Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS-Approach in a Ligurian Apennine Catchment (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guzzetti, F. Landslide fatalities and the evaluation of landslide risk in Italy. Eng. Geol. 2000, 58, 89–107. [Google Scholar] [CrossRef]
- Heersink, P. World Atlas of natural hazards. Cartographica 2005, 40, 133–134. [Google Scholar] [CrossRef]
- Luino, F. Sequence of instability processes triggered by heavy rainfall in the northern Italy. Geomorphology 2005, 66, 13–39. [Google Scholar] [CrossRef]
- Lee, M.L.; Ng, K.Y.; Huang, Y.F.; Li, W.C. Rainfall-induced landslides in Hulu Kelang area, Malaysia. Nat. Hazards 2014, 70, 353–375. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Hong, Y.; Sahaia, M.; Sun, W.; Yao, D.; Chen, W. Rainstorm-induced shallow landslides process and evaluation—A case study form three hot spots, China. Geomat. Nat. Hazards Risk 2016, 7, 1908–1918. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Heavy precipitation in a changing climate. Does short-term summer precipitation increase faster? Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- European Environment Agency. Climate Change Adaptation and Disaster Risk Reduction in Europe; Office of the European Union: Luxembourg, 2017; Volume 15, pp. 1–171. ISSN 1725-9177. [Google Scholar]
- Zêzere, J.L.; De Brum Ferreira, A.; Rodrigues, M.L. The role of conditioning and triggering factors in the occurrence of landslides: A case study in the area north of Lisbon (Portugal). Geomorphology 1999, 30, 133–146. [Google Scholar] [CrossRef]
- Begueria, S. Changes in land cover and shallow landslide activity: A case study in the Spanish Pyrenees. Geomorphology 2006, 74, 196–206. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region A review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Ciervo, F.; Rianna, G.; Mercogliano, P.; Papa, M.N. Effects of climate change on shallow landslides in a small coastal catchment in southern Italy. Landslides 2017, 14, 1043–1055. [Google Scholar] [CrossRef]
- Gariano, S.L.; Petrucci, O.; Guzzetti, F. The role of rainfall and land use/cover changes in landslide occurrence in Calabria, Southern Italy, in the 20th Century. In Advancing Culture of Living with Landslides. WLF 2017; Mikoš, M., Vilímek, V., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 339–345. [Google Scholar]
- Rago, V.; Chiaravalloti, F.; Chiodo, G.; Gabriele, S.; Lupiano, V.; Nicastro, R.; Pellegrino, A.D.; Procopio, A.; Siviglia, S.; Terranova, O.G.; et al. Geomorphic effects caused by heavy rainfall in southern Calabria (Italy) on 30 october-1 November 2015. J. Maps 2017, 13, 836–843. [Google Scholar] [CrossRef]
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef] [Green Version]
- Tropeano, D.; Turconi, L. Geomorphic classification of alpine catchments for debris-flow hazard reduction. In Proceedings of the Symposium “Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment”, Davos, Switzerland, 10–12 September 2003; Chen, R., Ed.; pp. 1221–1232. [Google Scholar]
- Hungr, O.; Evans, S.G.; Bovis, M.J.; Hutchinson, J.N. A review of the classification of landslides of the flow type. Environ. Eng. Geosci. 2001, 7, 221–238. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Piccarelli, L. The Varnes classification of landslides types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Montrasio, L.; Valentino, R. Experimental analysis and modelling of shallow landslides. Landslides 2007, 4, 291–296. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 1994, 30, 1153–1171. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Borga, M.; Dalla Fontana, G.; Gregoretti, C.; Marchi, L. Assessment of shallow landsliding by using a physically based model of hillslope stability. Hydrol. Process. 2002, 16, 2833–2851. [Google Scholar] [CrossRef]
