Modeling Riparian Restoration Impacts on the Hydrologic Cycle at the Babacomari Ranch, SE Arizona, USA
Abstract
:1. Introduction
Study Area
2. Methods
2.1. Data Collection and Analysis
2.1.1. Infiltration
2.1.2. Erosion and Deposition
2.2. Models
2.2.1. MODFLOW
2.2.2. SWAT
(a) Watershed Delineation, Monitoring Points, and Reservoirs
(b) Iteration, Calibration, and Change Analysis
3. Results
3.1. Data Collection and Analysis
3.1.1. Infiltration
3.1.2. Erosion and Deposition
3.2. MODFLOW Change Prediction
3.3. SWAT
3.3.1. Calibration
3.3.2. Change Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chowdhury, A.; Jha, M.K.; Chowdary, V.M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ. Earth Sci. 2010, 59, 1209–1222. [Google Scholar] [CrossRef]
- Renganayaki, P.; Elango, L. A review on managed aquifer recharge by check dams: A case study near Chennai, India. Int. J. Res. Eng. Technol. 2013, 2, 416–423. [Google Scholar]
- Bouwer, H. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef] [Green Version]
- Beechie, T.J.; Sear, D.A.; Olden, J.D.; Pess, G.R.; Buffington, J.M.; Moir, H.; Roni, P.; Pollock, M.M. Process-based Principles for Restoring River Ecosystems. BioScience 2010, 60, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Martín-Rosales, W.; Gisbert, J.; Pulido-Bosch, A.; Vallejos, A.; Fernández-Cortés, A. Estimating groundwater recharge induced by engineering systems in a semiarid area (southeastern Spain). Environ. Geol. 2007, 52, 985–995. [Google Scholar] [CrossRef]
- Pandey, D.N.; Gupta, A.K.; Anderson, D.M. Rainwater harvesting as an adaptation to climate change. Curr. Sci. 2003, 85, 46–59. [Google Scholar]
- Norman, L.M.; Sankey, J.B.; Dean, D.; Caster, J.; DeLong, S.; DeLong, W.; Pelletier, J.D. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach. Geomorphology 2017, 283, 1–16. [Google Scholar] [CrossRef]
- Naiman, R.J.; Johnston, C.A.; Kelley, J.C. Alteration of North American Streams by Beaver. BioScience 1988, 38, 753–762. [Google Scholar] [CrossRef]
- White, D.S. Biological relationships to convective flow patterns within stream beds. Hydrobiologia 1990, 196, 149–158. [Google Scholar] [CrossRef]
- Norman, L.M.; Brinkerhoff, F.; Gwilliam, E.; Guertin, D.P.; Callegary, J.; Goodrich, D.C.; Nagler, P.L.; Gray, F. Hydrologic Response of Streams Restored with Check Dams in the Chiricahua Mountains, Arizona. River Res. Appl. 2016, 32, 519–527. [Google Scholar] [CrossRef]
- Norman, L.M.; Niraula, R. Model analysis of check dam impacts on long-term sediment and water budgets in Southeast Arizona, USA. Ecohydrol. Hydrobiol. 2016, 16, 125–137. [Google Scholar] [CrossRef]
- Norman, L.M.; Huth, H.; Levick, L.; Shea Burns, I.; Phillip Guertin, D.; Lara-Valencia, F.; Semmens, D. Flood hazard awareness and hydrologic modelling at Ambos Nogales, United States–Mexico border. J. Flood Risk Manag. 2010, 3, 151–165. [Google Scholar] [CrossRef]
- Norman, L.M.; Levick, L.; Guertin, D.P.; Callegary, J.; Guadarrama, J.Q.; Anaya, C.Z.; Prichard, A.; Gray, F.; Castellanos, E.; Tepezano, E.; et al. Nogales Flood Detention Study; Open-File Rep. No. 2010–1262; US Geological Survey: Reston, VA, USA, 2010; p. 112.
