Remediation of Stormwater Pollutants by Porous Asphalt Pavement
Abstract
:1. Introduction
1.1. Pollutant Removal by Permeable Pavements
- Basic treatment: 80% removal of TSS for influent concentrations between 100 and 200 . For influent concentrations above 200 , a higher treatment goal may be appropriate. For influent concentrations less than 100 , the facilities are intended to achieve an effluent goal of 20 of TSS.
- Phosphorus treatment: 50% removal of TP for influent concentrations ranging from 0.1– .
1.2. Maintenance of Permeable Pavements
1.3. Study Objectives
- quantify the pollutant removal efficiencies for a suite of stormwater pollutants by porous asphalt pavements,
- quantify the impact of annual maintenance on pollutant removal efficiencies,
- determine if measured pollutant removal efficiencies change with the age of the system.
2. Materials and Methods
2.1. Experimental Design
2.2. Street Dirt Application and Storm Dosing
2.3. Storm Event Measurements
2.4. Water Quantity Monitoring
2.5. Water Quality Monitoring
2.6. Statistical Testing
- elevated drain sample concentrations from unmaintained PA cells were higher than elevated drain samples from maintained PA cells, to test the effect of maintenance on analyte removal efficiency at the elevated drain.
- under drain sample concentrations from unmaintained PA cells were higher than under drain samples from maintained PA cells, to test the effect of maintenance practices on analyte removal efficiency at the under drain.
- surface effluent sample concentrations from IA cells were higher than elevated drain sample concentrations from PA cells, to test the effect of the upper wearing course on analyte removal efficiency.
- surface effluent sample concentrations from IA cells were higher than under drain sample concentrations from PA cells, to test the effect of the entire PA cell profile (upper wearing course + lower reservoir courses) on analyte removal efficiency.
3. Results
3.1. The Effect of Maintenance
3.2. Sediments
3.3. Nutrients
3.4. Heavy Metals
3.5. Polycyclic Aromatic Hydrocarbons
3.6. Total Petroleum Hydrocarbons
3.7. Stormwater Chemistry
4. Discussion
4.1. Overall Performance
4.2. Maintenance
4.3. Ca and Mg Export
4.4. Relevance to Stormwater BMP Performance Standards
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BMP | Best Management Practice |
COD | Chemical Oxygen Demand |
GSI | Green Stormwater Infrastructure |
IA | Impervious Asphalt |
OGFC | Open-Graded Friction Course |
PA | Porous Asphalt |
PAH | Polycyclic Aromatic Hydrocarbon |
ROS | Regression on Order Statistics |
TKN | Total Kjeldahl Nitrogen |
TP | Total Phosphorous |
TPH | Total Petroleum Hydrocarbon |
TSS | Total Suspended Solids |
References
- Puget Sound Action Team. The State of the Sound; Technical Report; Puget Sound Partnership: Tacoma, WA, USA, 2007.
- Grumbes, B.H. Using Green Infrastructure to Protect Water Quality in Stormwater, CSO, Nonpoint Source and Other Water Programs; Technical Report; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2007.
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urb. Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Askarizadeh, A.; Rippy, M.A.; Fletcher, T.D.; Feldman, D.L.; Peng, J.; Bowler, P.; Mehring, A.S.; Winfrey, B.K.; Vrugt, J.A.; AghaKouchak, A.; et al. From rain tanks to catchments: Use of low-impact development to address hydrologic symptoms of the urban stream syndrome. Environ. Sci. Technol. 2015, 49, 11264–11280. [Google Scholar] [CrossRef] [PubMed]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Lucas, W.C.; Sample, D.J. Reducing combined sewer overflows by using outlet controls for Green Stormwater Infrastructure: Case study in Richmond, Virginia. J. Hydrol. 2015, 520, 473–488. [Google Scholar] [CrossRef]
- Pennino, M.J.; McDonald, R.I.; Jaffe, P.R. Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Sci. Total Environ. 2016, 565, 1044–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, B.; Band, L.E. Green infrastructure stormwater management at the watershed scale: Urban variable source area and watershed capacitance. Hydrol. Process. 2015, 29, 2268–2274. [Google Scholar] [CrossRef]
- Washington State Department of Ecology. Stormwater Management Manual for Western Washington (SWMMWW); Washington State Department of Ecology: Lacey, WA, USA, 2014.
- Drake, J.A.P.; Bradford, A.; Marsalek, J. Review of environmental performance of permeable pavement systems: state of the knowledge. Water Qual. Res. J. Can. 2013, 48, 203–222. [Google Scholar] [CrossRef]
- Fassman, E.A.; Blackbourn, S. Urban runoff mitigation by a permeable pavement system over impermeable soils. J. Hydrol. Eng. 2010, 15, 475–485. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Stormwater Technology Fact Sheet: Porous Pavement; United States Environmental Protection Agency: Washington, DC, USA, 1999.
