Assessment of Surface Water Resources in the Big Sunflower River Watershed Using Coupled SWAT–MODFLOW Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Definition of Stream Water Resource, Pond Water Resource, and SWR
2.3. Model Description
2.3.1. SWAT
2.3.2. MODFLOW
2.3.3. SWAT–MODFLOW
2.4. SWAT–MODFLOW Input
2.4.1. SWAT Input
2.4.2. MODFLOW Input
2.5. Model Calibration and Validation Method
2.6. Evaluation Criteria
2.7. Water Stress Index and Potential Availability of Surface Water Resources
3. Results and Discussions
3.1. Calibration and Validation
3.1.1. Calibrated and Validated Parameters
3.1.2. Streamflow
3.1.3. Groundwater Level
3.2. Temporal and Spatial Variability of Stream and Pond Resources
3.3. Assessment of Surface Water Resources
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Economic Research Service, U.S. Department of Agriculture. The Economics of Food, Farming, Natural Resources, and Rural America—State Fact Sheets—Mississippi. Available online: http://www.ers.usda.gov/State Facts/MS.htm (accessed on 1 January 2010).
- Clark, B.R.; Hart, R.M.; Gurdak, J.J. Groundwater Availability of the Mississippi Embayment; US Geological Survey Professional Paper 1785; US Geological Survey: Reston, VA, USA, 2011; pp. 62–72. [Google Scholar]
- Konikow, L.F. Long term groundwater depletion in the United States. Groundwater 2015, 53, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Sethi, L.N.; Panda, S.N.; Nayak, M.K. Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India. Agric. Water Manag. 2006, 83, 209–220. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen,“SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Sun, C.; Ren, L. Assessment of surface water resources and evapotranspiration in the Haihe River basin of China using SWAT model. Hydrol. Process. 2013, 27, 1200–1222. [Google Scholar] [CrossRef]
- Krysanova, V.; White, M. Advances in water resources assessment with SWAT—an overview. Hydrol. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Koike, T.; Yin, H.; Yang, D.; He, S. The assessment of surface water resources for the semi-arid Yongding River Basin from 1956 to 2000 and the impact of land use change. Hydrol. Process. 2010, 24, 1123–1132. [Google Scholar] [CrossRef]
- Miloradov, M.; Marjanovic, P. Guidelines for Conducting Water Resources Assessment: A Contribution to IHP-IV Project M-1-1(a). 1998. Available online: http://agris.fao.org/agris-search/search.do?recordID=XF1998079936 (accessed on 1 February 1998).
- Li, D.; Jiang, X.H.; Wang, Y.M.; Li, H. Analysis of calculation of natural runoff in the Yellow River Basin. Yellow River 2001, 23, 35–38. (In Chinese) [Google Scholar]
- Wang, Z.; Li, H.; Yang, D. Some problems in current water resources planning and their solutions and technical methods (1): Restoration distortion and invalidation. Haihe Water Resour. 2003, 1, 13–17. (In Chinese) [Google Scholar]
- Yang, D. Distributed hydrological model using hillslope discretization based on catchment area function: Development and applications. Ph.D. Thesis, University of Tokyo, Tokyo, Japan, 1998. [Google Scholar]
- Cong, Z.; Yang, D.; Gao, B.; Yang, H.; Hu, H. Hydrological trend analysis in the Yellow River basin using a distributed hydrological model. Water Resour. Res. 2009, 45, 7. [Google Scholar] [CrossRef]
- Gurtz, J.; Baltensweiler, A.; Lang, H. Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins. Hydrol. Process. 1999, 13, 2751–2768. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling blue and green water resources availability in Iran. Hydrol. Process. 2009, 23, 486–501. [Google Scholar] [CrossRef]
- Xu, Z.X.; Pang, J.P.; Liu, C.M.; Li, J.Y. Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrol. Process. 2009, 23, 3619–3630. [Google Scholar] [CrossRef]
- Vilaysane, B.; Takara, K.; Luo, P.; Akkharath, I.; Duan, W. Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR. Procedia Environ. Sci. 2015, 28, 380–390. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Hu, M. Impacts of climate change on the hydro-climatology of the upper Ishikari river basin, Japan. Environ. Earth Sci. 2017, 76, 490–501. [Google Scholar] [CrossRef]