- Norman, L.; Villarreal, M.; Pulliam, H.R.; Minckley, R.; Gass, L.; Tolle, C.; Coe, M. Remote sensing analysis of riparian vegetation response to desert marsh restoration in the Mexican Highlands. Ecol. Eng. 2014, 70, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.R.; Norman, L.M. Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI). Int. J. Remote Sens. 2018, 39, 3243–3274. [Google Scholar] [CrossRef] [Green Version]
- Nichols, M.H.; McReynolds, K.; Reed, C. Short-term soil moisture response to low-tech erosion control structures in a semiarid rangeland. CATENA 2012, 98, 104–109. [Google Scholar] [CrossRef]
- Macfarlane, W.W.; Wheaton, J.M.; Bouwes, N.; Jensen, M.L.; Gilbert, J.T.; Hough-Snee, N.; Shivik, J.A. Modeling the capacity of riverscapes to support beaver dams. Geomorphology 2017, 277, 72–99. [Google Scholar] [CrossRef]
- Gurnell, A.M. The hydrogeomorphological e•ects of beaver dam-building activity. Prog. Phys. Geogr. 1998, 22, 167–189. [Google Scholar] [CrossRef] [Green Version]
- Puttock, A.; Graham, H.A.; Cunliffe, A.M.; Elliott, M.; Brazier, R.E. Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands. Sci. Total Environ. 2017, 576, 430–443. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Muttiah, R.S.; Srinivasan, R.; Allen, P.M. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J. Hydrol. 2000, 227, 21–40. [Google Scholar] [CrossRef]
- Sun, H.; Cornish, P.S. Estimating shallow groundwater recharge in the headwaters of the Liverpool Plains using SWAT. Hydrol. Process. 2005, 19, 795–807. [Google Scholar] [CrossRef]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and application of the integrated SWAT–MODFLOW model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; U.S. Geological Survey: Reston, VA, USA, 1984.
- Norman, L.M. Surface Water Rainfall-Runoff Modeling at the Babacomari Watershed, SE Arizona, with Applications in GIS and RS; Unpublished Report; Walton Family Foundation: Washington, DC, USA, 2013. [Google Scholar]
- Lacher, L.J. Technical Memorandum Describing the Groundwater Modeling Study for the Babacomari Ranch Study Area; Lacher Hydrologic Consulting: Tucson, AZ, USA, 2013. [Google Scholar]
- Norman, L.M.; Lacher, L.; Seibert, D.; Pulliam, H.R.; Hare, T.; Austin, V.; Villarreal, M.L.; Gray, F.; Callegary, J.B. Delineation and Screening of recharge sites for installation of rock detention structures in the Babocomari River, a tributary of the San Pedro River. Presented at the Science on the Sonoita Plain, Appleton-Whittell Research Ranch, Elgin, AZ, USA, 7 June 2014. [Google Scholar]
- Baillie, M.N.; Hogan, J.F.; Ekwurzel, B.; Wahi, A.K.; Eastoe, C.J. Quantifying water sources to a semiarid riparian ecosystem, San Pedro River, Arizona. J. Geophys. Res. 2007, 112, 13. [Google Scholar] [CrossRef]
- Pool, D.R.; Dickinson, J.E. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico; SIR-2006-5228; United States Geological Survey: Reston, VA, USA, 2007.
- Pool, D.R.; Coes, A.L. Hydrogeologic Investigations of the Sierra Vista Subwatershed of the Upper San Pedro Basin, Cochise County, Southeast Arizona; US Geological Survey: Reston, VA, USA, 1999.
- Freethey, G.W. Hydrologic Analysis of the Upper San Pedro Basin from the Mexico—United States International Boundary to Fairbank, Arizona; Open-File Rep. 82–752; United States Geological Survey: Reston, VA, USA, 1982; p. 52.
- Corell, S. Groundwater Flow Model Scenarios of Future Groundwater and Surface Water Conditions: Sierra Vista Subwatershed of the Upper San Pedro Basin—Southeastern Arizona; Modeling Report No. 10B; Arizona Department of Water Resources: Phoenix, AZ, USA, 1996.
- Lacher, L.J. Simulated Groundwater and Surface Water Conditions in the Upper San Pedro Basin, 1902–2105, Preliminary Baseline Results; Task 1 Report for December 2010 Contract; Lacher Hydrologic Consulting: Tucson, AZ, USA, 2011. [Google Scholar]
- Lacher, L.J. Simulated Near-Stream Recharge at Three Sites in the Sierra Vista Subbasin, Arizona: Tucson; Task 2-4 Report for December 2010 Contract; Lacher Hydrologic Consulting: Tucson, AZ, USA, 2012; 62p. [Google Scholar]
- Leake, S.A.; Gungle, B. Evaluation of Simulations to Understand Effects of Groundwater Development and Artificial Recharge on the Surface Water and Riparian Vegetation, Sierra Vista Subwatershed, Upper San Pedro Basin, Arizona; Open-File Rep. 2012–1206; United States Geological Survey: Reston, VA, USA, 2012.