- Collins, K.A.; Hunt, W.F.; Hathaway, J.M. Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina. J. Hydrol. Eng. 2008, 13, 1146–1157. [Google Scholar] [CrossRef]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Roseen, R.M.; Ballestero, T.P.; Houle, J.J.; Briggs, J.F.; Houle, K.M. Water quality and hydrologic performance of a porous asphalt pavement as a storm-water treatment strategy in a cold climate. J. Environ. Eng. 2011, 138, 81–89. [Google Scholar] [CrossRef]
- Scholz, M.; Grabowiecki, P. Review of permeable pavement systems. Build. Environ. 2007, 42, 3830–3836. [Google Scholar] [CrossRef]
- Al-Rubaei, A.M.; Stenglein, A.L.; Viklander, M.; Blecken, G.T. Long-term hydraulic performance of porous asphalt pavements in northern Sweden. J. Irrig. Drain. Eng. 2013, 139, 499–505. [Google Scholar] [CrossRef]
- Hinman, C. Low Impact Development: Technical Guidance Manual for Puget Sound; Puget Sound Action Team: Tacoma, WA, USA, 2005.
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices: Literature review and suggestions for future research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Knappenberger, T.; Jayakaran, A.D.; Stark, J.D.; Hinman, C.H. Monitoring porous assphalt stormwater infiltration and outflow. J. Irrig. Drain. Eng. 2017, 143, 04017027. [Google Scholar] [CrossRef]
- Bean, E.Z.; Hunt, W.F.; Bidelspach, D.A. Field survey of permeable pavement surface infiltration rates. J. Irrig. Drain. Eng. 2007, 133, 249–255. [Google Scholar] [CrossRef]
- Brinkmann, W. Urban stormwater pollutants: Sources and loadings. GeoJournal 1985, 11, 277–283. [Google Scholar] [CrossRef]
- Malmqvist, P.A. Urban Stormwater Pollutant Sources—An Analysis of Inflows and Outflows of Nitrogen, Phosphorus, Lead, Zinc and Copper in Urban Areas; Chalmers University of Technology: Göteborg, Sweden, 1983. [Google Scholar]
- Chow, M.; Yusop, Z. Characterization and source identification of stormwater runoff in tropical urban catchments. Water Sci. Technol. 2014, 69, 244–252. [Google Scholar] [CrossRef]
- Pitt, R.; Field, R.; Lalor, M.; Brown, M. Urban stormwater toxic pollutants: Assessment, sources, and treatability. Water Environ. Res. 1995, 67, 260–275. [Google Scholar] [CrossRef]
- Lee, J.H.; Bang, K.W. Characterization of urban stormwater runoff. Water Res. 2000, 34, 1773–1780. [Google Scholar] [CrossRef]
- Du, B.; Lofton, J.M.; Peter, K.T.; Gipe, A.D.; James, C.A.; McIntyre, J.K.; Scholz, N.L.; Baker, J.E.; Kolodziej, E.P. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry. Environ. Sci. Process. Impacts 2017, 19, 1185–1196. [Google Scholar] [CrossRef]
- Pratt, C.; Newman, A.; Bond, P. Mineral oil bio-degradation within a permeable pavement: Long term observations. Water Sci. Technol. 1999, 39, 103–109. [Google Scholar] [CrossRef]
- Simon Beecham, G.; BE, D.P. Stormwater treatment using permeable pavements. Proc. Inst. Civ. Eng. 2012, 165, 161. [Google Scholar]
- Imran, H.; Akib, S.; Karim, M.R. Permeable pavement and stormwater management systems: A review. Environ. Technol. 2013, 34, 2649–2656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yong, F.; McCarthy, D.T.; Deletic, A. Predicting long term removal of heavy metals from porous pavements for stormwater treatment. Water Res. 2018, 142, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Stotz, G.; Krauth, K. The pollution of effluents from pervious pavements of an experimental highway section: First results. Sci. Total Environ. 1994, 146, 465–470. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Scholz, M. Efficiency of permeable pavement systems for the removal of urban runoff pollutants under varying environmental conditions. Environ. Prog. Sustain. Energy 2010, 29, 358–369. [Google Scholar] [CrossRef]