- Crosta, G.B.; ì Frattini, P. Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazards Earth Syst. Sci. 2003, 3, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Beek, L.P.H.V.; Asch, T.W.J.V. Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Nat. Hazards 2004, 31, 289–304. [Google Scholar] [CrossRef]
- Ho, J.Y.; Lee, K.T. Performance evaluation of a physically based model for shallow landslide prediction. Landslides 2016, 14, 961–980. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z.; (on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslides hazard evaluation: A review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslides susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Corominas, J.; Van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eackhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209. [Google Scholar] [CrossRef]
- Palladino, M.R.; Viero, A.; Turconi, L.; Brunetti, M.T.; Peruccacci, S.; Melillo, M.; Luino, F.; Deganutti, A.M.; Guzzetti, F. Rainfall thresholds for the activation of shallow landslides in the Italian Alps: The role of environmental conditioning factors. Geomorphology 2017, 303, 53–67. [Google Scholar] [CrossRef]
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. Landf. 1991, 16, 427–445. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Honk Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Huabin, W.; Gangjun, L.; Gonghui, W. GIS-based landslides hazard assessment: An overview. Prog. Phys. Geogr. 2005, 29, 548–567. [Google Scholar] [CrossRef]
- Cachon, J.; Irigaray, C.; Fernandez, T.; El Hamdouni, R. Engineering geology maps: Landslides and geographical information systems. Bull. Eng. Geol. Environ. 2006, 65, 341–411. [Google Scholar] [CrossRef]
- Baeza, C.; Corominas, J. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf. Process. Landf. 2001, 26, 1251–1263. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J. Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada. Nat. Hazards 2007, 42, 75–89. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Pereira, S.; Melo, R.; Oliveira, S.C.; Garcia, R.A.C. Mapping landslides susceptibility using data-driven methods. Sci. Total Environ. 2017, 589, 250–267. [Google Scholar] [CrossRef]
- Long, N.T.; De Smedt, F. Analysis and mapping of rainfall-induced landslide susceptibility in a Luoi District, Thua Thien Hue Province, Vietnam. Water 2018, 11, 51. [Google Scholar] [CrossRef]
- Chan, H.-C.; Chen, P.A.; Lee, J.-T. Rainfall-induced landslide susceptibility using a rainfall-runoff model and logistic regression. Water 2018, 10, 1354. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modelling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Catani, F.; Lagomarsino, D.; Segoni, S.; Tofani, V. Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issue. Nat. Hazard Earth Syst. Sci. 2013, 13, 2815–2831. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Wang, P.; Bai, X.; Wu, X.; Yu, H.; Hao, Y.; Hu, B.X. GIS-based random forest weight for rainfall-induced landslide susceptibility assessment at a humid region in Southern China. Water 2018, 10, 1019. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.H.; Kim, L.S. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea. Landslides 2007, 4, 327–338. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S.; Buchroithner, M.F. A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analysis. Comput. Environ. Urban Syst. 2010, 34, 216–235. [Google Scholar] [CrossRef]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ. Model. Soft. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Simoni, S.; Zanotti, F.; Bertoldi, G.; Rigon, R. Modelling the probability of occurrence of shallow landslides and channelized debris-flows using GEOtop-FS. Hydrol. Process. 2008, 22, 532–545. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.G.; Fatichi, S.; Burlando, P. An advanced process-based distributed model for the investigation of rainfall induced landslides: The effect of process representation and boundary conditions. Water Resour. Res. 2015, 51, 7501–7523. [Google Scholar] [CrossRef]
- Guzzetti, F.; Stark, C.P.; Salvati, P. Evaluation of flood and landslide risk to the population of Italy. Environ. Manag. 2005, 36, 15–36. [Google Scholar] [CrossRef]
- Faccini, F.; Robbiano, A.; Sacchini, A. Geomorphic hazard and intense rainfall: The case study of the Recco Stream Catchment (Eastern Liguria, Italy). Nat. Hazard Earth Sys. Sci. 2012, 12, 893–903. [Google Scholar] [CrossRef]
- Faccini, F.; Luino, F.; Sacchini, A.; Turconi, L.; De Graff, J.V. Geohydrological hazards and urban development in the Mediterranean area: An example from Genoa (Liguria, Italy). Nat. Hazards Earth Syst. Sci. 2015, 15, 2631–2652. [Google Scholar] [CrossRef]
- Giannecchini, R.; Damilano, D.; Puccinelli, A. Critical rainfall thresholds for triggering rapid shallow landslides in the Eastern Ligurian Riviera (Italy). In Proceedings of the 85th Italian Geological Society National Congress, Pisa, Italy, 6–8 September 2010; Volume 2, pp. 596–597. [Google Scholar]
- Giannecchini, R.; Galanti, Y.; Barsanti, M. Rainfall intensity-duration thresholds for triggering shallow landslides in the Eastern Ligurian Riviera (Italy). In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer International Publishing: Basel, Switzerland, 2015; Volume 2, pp. 1581–1584. [Google Scholar]
- Cevasco, A.; Diodato, N.; Revellino, P.; Fiorillo, F.; Grelle, G.; Guadagno, F.M. Storminess and geo-hydrological events affecting small coastal basins in a terraced Mediterranean environment. Sci. Total Environ. 2015, 532, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Cevasco, A.; Pepe, G.; D’Amato Avanzi, G.; Giannecchini, R. A study on the 10 November 2014 intense rainfall and the related landslides in the lower Lavagna valley (eastern Liguria). Rend. Online Soc. Geol. Ital. 2015, 35, 66–69. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; D’Amato Avanzi, G.; Giannecchini, R. Preliminary analysis of the November 10, 2014 rainstorm and related landslides in the lower Lavagna Valley (Eastern Liguria). Ital. J. Eng. Geol. Environ. Spec. Issue 2017, 1, 5–15. [Google Scholar] [CrossRef]
- D’Amato Avanzi, G.; Galanti, Y.; Giannecchini, R.; Bartelletti, C. Shallow landslides triggered by the 25 October 2011 extreme rainfall in Eastern Liguria (Italy). In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer International Publishing: Basel, Switzerland, 2015; Volume 2, pp. 515–519. [Google Scholar]