- Harshbarger and Associates. Appendix 1—Consultant’s report on water development. In Report on Water Supply, Fort Huachuca and Vicinity, Arizona, by the U.S. Army Corps of Engineers; U.S. Army Engineers District: Los Angeles, CA, USA, 1974; pp. 1–33. [Google Scholar]
- Schwartzman, P.N. A Hydrogeologic Resource Assessment of the Lower Babocomari Watershed, Arizona; M.S. Hydrology and Water Resources, The University of Arizona: Tucson, AZ, USA, 1990. [Google Scholar]
- Gungle, B.; Callegary, J.B.; Paretti, N.V.; Kennedy, J.R.; Eastoe, C.J.; Turner, D.S.; Dickinson, J.E.; Levick, L.R.; Sugg, Z.P. Hydrological Conditions and Evaluation of Sustainable Groundwater Use in the Sierra Vista Subwatershed, Upper San Pedro Basin, Southeastern Arizona; Sci. Investig. Rep. 2016–5114, No. 90; United States Geological Survey: Reston, VA, USA, 2016.
- Schmerge, D.; Corkhill, F.; Flora, S. Water-Level Conditions in the Upper San Pedro Basin, Arizona; A.D.W.R. Water Level Change Map Series Report 3; Arizona Department of Water Resources: Phoenix, AZ, USA, 2006.
- Callegary, J.B.; Sosa, I.M.; Villaseñor, E.M.; dos Santos, P.; Saavedra, R.M.; Noriega, F.J.; Huth, A.K.; Gray, F.; Scott, C.A.; Megdal, S.; et al. San Pedro River Aquifer Binational Report; International Boundary and Water Commission: El Paso, TX, USA, 2016. [Google Scholar]
- Arizona Department of Water Resources. Upper San Pedro Basin Active Management Area Review Report; Arizona Department of Water Resources: Phoenix, AZ, USA, 2005.
- Sharma, V.; MacNish, R.; Maddock, T., III. Analysis of Hydrologic Data Collected by U.S. Bureau of Land Management 1987–1995 and Recommendations for Further Monitoring Programs; Fort Huachuca: Sierra Vista, AZ, USA, 1997. [Google Scholar]
- Hendrickson, D.A.; Minckley, W.L. Cienegas: Vanishing climax communities of the American Southwest. In Desert Plants USA; FAO: Washington, DC, USA, 1985. [Google Scholar]
- Robinett, D.; Kennedy, L. Babacomari River Riparian Protection Project; Final Report Submitted to: Arizona Water Protection Fund Commission 09-164WPF; US Department of Agriculture: Fort Collins, CO, USA, 2014.
- Radke, M. Beaver on the San Pedro River. Presented at the Wildlife and Threatened and Endangered Species Education Forum, Tucson, AZ, USA, 10 August 2013. [Google Scholar]
- Wick, M.A. Beaver Making an Arizona Comeback. In Eastern Arizona Courier. Available online: https://www.eacourier.com/ (accessed on 1 December 2018).
- Woo, M.-K.; Waddington, J.M. Effects of beaver dams on subarctic wetland hydrology. Arctic 1990, 43, 223–230. [Google Scholar] [CrossRef]
- Saksa, P. The Hydrology and Sediment Transport of Low-Gradient, Forested Headwater Streams. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2007. [Google Scholar]
- Du Bray, E.A. (Ed.) Mineral Resource Potential and Geology of Coronado National Forest, Southeastern Arizona and Southwestern New Mexico; U.S. Geological Survey: Reston, VA, USA, 1996.
- Cook, J.P.; Youberg, A.; Pearthree, P.A.; Onken, J.A.; MacFarlane, B.J.; Haddad, D.E.; Bigio, E.R.; Kowler, A.L. Mapping of Holocene River Alluvium along the San Pedro River, Aravaipa Creek, and Babocomari River, Southeastern Arizona; Arizona Gelogical Survey: Tucson, AZ, USA, 2009.
- Brown, S.G.; Davidson, E.S.; Kister, L.R.; Thomsen, B.W. Water Resources of Fort Huachuca Military Reservation, Southeastern Arizona; Water Supply Paper 1819-D; U.S. Geological Survey: Reston, VA, USA, 1966.