- Brown, C.; Chu, A.; van Duin, B.; Valeo, C. Characteristics of sediment removal in two types of permeable pavement. Water Qual. Res. J. 2009, 44, 59. [Google Scholar] [CrossRef]
- Baladès, J.D.; Legret, M.; Madiec, H. Permeable pavements: Pollution management tools. Water Sci. Technol. 1995, 32, 49–56. [Google Scholar] [CrossRef]
- Hammes, G.; Thives, L.P.; Ghisi, E. Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings. J. Environ. Manag. 2018, 222, 338–347. [Google Scholar] [CrossRef]
- Kumar, K.; Kozak, J.; Hundal, L.; Cox, A.; Zhang, H.; Granato, T. In-situ infiltration performance of different permeable pavements in a employee used parking lot—A four-year study. J. Environ. Manag. 2016, 167, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Sansalone, J.; Kuang, X.; Ying, G.; Ranieri, V. Filtration and clogging of permeable pavement loaded by urban drainage. Water Res. 2012, 46, 6763–6774. [Google Scholar] [CrossRef] [PubMed]
- Radfar, A.; Rockaway, T.D. Clogging prediction of permeable pavement. J. Irrig. Drain. Eng. 2016, 142, 04015069. [Google Scholar] [CrossRef]
- Winston, R.J.; Al-Rubaei, A.M.; Blecken, G.T.; Viklander, M.; Hunt, W.F. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate—The effects of street sweeping, vacuum cleaning, high pressure washing, and milling. J. Environ. Manag. 2016, 169, 132–144. [Google Scholar] [CrossRef]
- Breault, R.F.; Smith, K.P.; Sorenson, J.R. Residential Street-Dirt Accumulation Rates and Chemical Composition, and Removal Efficiencies by Mechanical-and Vacuum-Type Sweepers, New Bedford, Massachusetts, 2003–2004; Technical Report 4; US Geological Survey: Reston, VA, USA, 2005.
- Sehgal, K.; Drake, J.; Seters, T.; Vander Linden, W. Improving restorative maintenance practices for mature permeable interlocking concrete pavements. Water 2018, 10, 1588. [Google Scholar] [CrossRef]
- Washington State Department of Ecology. Technical Guidance Manual for Evaluating Emerging Stormwater Treatment Technologies; Technology Assessment Protocol—Ecology (TAPE); Washington State Department of Ecology: Lacey, WA, USA, 2011.
- Seattle Public Utilities; Herrera Environment Consultants. Seattle Street Sweeping Pilot Study—Monitoring Report; Techreport; Seattle Public Utilities: Seattle, WA, USA, 2009.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Nachar, N. The Mann–Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutor. Quant. Methods Psychol. 2008, 4, 13–20. [Google Scholar] [CrossRef]
- Helsel, D.R. Statistics for Censored Environmental Data Using Minitab and R; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 1–19. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics; Springer: Berlin, Germany, 1992; pp. 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pagotto, C.; Legret, M.; Le Cloirec, P. Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement. Water Res. 2000, 34, 4446–4454. [Google Scholar] [CrossRef]
- Drake, J.; Bradford, A.; Van Seters, T. Stormwater quality of spring-summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement. J. Environ. Manag. 2014, 139, 69–79. [Google Scholar] [CrossRef]