- Cevasco, A.; Brandolini, P.; Scopesi, C.; Rellini, I. Relationships between geo-hydrological processes induced by heavy rainfall and land-use: The case of 25 October 2011 in the Vernazza catchment (Cinque Terre, NW Italy). J. Maps 2013, 9, 289–298. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; Brandolini, P. The influences of geological and land-use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull. Eng. Geol. Environ. 2014, 73, 859–875. [Google Scholar] [CrossRef]
- Faccini, F.; Paliaga, G.; Piana, P.; Sacchini, A.; Watkins, C. The Bisagno stream catchment (Genoa, Italy) and its major floods: Geomorphic and land use variations in the last three centuries. Geomorphology 2016, 273, 14–27. [Google Scholar] [CrossRef]
- Brandolini, P.; Cevasco, A.; Capolongo, D.; Pepe, G.; Lovergine, F.; Del Monte, M. Response of terraced slopes to a very intense rainfall Event and relationships with land abandonment: A case study from Cinque Terre (Italy). Land Degrad. Dev. 2016, 29, 630–642. [Google Scholar] [CrossRef]
- Roccati, A.; Faccini, F.; Luino, F.; Turconi, L.; Piana, P.; Watkins, C.; Faccini, F. Historical geomorphological research of a Ligurian coastal floodplain (Italy) and its value for management of flood risk and environmental sustainability. Sustainability 2018, 10, 3727. [Google Scholar] [CrossRef]
- Faccini, F.; Brandolini, P.; Robbiano, A.; Perasso, L.; Sola, A. Fenomeni di dissesto e precipitazioni in rapporto alla pianificazione territoriale: l’evento alluvionale del novembre 2002 nella bassa Val Lavagna (Liguria Orientale). Geogr. Fis. Dinam. Quat. 2005, 7, 145–153. (In Italian) [Google Scholar]
- Faccini, F.; Piana, P.; Sacchini, A.; Lazzeri, R.; Paliaga, G.; Luino, F. Assessment of heavy rainfall triggered flash floods and landslides in the Sturla stream basin (Ligurian Apennines, northwestern Italy). Jokull 2017, 67, 44–74. [Google Scholar]
- Roccati, A.; Faccini, F.; Luino, F.; Turconi, L.; Guzzetti, F. Rainfall events with shallow landslides in the Entella catchment, Liguria, Northern Italy. Nat. Hazards Earth Syst. Sci. 2018, 18, 2367–2386. [Google Scholar] [CrossRef]
- Battistini, A.; Segoni, S.; Manzo, G.; Catani, F. Web data mining for automatic inventory of geohazards at national scale. Appl. Geomorphol. 2013, 43, 147–158. [Google Scholar] [CrossRef]
- Servizio Geologico d’Italia. Carta Geologica d’Italia in Scala 1:100,000—Foglio 83 “Rapallo”, 2nd ed.; Servizio Geologico Italiano: Roma, Italy, 1968. (In Italian)
- Boni, A.; Braga, G.; Conti, S.; Gelati, R.; Marchetti, G.; Passeri, L.D. Note illustrative della Carta Geologiche d’Italia 1:100,000, Foglio 83 “Rapallo”; Servizio Geologico Italiano: Roma, Italy, 1969. (In Italian)
- Marini, M. L’Unità del M. Gottero fra la Val Trebbia e Sestri Levante (Appennino ligure): Nuovi dati di analisi di bacino e ipotesi di evoluzione sedimentaria. Boll. Soc. Geol. Ital. 1992, 111, 3–23. (In Italian) [Google Scholar]
- Marini, M. Le Arenarie del M. Gottero nella sezione del M. Ramaceto (Unità del M. Gottero, Appennino ligure). Boll. Soc. Geol. Ital. 1994, 113, 283–302. (In Italian) [Google Scholar]
- Sacchini, A.; Ferraris, F.; Faccini, F.; Firpo, M. Environmental climatic maps of Liguria. J. Maps 2012, 8, 199–207. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Lagomarsino, D.; Segoni, S.; Fanti, R.; Catani, F. Updating and tuning a regional-scale landslides early warning system. Landslides 2013, 10, 91–97. [Google Scholar] [CrossRef]
- Del Ventisette, C.; Garfagnoli, F.; Ciampalini, A.; Battistini, A.; Gigli, G.; Moretti, S.; Casagli, N. An integrated approach to the study of catastrophic debris-flows: Geological hazard and human influence. Nat. Hazards Earth Syst. Sci. 2012, 12, 2907–2922. [Google Scholar] [CrossRef]