- Steele, M.K.; Heffernan, J.B.; Bettez, N.; Cavender-Bares, J.; Groffman, P.M.; Grove, J.M.; Hall, S.; Hobbie, S.E.; Larson, K.; Morse, J.L.; et al. Convergent surface water distributions in US cities. Ecosystems 2014, 17, 685–697. [Google Scholar] [CrossRef]
- Barlow, J.R.; Clark, B.R. Simulation of Water-Use Conservation Scenarios for the Mississippi Delta Using an Existing Regional Groundwater Flow Model; US Geological Survey Scientific Investigations Report; US Geological Survey: Reston, VA, USA, 2011; pp. 14–56. [Google Scholar]
- Ouyang, Y. Estimating the ratio of pond size to irrigated soybean land in Mississippi: A case study. Water Sci. Technol. Water Supply 2016, 16, 1639–1647. [Google Scholar] [CrossRef]
- Ouyang, Y.; Paz, J.O.; Feng, G.; Read, J.J.; Adeli, A.; Jenkins, J.N. A Model to Estimate Hydrological Processes and Water Budget in an Irrigation Farm Pond. Water Resour. Manag. 2017, 31, 2225–2241. [Google Scholar] [CrossRef]
- Massey, J.H.; Stiles, C.M.; Epting, J.W.; Powers, R.S.; Kelly, D.B.; Bowling, T.H.; Janes, C.L.; Pennington, D.A. Long-term measurements of agronomic crop irrigation made in the Mississippi delta portion of the lower Mississippi River Valley. Irrig. Sci. 2017, 35, 297–313. [Google Scholar] [CrossRef]
- Opoku-Ankomah, Y.; Forson, M.A. Assessing surface water resources of the Southwestern and Coastal basin systems of Ghana. Hydrol. Sci. J. 1998, 43, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Houghton, H.A. An assessment of the surface water resources of the Juba-Shabelle basin in southern Somalia. Hydrol. Sci. J. 2011, 56, 759–774. [Google Scholar] [CrossRef] [Green Version]
- Sukchan, U.; Oda, M.; Caldwell, J.S.; Taweekul, K.; Suphanchaimat, N.; Chongpraditnun, P. A pond water use planning tool for integrated farming in an alternating wet–dry season tropical climate. Int. J. Technol. Manag. Sustain. Dev. 2014, 13, 101–115. [Google Scholar] [CrossRef]
- Jones, J.P.; Sudicky, E.A.; Brookfield, A.E.; Park, Y.J. An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow. Water Resour. Res. 2006, 42, 2. [Google Scholar] [CrossRef]
- Bejranonda, W.; Koontanakulvong, S.; Koch, M. Surface and Groundwater Dynamic Interactions in the Upper Great Chao Phraya Plain of Thailand: Semi-Coupling of SWAT and MODFLOW; Groundwater and Ecosystems, IAH Selected Papers on Hydrogeolgy; International Association of Hydrology: Goring, UK, 2007; pp. 17–21. [Google Scholar]
- Miguez-Macho, G.; Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonsal streamflow, flooding and wetlands. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Ouyang, Y. A potential approach for low flow selection in water resource supply and management. J. Hydrol. 2012, 454, 56–63. [Google Scholar] [CrossRef]
- Godinho, F.; Costa, S.; Pinheiro, P.; Reis, F.; Pinheiro, A. Integrated procedure for environmental flow assessment in rivers. Environ. Process. 2014, 1, 137–141. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Trade-off between environmental flow policy and run-of-river hydropower generation in Mediterranean climate. Eur. Water 2017, 60, 123–130. [Google Scholar]
- Kuriqi, A.; Rivaes, R.; Sordo-Ward, A.; Pinheiro, A.N.; Garrote, L. Comparison and validation of hydrological e-flow methods through hydrodynamic modelling. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 24–28 April 2017. [Google Scholar]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Sophocleous, M.; Perkins, S.P. Methodology and application of combined watershed and ground-water models in Kansas. J. Hydrol. 2000, 236, 185–201. [Google Scholar] [CrossRef]
- Guzman, J.A.; Moriasi, D.N.; Gowda, P.H.; Steiner, J.L.; Starks, P.J.; Arnold, J.G.; Srinivasan, R. A model integration framework for linking SWAT and MODFLOW. Environ. Model. Softw. 2015, 73, 103–116. [Google Scholar] [CrossRef]