- Brown, R.A.; Borst, M. Nutrient infiltrate concentrations from three permeable pavement types. J. Environ. Manag. 2015, 164, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Ré, C.L.; Kaszuba, J.P.; Moore, J.N.; McPherson, B.J. Fluid-rock interactions in CO2-saturated, granite-hosted geothermal systems: Implications for natural and engineered systems from geochemical experiments and models. Geochim. Cosmochim. Acta 2014, 141, 160–178. [Google Scholar]
- Knauss, K.G.; Wolery, T.J. The dissolution kinetics of quartz as a function of pH and time at 70 C. Geochim. Cosmochim. Acta 1988, 52, 43–53. [Google Scholar] [CrossRef]
- Richards, H.G.; Savage, D.; Andrews, J.N. Granite-water reactions in an experimental Hot Dry Rock geothermal reservoir, Rosemanowes test site, Cornwall, UK. Appl. Geochem. 1992, 7, 193–222. [Google Scholar] [CrossRef]
- Nekvasil, H.; Burnham, C.W. The calculated individual effects of pressure and water content on phase equilibria in the granite system. In Magmatic Processes: Physicochemical Principles; Lancaster Press: Lancaster, UK, 1987; Volume 1, pp. 433–445. [Google Scholar]
- Trimmer, D.; Bonner, B.; Heard, H.; Duba, A. Effect of pressure and stress on water transport in intact and fractured gabbro and granite. J. Geophys. Res. Solid Earth 1980, 85, 7059–7071. [Google Scholar] [CrossRef]
- Lu, R.; Watanabe, N.; He, W.; Jang, E.; Shao, H.; Kolditz, O.; Shao, H. Calibration of water-granite interaction with pressure solution in a flow-through fracture under confining pressure. Environ. Earth Sci. 2017, 76, 417. [Google Scholar] [CrossRef]
- Miao, S.; Cai, M.; Guo, Q.; Wang, P.; Liang, M. Damage effects and mechanisms in granite treated with acidic chemical solutions. Int. J. Rock Mech. Min. Sci. 2016, 88, 77–86. [Google Scholar] [CrossRef]
- Worley, W.G. Dissolution Kinetics and Mechanisms in Quartz-and Grainite-Water Systems. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1994. [Google Scholar]
- Chae, G.T.; Yun, S.T.; Kwon, M.J.; Kim, Y.S.; Mayer, B. Batch dissolution of granite and biotite in water: Implication for fluorine geochemistry in groundwater. Geochem. J. 2006, 40, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Savage, D.; Bateman, K.; Richards, H.G. Granite-water interactions in a flow-through experimental system with applications to the Hot Dry Rock geothermal system at Rosemanowes, Cornwall, UK. Appl. Geochem. 1992, 7, 223–241. [Google Scholar] [CrossRef]
- New Jersey Department of Environmental Protection. NJ Stormwater Best Management Practices Manual; New Jersey Department of Environmental Protection: Trenton, NJ, USA, 2018.
- New Hampshire Department of Enivronmental Services. New Hampshire Stormwater Manual; New Hampshire Department of Enivronmental Services: Concord, NC, USA, 2008; Volume 1.
- North Carolina Environmental Quality. NCDEQ Stormwater Design Manual; North Carolina Environmental Quality: Raleigh, NC, USA, 2017.
Storm No. | Date | Storm Type | Treatment | Rainfall/Irrigated Total (mm) |
---|---|---|---|---|
1 | 18-11-2012 | Natural | Undosed | 47.8 |
2 | 22-02-2013 | Natural | Undosed | 9.4 |
3 | 30-07-2013 | Synthetic | Dosed | 30.6 |
4 | 13-08-2013 | Synthetic | Dosed | 33.1 |
5 | 08-10-2013 | Synthetic | Dosed | 32.1 |
6 | 22-10-2013 | Synthetic | Undosed | 34.0 |
7 | 05-03-2014 | Natural | Dosed | 17.0 |
8 | 15-03-2014 | Natural | Dosed | 32.5 |
9 | 17-04-2014 | Natural | Dosed | 19.8 |
10 | 30-10-2014 | Natural | Dosed | 26.2 |
11 | 25-10-2015 | Natural | Dosed | 16.8 |
12 | 12-11-2015 | Natural | Dosed | 53.3 |
Analyte | Median Removal Elevated (%) | p-Value * | Median Removal Under (%) | p-Value * | N Surf | N Elev | N Under | N Storms | Units | Group | GM Surf | GM Elev | GM Under |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coarse Sed. | 99.5 | 0.016 | 98.7 | 0.014 | 27 | 46 | 52 | 9 | g/L | sediment | 2.38 | 7.98 | 1.96 |