- Santos, J.G. GIS-based hazard and risk maps of the Douro river basin (north-eastern Portugal). Geomat. Nat. Hazard Risk 2015, 6, 90–114. [Google Scholar] [CrossRef]
- Persichillo, M.G.; Bordoni, M.; Meisina, C.; Bartelletti, C.; Barsanti, M.; Giannecchini, R.; D’Amato Avanzi, G.; Galanti, Y.; Cevasco, A.; Brandolini, P.; et al. Shallow landslides susceptibility assessment in different environments. Geom. Nat. Hazard Risk 2017, 8, 748–771. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Spilotro, G. GIS-based predictive models for regional-scale landslides susceptibility assessment and risk mapping along road corridors. Geom. Nat. Hazard Risk 2017, 8, 1012–1033. [Google Scholar] [CrossRef]
- Mathew, J.; Jha, V.K.; Rawat, G.S. Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using a binary logistic regression analysis and receiver operating characteristic curve method. Landslide 2009, 6, 17–26. [Google Scholar] [CrossRef]
- European Environmental Agency. CORINE Land Cover Technical Guide. Part2 Nomenclature; Office for Official Publications of the European Communities: Luxembourg, 1995. [Google Scholar]
- Crosta, G.B.; Dal Negro, P.; Frattini, P. Soil slips and debris flows on terraced slopes. Nat. Hazards Earth Syst. Sci. 2003, 3, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Naghibi, S.A.; Pourghasemi, H.R.; Pradhan, B. GIS-based landslide spatial modeling in Ganzhou City, China. Arab. J. Geosci. 2016, 9, 112. [Google Scholar] [CrossRef]
- Bartelletti, C.; Giannecchini, R.; D’Amato Avanzi, G.; Galanti, Y.; Mazzali, A. The influence of geological-morphological and land use settings on shallow landslides in the Pogliaschina T. basin (northern Apennines, Italy). J. Maps 2017, 13, 142–152. [Google Scholar] [CrossRef]
- Giordan, D.; Cignetti, M.; Baldo, M.; Godone, D. Relationship between man-made environment and slope stability: The case of 2014 rainfall events in the terraced landscape of the Liguria region (northwestern Italy). Geom. Nat. Hazards Risk 2017, 8, 1833–1852. [Google Scholar] [CrossRef]
- Paliaga, G.; Faccini, F.; Luino, F.; Turconi, L.; Bobrowsky, P. Geomorphic processes and risk related to a large landslide dam in a highly urbanized Mediterranean catchment (Genoa, Italy). Geomorphology 2018, 327, 8–61. [Google Scholar] [CrossRef]
Map | Scale | Year |
---|---|---|
Regional geological map, Table 232.3 Sestri Levante and 232.4 Lavagna | 1:25,000 | 2004 |
Regional geological map, Table 231.1, 231.4 Chiavari-Recco | 1:25,000 | 2005 |
Regional geological map, Table 215.3 Borzonasca | 1:25,000 | 2006 |
Regional thematic map, slope aspect | 1:5000 1:10,000 | 2007 |
Regional thematic map, slope steepness | 1:10,000 | 2007 |
Regional thematic map, land-use | 1:10,000 | 2015 |
Regional thematic map, landslides susceptibility | 1:10,000 | 2017 |
Catalogue of landslides, IFFI (Inventario Fenomeni Franosi in Italia) Project | 1:10,000 | 2014 |
Regional technical map, 3D topographical database | 1:5000 | 2007 |
# | Date | Site | Damage |
---|---|---|---|
1 | 6 November 2000 | NE | R |
2 | 24–26 November 2002 | CR, LV, MG, NE, SC | C, S, I |
3 | 31 October–1 November 2003 | BR, NE | R, S, I |
4 | 19–20 February 2006 | BR | S, I |
5 | 8 December 2006 | BR | R |
6 | 26 September 2007 | NE | R |
7 | 21–23 November 2007 | CR, MG | R |
8 | 19 April 2008 | SC | R |
9 | 11–12 November 2008 | CR, NE | R, I |
10 | 1–2 December 2008 | CR, NE | R, S, I |