- Brown, D.E. Biotic communities of the American Southwest: United States and Mexico [Western States (USA); Great Basin and Pacific Slope States]. In Desert Plants USA; FAO: Washington, DC, USA, 1982; Volume 4. [Google Scholar]
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, Soil Survey Geographic (SSURGO). Database for Arizona. 2018. Available online: https://websoilsurvey.nrcs.usda.gov/ (accessed on 1 December 2018).
- Fandel, C.; Callegary, J.B.; Ferré, T.P.A.; Norman, L.M.; Scott, C.A. Evaluating the effect of gabions on vertical water flux in an ephemeral stream using wildlife cameras and temperature sensors. Presented at the 2015 Annual Conference of Society for Ecological Restoration—Southwest Chapter, Tucson, AZ, USA, 20–22 November 2015. [Google Scholar]
- Fandel, C.A. The Effect of Gabion Construction on Infiltration in Ephemeral Streams. Master’s Thesis, The University of Arizona, Tucson, AZ, USA, 2016. [Google Scholar]
- Fandel, C.; Callegary, J.B.; Ferré, T.P.A.; Norman, L.M.; Scott, C.A. Infiltration in ephemeral streams: Quantifying the effect of gabions on vertical water flux using wildlife cameras & temperature sensors. Presented at the Water Resources Research Center Annual Conference, Tucson, AZ, USA, 21 March 2016. [Google Scholar]
- Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, S.H.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Trans ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool: Theoretical Documentation, Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Sloan, P.G.; Moore, I.D. Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resour. Res. 1984, 20, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Niraula, R.; Norman, L.M.; Meixner, T.; Callegary, J. Multi-gauge Calibration for modeling the Semi-Arid Santa Cruz Watershed in Arizona-Mexico Border Area Using SWAT. Air Soil Water Res. 2012, 5, ASWR-S9410. [Google Scholar] [CrossRef]
- Niraula, R.; Meixner, T.; Norman, L.M. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes. J. Hydrol. 2015, 522, 439–451. [Google Scholar] [CrossRef]
- Almendinger, J.E.; Murphy, M.S.; Ulrich, J.S. Use of the Soil and Water Assessment Tool to Scale Sediment Delivery from Field to Watershed in an Agricultural Landscape with Topographic Depressions. J. Environ. Qual. 2014, 43, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Wickham, J.; Homer, C.; Vogelmann, J.; McKerrow, A.; Mueller, R.; Herold, N.; Coulston, J. The Multi-Resolution Land Characteristics (MRLC) Consortium—20 years of development and integration of USA national land cover data. Remote Sens. 2014, 6, 7424–7441. [Google Scholar] [CrossRef]
- Goodrich, D.C.; Schmugge, T.J.; Jackson, T.J.; Unkrich, C.L.; Keefer, T.O.; Parry, R.; Bach, L.B.; Amer, S.A. Runoff simulation sensitivity to remotely sensed initial soil water content. Water Resour. Res. 1994, 30, 1393–1405. [Google Scholar] [CrossRef]
- Woodard, G.C.; Crimmins, M.; Vazquez, R.; Rupprecht, C. QA/QC Issues Related to Data from Volunteer Citizen Scientist Networks. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2007. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs–A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2013; Volume 103. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Hernandez, M.; Miller, S.N.; Goodrich, D.C.; Goff, B.F.; Kepner, W.G.; Edmonds, C.M.; Jones, K.B. Modeling Runoff Response to Land Cover and Rainfall Spatial Variability in Semi-Arid Watersheds. In Monitoring Ecological Condition in the Western United States; Sandhu, S.S., Melzian, B.D., Long, E.R., Whitford, W.G., Walton, B.T., Eds.; Springer: Cham, The Netherlands, 2000; pp. 285–298. [Google Scholar]
- Yuan, Y.; Nie, W. Problems and Prospects of SWAT Model Application on an Arid/Semiarid Watershed in Arizona. In Proceedings of the 2015 SEDHYD Conference, Reno, NV, USA, 19–23 April 2015. [Google Scholar]