- Ni, X.; Parajuli, P.B. A coupled SWAT-MODFLOW model to evaluate the effects of management practices on surface-groundwater. In Proceedings of the ASABE Annual International Meeting, New Orleans, LA, USA, 26 July 2015. [Google Scholar]
- Chunn, D.; Faramarzi, M.; Smerdon, B.; Alessi, D.S. Application of an Integrated SWAT–MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater–Surface Water Interactions in West-Central Alberta. Water 2019, 11, 110. [Google Scholar] [CrossRef]
- Dakhlalla, A.O.; Parajuli, P.B.; Ouyang, Y.; Schmitz, D.W. Evaluating the impacts of crop rotations on groundwater storage and recharge in an agricultural watershed. Agric. Water Manag. 2016, 163, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Coupe, R.H.; Barlow, J.R.; Capel, P.D. Complexity of human and ecosystem interactions in an agricultural landscape. Environ. Dev. 2012, 4, 88–104. [Google Scholar] [CrossRef]
- Coupe, R.H.; Thurman, E.M.; Zimmerman, L.R. Relation of usage to the occurrence of cotton and rice herbicides in three streams of the Mississippi Delta. Environ. Sci. Technol. 1998, 32, 3673–3680. [Google Scholar] [CrossRef]
- Barlow, J.R.; Coupe, R.H. Occurrence and Transport of Nitrogen in the Big Sunflower River, Northwestern Mississippi; US Geological Survey Annual Report; US Geological Survey: Reston, VA, USA, 2014. [Google Scholar]
- Carvajal, F.; Agüera, F.; Sánchez-Hermosilla, J. Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops. Agric. Water Manag. 2014, 131, 146–155. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: Texas, TX, USA, 2011. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: The Ground-Water Flow Process; The U.S. Geological Survey Techniques and Methods 6-A16; US Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A modular three-dimensional finite-difference ground-water flow model. The U.S. Geological Survey Techniques of Water Resources Investigations. 1988, 6, A1. [Google Scholar]
- Barlow, P.M.; Leake, S.A. Streamflow Depletion by Wells-Understanding and Managing the Effects of Groundwater Pumping on Streamflow; The U.S. Geological Survey Circular 1376; US Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Jayakody, P.; Parajuli, P.B.; Sassenrath, G.F.; Ouyang, Y. Relationships between water table and model simulated ET. Groundwater 2014, 52, 303–310. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Coffey, M.E.; Workman, S.R.; Taraba, J.L.; Fogle, A.W. Statistical procedures for evaluating daily and monthly hydrologic model predictions. Trans. ASABE 2004, 47, 59–63. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Tuppad, P.; Douglas-Mankin, K.R.; Lee, T.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption. Trans. ASABE 2011, 54, 1677–1684. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Zhou, Z.; Ouyang, Y.; Qiu, Z.; Zhou, G.; Lin, M.; Li, Y. Evidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China. J. Water Clim. Chang. 2017, 8, 293–302. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Jayakody, P. Big Sunflower River Watershed Assessment: Preliminary Report; Office of Agricultural Communications, Mississippi State University: Starkville, MS, USA, 2012. [Google Scholar]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Stonestrom, D.A.; Scanlon, B.R.; Zhang, L. Introduction to special section on impacts of land use change on water resources. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W.; Lohrenz, S. Increasing Mississippi river discharge throughout the 21st century influenced by changes in climate, land use, and atmospheric CO2. Geophys. Res. Lett. 2014, 41, 4978–4986. [Google Scholar] [CrossRef]
- Ngigi, S.N.; Savenije, H.H.; Gichuki, F.N. Hydrological impacts of flood storage and management on irrigation water abstraction in upper Ewaso Ng’iro river basin, Kenya. Water Resour. Manag. 2008, 22, 1859–1879. [Google Scholar] [CrossRef]