11 | 20–22 January 2009 | BR, CG, MG, NE | R, S, I |
12 | 2 April 2009 | BR | R |
13 | 8 December 2009 | CR | R, I |
14 | 22–26 December 2009 | BR, CR, MG, NE, OR | R, S, I |
15 | 7 May 2010 | NE, FM | R, I |
16 | 1–3 November 2010 | BR, MG, NE | R, S, I |
17 | 22–24 December 2010 | BR, MG | R, S, I |
18 | 10 January 2011 | BR | R |
19 | 7–8 June 2011 | NE | R |
20 | 4–5 September 2011 | NE | R, I |
21 | 25 October 2011 | NE | R |
22 | 4–6 November 2011 | NE | R |
23 | 17–18 March 2013 | MG | R, S, I |
24 | 29 March 2013 | CR | R |
25 | 27 April 2013 | TR | R |
26 | 27 June 2013 | NE | R |
27 | 21–22 October 2013 | BR, CR, LV, MG, NE, SC | C, R, S, I |
28 | 30 October 2013 | CG, CL, FM, MC, OR | R, S, I |
29 | 3 November 2013 | MG | R |
30 | 25–26 December 2013 | BR, CR, CG, LV, LM, MG, MC, NE, NR, TR | R, S, I |
31 | 4–5 January 2014 | BR, CR, MG, NE, TR | R, S, I |
32 | 16–20 January 2014 | BR, CR, LM, MG, MC, NE, SC, TR | R, S, I |
33 | 9–11 February 2014 | BR, MG, NE, SC | R, S |
34 | 1–3 March 2014 | BR, CR, LV, SC | R, I |
35 | 10–11 October 2014 | BR, CR, CG, CL, LR, LM, MG, MC, NE, NR, TR | R, S, I |
36 | 3–6 November 2014 | NE | R |
37 | 10–11 November 2014 | BR, CR, CV, CG, CN, FM, LV, MG, NE, SC | C, R, S, I |
38 | 17 November 2014 | FM, CG | R |
39 | 22 January 2015 | LR | R |
40 | 14 September 2015 | BR, CR, CG, FM, LR, SC | R, S, I |
41 | 9 February 2016 | LR | R |
42 | 12 February 2016 | LR, SC | R, S |
43 | 23 February 2016 | NE | R |
44 | 12 December 2017 | BR | R, I |
45 | 26–28 December 2017 | LM | R |
Municipality | Basin | # |
---|---|---|
Borzonasca | Sturla | 129 |
Carasco | Sturla | 38 |
Chiavari | Entella | 1 |
Cicagna | Lavagna | 15 |
Cogorno | Entella | 1 |
Coreglia Ligure | Lavagna | 2 |
Favale di Malvaro | Lavagna | 14 |
Leivi | Lavagna | 13 |
Lorsica | Lavagna | 5 |
Lumarzo | Lavagna | 10 |
Mezzanego | Sturla | 151 |
Moconesi | Lavagna | 10 |
Ne | Graveglia | 93 |
Neirone | Lavagna | 6 |
Orero | Lavagna | 4 |
San Colombano Certenoli | Lavagna | 176 |
Tribogna | Lavagna | 8 |
Spatial Distribution of Landslides (%) | Lithological Category | Litho-Technical Category | Class |
---|---|---|---|
<1 | Alluvial deposits (al) | Heterogeneous clayey and sandy deposits | Low |
Basalts (BA) | Ophiolitic rocks | ||
Gabbros (GA) | |||
Polygenic sedimentary ophiolitic breccias (BRO) | |||
Serpentinites (SR) | |||
Cherts (CH) | Siliceous rocks | ||
Granites and granitoids (GRT) | Intrusive and massive metamorphic rocks | ||
Limestones (LM) | Mainly calcareous rocks | ||
Calcareous-marly flysch (CMF) | Heterogeneous sequences and chaotic complex | ||
1–5 | Sandstones (SD) | Mainly ruditic and arenitic rocks | Medium |
Clayey-pelitic breccias and olistolithes (BRC) | Heterogeneous sequences and chaotic complex | ||
5–10 | Incoherent soils (ca) | Incoherent soils, included silt and clay with granular fraction and coarse soil mixed up with heterogeneous materials | High |
>10 | Clayey flysch (CLF) | Heterogeneous sequences and chaotic complex | Very high |
Slates (SL) |
Spatial Distribution of Landslides (%) | Steepness | Class |
<1 | 0–10% | Low |
1–15 | 11–35% | Medium |
15–25 | >76% | High |
>25 | 36–75% | Very high |
Spatial Distribution of Landslides (%) | Aspect | Class |
<10 | N, NE, NW | Low |
11–13 | E | Medium |
14–15 | W | High |
>16 | S, SE, SW | Very high |
Spatial Distribution of Landslides (%) | Land-Use Category | Class |
---|---|---|