Fine Sed. | 59.4 | 0.018 | 57.0 | 0.123 | 27 | 46 | 52 | 9 | g/L | sediment | 1.12 | 3.62 | 5.09 |
TSS | 97.3 | 0.018 | 93.4 | 0.014 | 36 | 62 | 69 | 12 | g/L | sediment | 1.35 | 3.82 | 7.46 |
N-Ammonia | 34.1 | 0.117 | 68.0 | 0.014 | 21 | 35 | 42 | 7 | g/L | nutrient | 8.17 | 3.54 | 3.45 |
NO_2 + NO_3 | 38.3 | 0.089 | 26.1 | 0.259 | 33 | 57 | 65 | 11 | g/L | nutrient | 6.39 | 4.76 | 5.47 |
TKN | 61.0 | 0.018 | 67.4 | 0.014 | 33 | 57 | 66 | 11 | g/L | nutrient | 1.62 | 5.46 | 5.64 |
Ortho-P | 53.4 | 0.018 | 86.0 | 0.014 | 30 | 52 | 59 | 10 | g/L | nutrient | 6.38 | 3.44 | 9.80 |
Total P | 82.7 | 0.018 | 87.7 | 0.014 | 33 | 57 | 62 | 11 | g/L | nutrient | 2.98 | 6.16 | 3.69 |
Diss. Cd | 20.9 | 0.500 | 13.6 | 0.409 | 36 | 62 | 70 | 12 | g/L | metal | 4.79 | 2.17 | 2.63 |
Total Cd | 89.4 | 0.044 | 90.4 | 0.020 | 36 | 62 | 69 | 12 | g/L | metal | 2.97 | 3.79 | 3.32 |
Diss. Cr | 26.2 | 0.131 | 36.0 | 0.096 | 35 | 62 | 70 | 12 | g/L | metal | 4.47 | 2.94 | 2.57 |
Total Cr | 78.9 | 0.018 | 79.7 | 0.014 | 36 | 62 | 70 | 12 | g/L | metal | 2.35 | 4.11 | 4.96 |
Diss. Cu | 26.9 | 0.091 | 44.4 | 0.014 | 35 | 62 | 70 | 12 | g/L | metal | 3.75 | 2.96 | 2.20 |
Total Cu | 81.0 | 0.018 | 82.8 | 0.014 | 36 | 62 | 70 | 12 | g/L | metal | 1.98 | 3.27 | 2.90 |
Diss. Pb | 56.8 | 0.036 | 79.6 | 0.021 | 35 | 62 | 70 | 12 | g/L | metal | 2.65 | 1.22 | 9.15 |
Total Pb | 96.3 | 0.017 | 98.3 | 0.013 | 36 | 62 | 70 | 12 | g/L | metal | 9.88 | 4.03 | 2.38 |
Diss. Zn | 85.5 | 0.018 | 91.3 | 0.014 | 35 | 62 | 70 | 12 | g/L | metal | 2.27 | 4.14 | 2.73 |
Total Zn | 95.0 | 0.018 | 97.8 | 0.014 | 36 | 62 | 70 | 12 | g/L | metal | 1.04 | 5.07 | 3.74 |
d10-2-Methyl. | 4.2 | 0.231 | 3.1 | 0.302 | 24 | 42 | 47 | 8 | % | PAH | 5.91 | 5.69 | 5.74 |
Benzo(a)pyrene | 10.6 | 0.349 | 11.6 | 0.725 | 31 | 57 | 66 | 11 | g/L | PAH | 9.41 | 5.05 | 4.70 |
Chrysene | 71.0 | 0.186 | 63.2 | 0.183 | 33 | 56 | 66 | 11 | g/L | PAH | 1.38 | 3.77 | 4.60 |
d14-Dibenzo(a,h). | −6.2 | 0.850 | −5.7 | 0.819 | 24 | 42 | 47 | 8 | % | PAH | 6.35 | 7.13 | 6.93 |
Fluoranthene | 89.9 | 0.097 | 91.8 | 0.018 | 33 | 57 | 66 | 11 | g/L | PAH | 1.41 | 1.64 | 1.21 |
Phenanthrene | 36.6 | 0.383 | 62.9 | 0.383 | 33 | 57 | 66 | 11 | g/L | PAH | 1.17 | 4.72 | 4.23 |
Pyrene | 86.8 | 0.383 | 84.6 | 0.078 | 33 | 57 | 66 | 11 | g/L | PAH | 7.61 | 1.63 | 1.38 |
Diesel H. | 66.6 | 0.068 | 76.4 | 0.049 | 37 | 60 | 71 | 12 | g/L | TPH | 1.19 | 3.31 | 2.13 |
Motor Oil | 91.3 | 0.018 | 91.2 | 0.014 | 37 | 60 | 70 | 12 | g/L | TPH | 3.35 | 4.71 | 2.68 |
o-Terphenyl | −3.8 | 0.770 | −9.1 | 0.964 | 36 | 60 | 70 | 12 | % | TPH | 8.04 | 8.42 | 8.87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayakaran, A.D.; Knappenberger, T.; Stark, J.D.; Hinman, C. Remediation of Stormwater Pollutants by Porous Asphalt Pavement. Water 2019, 11, 520. https://doi.org/10.3390/w11030520
Jayakaran AD, Knappenberger T, Stark JD, Hinman C. Remediation of Stormwater Pollutants by Porous Asphalt Pavement. Water. 2019; 11(3):520. https://doi.org/10.3390/w11030520
Chicago/Turabian StyleJayakaran, Anand D., Thorsten Knappenberger, John D. Stark, and Curtis Hinman. 2019. "Remediation of Stormwater Pollutants by Porous Asphalt Pavement" Water 11, no. 3: 520. https://doi.org/10.3390/w11030520
APA StyleJayakaran, A. D., Knappenberger, T., Stark, J. D., & Hinman, C. (2019). Remediation of Stormwater Pollutants by Porous Asphalt Pavement. Water, 11(3), 520. https://doi.org/10.3390/w11030520