- Veith, T.L.; Van Liew, M.W.; Bosch, D.D.; Arnold, J.G. Parameter Sensitivity and Uncertainty in SWAT: A Comparison across Five USDA-ARS Watersheds. Trans. ASABE 2010, 53, 1477–1486. [Google Scholar] [CrossRef]
- Niraula, R.; Meixner, T.; Norman, L.M. Hydrological Modeling of a Semi-arid Santa Cruz Basin. Presented at the 2012 4th Annual Santa Cruz River Researchers’ Day, Tucson, AZ, USA, 29 March 2012. [Google Scholar]
- Niraula, R.; Kalin, L.; Wang, R.; Srivastava, P. Determining nutrient and sediment critical source areas with swat: Effect of lumped calibration. Trans. ASABE 2011, 55, 137–147. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Hardie, M.A.; Doyle, R.B.; Cotching, W.E.; Lisson, S. Subsurface Lateral Flow in Texture-Contrast (Duplex) Soils and Catchments with Shallow Bedrock. Appl. Environ. Soil Sci. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Smettem, K.R.J.; Chittleborough, D.J.; Richards, B.G.; Leaney, F.W. The influence of macropores on runoff generation from a hillslope soil with a contrasting textural class. J. Hydrol. 1991, 122, 235–251. [Google Scholar] [CrossRef]
- Brouwer, J.; Fitzpatrick, R.W. Restricting layers, flow paths and correlation between duration of soil saturation and soil morphological features along a hillslope with an altered soil water regime in western Victoria. Aust. J. Soil Res. 2002, 40, 927. [Google Scholar] [CrossRef]
- Coes, A.L.; Pool, D.R. Ephemeral-Stream Channel and Basin-Floor Infiltration and Recharge in the Sierra Vista Subwatershed of the Upper San Pedro Basin, Southeastern Arizona; Open-File Rep. 2005–1023; US Geological Survey: Reston, VA, USA, 2005; p. 84.
- Jarvis, N.; Koestel, J.; Larsbo, M. Understanding Preferential Flow in the Vadose Zone: Recent Advances and Future Prospects. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.N.; Guertin, D.P.; Goodrich, D.C. Hydrologic Modeling Uncertainty Resulting from Land Cover Misclassification1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 1065–1075. [Google Scholar] [CrossRef]
Min–2005 | 25th Percentile | Median | Mean | 75th percentile | Max–2001 |
---|---|---|---|---|---|
0.005 | 0.013 | 0.024 | 0.062 | 0.105 | 0.266 |
Parameter | Description | File | Default Value | Range | Calibrated Value |
---|---|---|---|---|---|
CN2 | SCS runoff curve number for moisture condition II | .mgt | Varies | ×0.5 | |
ESCO | Soil evaporation compensation factor | (.hru) .bsn | 0.95 | 0–1 | 0.75 |
REVAPMN | Threshold water level in shallow aquifer for revap | .gw | 750 | 0–1000 | 1000 |
SOL_AWC | Available water capacity of the soil layer | .sol | 0–1 | 0–1 | ×2.1 |
CH_K2 | Effective hydraulic conductivity of channel | .rte | 0 | (-0.01–500) | 2 |
GW_Revap | Revaporation coefficient | .gw | 0.02 | 0.02–0.2 | 0.2 |
GWQMIN | Deep percolation loss | .gw | 1000 | 0–5000 | 100 |
GW_DELAY (days) | Groundwater delay time | .gw | 31 | 0–500 | 100 |
SURLAG | Surface-runoff lag coefficient | .bsn | 4 | 10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norman, L.M.; Callegary, J.B.; Lacher, L.; Wilson, N.R.; Fandel, C.; Forbes, B.T.; Swetnam, T. Modeling Riparian Restoration Impacts on the Hydrologic Cycle at the Babacomari Ranch, SE Arizona, USA. Water 2019, 11, 381. https://doi.org/10.3390/w11020381
Norman LM, Callegary JB, Lacher L, Wilson NR, Fandel C, Forbes BT, Swetnam T. Modeling Riparian Restoration Impacts on the Hydrologic Cycle at the Babacomari Ranch, SE Arizona, USA. Water. 2019; 11(2):381. https://doi.org/10.3390/w11020381
Chicago/Turabian StyleNorman, Laura M., James B. Callegary, Laurel Lacher, Natalie R. Wilson, Chloé Fandel, Brandon T. Forbes, and Tyson Swetnam. 2019. "Modeling Riparian Restoration Impacts on the Hydrologic Cycle at the Babacomari Ranch, SE Arizona, USA" Water 11, no. 2: 381. https://doi.org/10.3390/w11020381
APA StyleNorman, L. M., Callegary, J. B., Lacher, L., Wilson, N. R., Fandel, C., Forbes, B. T., & Swetnam, T. (2019). Modeling Riparian Restoration Impacts on the Hydrologic Cycle at the Babacomari Ranch, SE Arizona, USA. Water, 11(2), 381. https://doi.org/10.3390/w11020381