- Ruan, B.Q.; Zhang, R.D.; Li, H.A. Research on Water Balance and Water Consumption in Hetao Irrigation District; Science Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Zhao, W.; Liu, B.; Zhang, Z. Water requirements of maize in the middle Heihe River basin, China. Agric. Water Manag. 2010, 97, 215–223. [Google Scholar] [CrossRef]
- Girolimetto, D.; Venturini, V. Water stress estimation from NDVI-Ts plot and the wet environment evapotranspiration. Adv. Remote Sens. 2013, 2, 283–291. [Google Scholar] [CrossRef]
- Kar, G.; Kumar, A. Surface energy fluxes and crop water stress index in Groundnut under irrigated ecosystem. Agric. For. Meteorol. 2007, 146, 94–106. [Google Scholar] [CrossRef]
- Bureau of Hydrology (BOH). Ministry of Water Resources and Electricity of China. Water Resources Assessment of China; Water Resources and Electricity Press: Beijing, China, 1986. [Google Scholar]
Crop Type | Irrigation Amount (mm) | ||||
---|---|---|---|---|---|
May | June | July | August | Total | |
Soybean | 30 | 122 | 91 | 91 | 334 |
Corn | 61 | 122 | 61 | / | 244 |
Cotton | / | 61 | 91 | 30 | 182 |
Rice | 305 | 366 | 336 | 30 | 1037 |
Parameter | Final Min | Final Max | Fitted Values |
---|---|---|---|
V_CH_N2 a | 0.1 | 0.4 | 0.3 |
R_CN2 b | −0.1 | 0.1 | −0.015 |
V_SURLAG c | 5.2 | 13.8 | 9.5 |
R_SOL_K d | −0.2 | 0.2 | −0.1 |
A_GWQMN e | 287 | 1350 | 1075.4 |
Stations | Calibration/Validation | aR2 | bNSE | cRMSE (m3 s−1) | dPBIAS | ||||
---|---|---|---|---|---|---|---|---|---|
eSWAT | SWAT-MODFLOW | SWAT | SWAT-MODFLOW | SWAT | SWAT-MODFLOW | SWAT | SWAT-MODFLOW | ||
Merigold (07288280) | Calibration | 0.53 | 0.73 | 0.49 | 0.69 | 24.7 | 23.44 | −72% | −2% |
Validation | 0.55 | 0.74 | 0.49 | 0.74 | 21.4 | 19.78 | −66% | −12% | |
Sunflower (07288500) | Calibration | 0.60 | 0.68 | 0.59 | 0.64 | 27.2 | 26.71 | −27% | 24% |
Validation | 0.64 | 0.66 | 0.63 | 0.68 | 23.2 | 20.54 | −20% | 21% | |
Leland (07288650) | Calibration | 0.68 | 0.70 | 0.66 | 0.68 | 22.2 | 20.66 | −21% | −21% |
Validation | 0.75 | 0.77 | 0.72 | 0.73 | 19.4 | 18.82 | −35% | 4% |
Month | Stream Water (107 m3) | Pond Water (m3) | Monthly Rainfall (mm) |
---|---|---|---|
January | 10.1 | 30431 | 103 |
February | 11.2 | 30,494 | 102 |
March | 11.9 | 30,486 | 109 |
April | 10.5 | 30,478 | 112 |
May | 11.6 | 30,466 | 98 |
June | 7.6 | 30,455 | 78 |
July | 7.6 | 30,444 | 82 |
August | 6.9 | 30,431 | 72 |
September | 7.9 | 30,426 | 89 |
October | 9.7 | 30,421 | 108 |
November | 10.1 | 30,421 | 106 |
December | 11.5 | 30,418 | 139 |
Average | 9.7 | 30,448 | 100 |
Year | Stream Water (109 m3) | Pond Water (106 m3) | Annual Rainfall (mm) |
---|---|---|---|
2000 | 0.7 | 4.7 | 846 |
2001 | 1.5 | 4.7 | 1199 |
2002 | 2.7 | 4.7 | 1214 |
2003 | 0.7 | 4.7 | 1433 |
2004 | 1.2 | 4.7 | 796 |
2005 | 0.6 | 4.7 | 1807 |
2006 | 0.9 | 4.7 | 992 |
2007 | 0.5 | 4.7 | 1401 |
2008 | 0.9 | 4.7 | 1157 |
2009 | 1.4 | 4.7 | 1309 |
2010 | 0.5 | 4.7 | 1130 |
2011 | 0.9 | 4.7 | 1306 |
2012 | 1.3 | 4.7 | 870 |
2013 | 2.3 | 4.7 | 1404 |
2014 | 1.1 | 4.6 | 1452 |
2015 | 1.2 | 4.6 | 889 |
2016 | 0.7 | 4.6 | 1129 |
Average | 1.1 | 4.7 | 1196 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Feng, G.; Han, M.; Dash, P.; Jenkins, J.; Liu, C. Assessment of Surface Water Resources in the Big Sunflower River Watershed Using Coupled SWAT–MODFLOW Model. Water 2019, 11, 528. https://doi.org/10.3390/w11030528
Gao F, Feng G, Han M, Dash P, Jenkins J, Liu C. Assessment of Surface Water Resources in the Big Sunflower River Watershed Using Coupled SWAT–MODFLOW Model. Water. 2019; 11(3):528. https://doi.org/10.3390/w11030528
Chicago/Turabian StyleGao, Fei, Gary Feng, Ming Han, Padmanava Dash, Johnie Jenkins, and Changming Liu. 2019. "Assessment of Surface Water Resources in the Big Sunflower River Watershed Using Coupled SWAT–MODFLOW Model" Water 11, no. 3: 528. https://doi.org/10.3390/w11030528
APA StyleGao, F., Feng, G., Han, M., Dash, P., Jenkins, J., & Liu, C. (2019). Assessment of Surface Water Resources in the Big Sunflower River Watershed Using Coupled SWAT–MODFLOW Model. Water, 11(3), 528. https://doi.org/10.3390/w11030528