholar] [CrossRef]
- Zeng, W.; Yu, Z.; Wu, S.; Qin, J. Changes in annual, seasonal and monthly precipitation events and their link with elevation in Sichuan province, China. Int. J. Climatol. 2016, 36, 2303–2322. [Google Scholar] [CrossRef]
- Rotunno, R.; Houze, R.A. Lessons on orographic precipitation from the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc. 2007, 133, 811–830. [Google Scholar] [CrossRef]
- Jiang, Q. Moist dynamics and orographic precipitation. Tellus A 2003, 55, 301–316. [Google Scholar] [CrossRef]
- Jiang, Q. Precipitation over multiscale terrain. Tellus A 2007, 59, 321–335. [Google Scholar] [CrossRef]
- Roe, G.H.; Montgomery, D.R.; Hallet, B. Orographic precipitation and the relief of mountain ranges. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, S.; Cao, L.; Wang, Y.; Zhao, Y.; Zhang, W. Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349, 346–356. [Google Scholar] [CrossRef]
- Andermann, C.; Bonnet, S.; Gloaguen, R. Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Sun, A. Decreasing spatial variability in precipitation extremes in southwestern China and the local/large-scale influencing factors. J. Geophys. Res. Atmos. 2015, 120, 6480–6488. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Breña-Naranjo, J.A.; Pedrozo-Acuña, A.; Rico-Ramirez, M.A. World’s greatest rainfall intensities observed by satellites. Atmos. Sci. Lett. 2015, 16, 420–424. [Google Scholar] [CrossRef]
- Mahanta, R.; Sarma, D.; Choudhury, A. Heavy rainfall occurrences in northeast India. Int. J. Climatol. 2013, 33, 1456–1469. [Google Scholar] [CrossRef]
- Shu, S.-J.; Yu, Z.-F.; Wang, Y.; Bai, M. A statistic model for the spatial distribution of precipitation estimation over the Tibetan complex terrain. Chin. J. Geophys. 2005, 48, 593–601. [Google Scholar] [CrossRef]
- Hu, L.; Deng, D.; Gao, S.; Xu, X. The seasonal variation of Tibetan convective systems: Satellite observation. J. Geophys. Res. Atmos. 2016, 121, 5512–5525. [Google Scholar] [CrossRef]
- Henn, B.; Clark, M.P.; Kavetski, D.; Newman, A.J.; Hughes, M.; McGurk, B.; Lundquist, J.D. Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range. J. Hydrol. 2018, 556, 993–1012. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Zhang, L.; Hao, Z. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol. 2014, 34, 265–285. [Google Scholar] [CrossRef]
- Zhao, T.; Yatagai, A. Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China. Int. J. Climatol. 2014, 34, 2749–2762. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.N.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Am. Meteorol. Soc. Bull. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- Fan, X. Influence of Vegetation Coverage on Evapotranspiration Procees of Alpine Meadows in the Source Region of Yangtze River; Lanzhou University: Lanzhou, China, 2011. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Barstad, I.; Grabowski, W.W.; Smolarkiewicz, P.K. Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems. J. Hydrol. 2007, 340, 78–90. [Google Scholar] [CrossRef]
- Sichuan, S.B. Sichuan Statistical Yearbook; China Statistics Press: Chengdu, China, 2017. [Google Scholar]
- Hirschi, M.; Seneviratne, S.I. Basin-scale water-balance dataset (BSWB): An update. Earth Syst. Sci. Data 2017, 9, 251–258. [Google Scholar] [CrossRef]
- Hirschi, M.; Seneviratne, S.I.; Schär, C. Seasonal variations in terrestrial water storage for major midlatitude river basins. J. Hydrometeorol. 2006, 7, 39–60. [Google Scholar] [CrossRef]
Basin | North | West | South | Main Stream | Adjacent | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
YX | BX | TQ | YJ | KP | TG | DYP | JJ | FL | LD | ZPB | ||
Gauge | Lon | 102.94 | 102.82 | 102.74 | 102.85 | 103.03 | 103.28 | 102.95 | 103.54 | 103.65 | 102.24 | 103.58 |
Lat | 30.13 | 30.36 | 30.06 | 29.81 | 29.91 | 29.81 | 30.00 | 29.76 | 29.30 | 29.93 | 31.03 | |
Area/km2 | 1365 | 2794 | 1724 | 1694 | 1012 | 698 | 1180 | 2039 | 13,600 | 10,114 | 22,662 | |
Slope/o | 23.7 ± 11.1 | 26.9 ± 10.6 | 27.7 ± 10.6 | 19.9 ± 10.3 | 18.8 ± 10.8 | 12.3 ± 9.4 | 17.1 ± 11.5 | 6.5 ± 8.3 | 22.4 ± 11.8 | 27.5 ± 11.5 | 25.0 ± 11.2 | |
Elev/m | 1939 ± 837 | 2986 ± 811 | 2435 ± 836 | 1802 ± 572 | 1770 ± 597 | 1232 ± 473 | 1270 ± 462 | 745 ± 266 | 2505 ± 1127 | 3811 ± 725 | 3340 ± 782 |
Site | Rens | Qings | Hongy | Yaan | Tianq | Lud | Kangd | Yaj |
---|---|---|---|---|---|---|---|---|
Lon | 30.02 | 29.83 | 29.92 | 29.98 | 30.07 | 29.92 | 30.05 | 30.03 |
Lat | 104.15 | 103.83 | 103.37 | 103.00 | 102.77 | 102.23 | 101.97 | 101.02 |
Elev/m | 437 | 395 | 463 | 629 | 757 | 1322 | 2616 | 2599 |
Change | Forest | Steppe | Cropland | Urban |
---|---|---|---|---|
Increase | 967.5 | 217.1 | 81.2 | 8.9 |
Decrease | 57.7 | 402.3 | 714.6 | 0.0 |
Net increase | 909.8 | −185.2 | −733.5 | 8.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Zhang, W. Orographic Effects of Geomorphology on Precipitation in a Pluvial Basin of the Eastern Tibetan Plateau. Water 2019, 11, 250. https://doi.org/10.3390/w11020250
Yang M, Zhang W. Orographic Effects of Geomorphology on Precipitation in a Pluvial Basin of the Eastern Tibetan Plateau. Water. 2019; 11(2):250. https://doi.org/10.3390/w11020250
Chicago/Turabian StyleYang, Mei, and Wenjiang Zhang. 2019. "Orographic Effects of Geomorphology on Precipitation in a Pluvial Basin of the Eastern Tibetan Plateau" Water 11, no. 2: 250. https://doi.org/10.3390/w11020250
APA StyleYang, M., & Zhang, W. (2019). Orographic Effects of Geomorphology on Precipitation in a Pluvial Basin of the Eastern Tibetan Plateau. Water, 11(2), 250. https://doi.org/10.3390/w11020250