<5 | Continuous urban fabric Port areas Mineral extraction and dump sites Fruit trees and plantations Arboriculture Beaches Bare rocks Industrial and commercial units Green areas and sport leisure facilities Arable lands Natural grassland Vineyards Moors and headland Coniferous forests Roads and rail networks and associated lands Pastures | Low |
5–10 | Complex agricultural pattern Discontinuous urban fabric Land mainly occupied by agriculture Mixed forests Transitional woodland-shrubs | Medium |
10–40 | Olive groves | High |
>40% | Broad-leaved forests | Very high |
Unit | Category | Weight |
---|---|---|
Lithology | Alluvial deposits | 1 |
Basalts | 1 | |
Calcareous-marly flysch | 1 | |
Cherts | 1 | |
Clayey flysch | 4 | |
Clayey-pelitic breccias and olistolites | 2 | |
Gabbros | 1 | |
Granites and granitoids | 1 | |
Incoherent soils | 3 | |
Limestones | 1 | |
Polygenic sedimentary ophiolitic breccias | 1 | |
Sandstones | 2 | |
Slates | 4 | |
Serpentinites | 1 | |
Slope aspect | N | 1 |
NE | 1 | |
E | 2 | |
SE | 4 | |
S | 4 | |
SW | 4 | |
W | 3 | |
NW | 1 | |
Slope steepness | 0–10% | 1 |
10–35% | 2 | |
35–75% | 4 | |
>75% | 3 | |
Land-use | Arable land | 1 |
Arboriculture | 1 | |
Bare rocks | 1 | |
Beaches | 1 | |
Broad-leaved forest | 4 | |
Complex agricultural pattern | 2 | |
Coniferous forest | 1 | |
Continuous urban fabric | 1 | |
Discontinuous urban fabric | 2 | |
Dumps sites | 1 | |
Green urban areas, sport and leisure facilities | 1 | |
Industrial and commercial units | 1 | |
Land mainly occupied by agriculture | 2 | |
Mineral extraction sites | 1 | |
Mixed forest | 2 | |
Moors and headland | 1 | |
Natural grassland | 1 | |
Olive grove | 3 | |
Pasture | 1 | |
Port areas | 1 | |
Roads and railway network | 1 | |
Transitional woodland/shrub | 2 | |
Vineyard | 1 |
Classes | Weight | |
---|---|---|
Existing landslides | Stable areas | 1 |
Existing inactive/stabilized landslides | 2 | |
Existing dormant landslides | 3 | |
Existing active/reactive/pendent landslides | 4 | |
Springs | Distance < 50 m | 1 |
Distance > 50 m | 2 | |
Watercourses | Distance < 10 m | 1 |
Distance > 10 m | 2 | |
Anthropic elements | Roads < 5 m | 1 |
Roads > 5 m | 2 | |
Buildings < 50 m | 1 | |
Buildings > 50 m | 2 | |
Man-made structures < 50 m | 1 | |
Man-made structures > 50 m | 2 | |
Retaining fencings and structures < 50 m | 2 | |
Retaining fencings and structures > 50 m | 1 |
# | Class | Score | Area (km2) |
---|---|---|---|
1 | Null | 1–14 | 8.73 |
2 | Low | 14–18 | 44.15 |
3 | Medium | 18–21 | 126.44 |
4 | High | 21–24 | 153.99 |
5 | Very high | 24–29 | 37.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roccati, A.; Faccini, F.; Luino, F.; Ciampalini, A.; Turconi, L. Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS-Approach in a Ligurian Apennine Catchment (Italy). Water 2019, 11, 605. https://doi.org/10.3390/w11030605
Roccati A, Faccini F, Luino F, Ciampalini A, Turconi L. Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS-Approach in a Ligurian Apennine Catchment (Italy). Water. 2019; 11(3):605. https://doi.org/10.3390/w11030605
Chicago/Turabian StyleRoccati, Anna, Francesco Faccini, Fabio Luino, Andrea Ciampalini, and Laura Turconi. 2019. "Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS-Approach in a Ligurian Apennine Catchment (Italy)" Water 11, no. 3: 605. https://doi.org/10.3390/w11030605
APA StyleRoccati, A., Faccini, F., Luino, F., Ciampalini, A., & Turconi, L. (2019). Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS-Approach in a Ligurian Apennine Catchment (Italy). Water, 11(3), 605. https://doi.org/10.3390/w11030605