Assessing Climate Change Impacts on Streamflow, Sediment and Nutrient Loadings of the Minija River (Lithuania): A Hillslope Watershed Discretization Application with High-Resolution Spatial Inputs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Description
2.2. Model Discretization Scheme
- Urban sub-basins (completely channelized);
- Agricultural sub-basins (partly channelized);
- Pond/reservoir sub-basins (completely channelized);
- Forest/buffer sub-basins (not channelized);
- Stream and forest sub-basins (partly channelized); and
- Stream sub-basins (completely channelized).
2.3. Addressing the Model Complexity
2.4. Data and Scenarios
3. Results
3.1. Model Calibration and Validation
3.2. Predicted Average Yearly Changes in the Minija Basin
3.3. Predicted Changes in the Hydrological Regime
3.3.1. Minija River Near-Term Flow Changes
3.3.2. Minija River Long-Term Flow Changes
3.4. Predicted Average Monthly Sediment and Nutrient Loads
3.4.1. Minija River Near-Term Sediment and Nutrient Loads
3.4.2. Minija River Long-Term Nutrient and Sediment Loads
4. Discussion
4.1. Possible Changes Related to Hydrologic Regime Change
4.2. Possible Changes Related to Nutrient Loads
4.3. Future Work
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- HELCOM. Thematic Assessment of Eutrophication 2011–2016; HELCOM: Helsinki, Finland, 2018; Available online: http://www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials (accessed on 7 January 2019).
- HELCOM Ministerial Meeting. In HELCOM Baltic Sea Action Plan; HELCOM: Krakow, Finland, 2007.
- Svendsen, L.M.; Larsen, S.E.; Gustafsson, B.; Sonesten, L.; Frank-Kamenetsky, D. Progress Towards National Targets for Input of Nutrients; HELCOM: Helsinki, Finland, 2018. [Google Scholar]
- Čerkasova, N.; Ertürk, A.; Zemlys, P.; Denisov, V.; Umgiesser, G. Curonian Lagoon drainage basin modelling and assessment of climate change impact. Oceanologia 2016, 58, 90–102. [Google Scholar] [CrossRef]
- Graham, L.P. Climate Change Effects on River Flow to the Baltic Sea. AMBIO J. Hum. Environ. 2004, 33, 235–241. [Google Scholar] [CrossRef]
- Donnelly, C.; Yang, W.; Dahné, J. River discharge to the Baltic Sea in a future climate. Clim. Chang. 2014, 122, 157–170. [Google Scholar] [CrossRef]
- c/o International Baltic Earth Secretariat. Second Assessment of Climate Change for the Baltic Sea Basin; Bolle, H.-J., Menenti, M., Rasool, S.I., Eds.; Springer International Publishing AG Switzerland: Cham, Switzerland, 2015; ISBN 978-3-319-16005-4. [Google Scholar] [CrossRef]
- Rimkus, E.; Kažys, J.; Bukantis, A.; Krotovas, A. Temporal variation of extreme precipitation events in Lithuania. Oceanologia 2011, 53, 259–277. [Google Scholar] [CrossRef]
- Stonevičius, E.; Rimkus, E.; Štaras, A.; Kažys, J.; Valiuškevičius, G. Climate change impact on the nemunas river basin hydrology in the 21st century. Boreal Environ. Res. 2017, 22, 49–65. [Google Scholar]
- Cousino, L.K.; Becker, R.H.; Zmijewski, K.A. Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed. J. Hydrol. Reg. Stud. 2015, 4, 762–775. [Google Scholar] [CrossRef]
- HELCOM. BASE project 2012–2014. In Assessment and Quantification of Nutrient Loads to the Baltic Sea from Kaliningrad Oblast and Transboundary Rivers, and the Evaluation of their Sources; Baltic Marine Environment Protection Commission HELCOM: Helsinki, Finland, 2014; Available online: http://www.helcom.fi/Lists/Publications/Nutrient%20monitoring%20in%20Kaliningrad_BASE%20Project%20Final%20Report.pdf (accessed on 5 December 2018).
- Povilaitis, A.; Widén-Nilsson, E.; Šarauskienė, D.; Kriaučiūnienė, J.; Jakimavičius, D.; Bukantis, A.; Kažys, J.; Ložys, L.; Kesminas, V.; Virbickas, T.; et al. Potential impact of climate change on nutrient loads in lithuanian rivers. Environ. Eng. Manag. J. (EEMJ) 2018, 17, 2229–2240. [Google Scholar] [CrossRef]
- Meier, H.E.M.; Hordoir, R.; Andersson, H.C.; Dieterich, C.; Eilola, K.; Gustafsson, B.G.; Höglund, A.; Schimanke, S. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim. Dyn. 2012, 39, 2421–2441. [Google Scholar] [CrossRef]
- Čerkasova, N.; Umgiesser, G.; Ertürk, A. Development of a hydrology and water quality model for a large transboundary river watershed to investigate the impacts of climate change—A SWAT application. Ecol. Eng. 2018, 124, 99–115. [Google Scholar] [CrossRef]
- Martin, G.M.; Bellouin, N.; Collins, W.J.; Culverwell, I.D.; Halloran, P.R.; Hardiman, S.C.; Hinton, T.J.; Jones, C.D.; McDonald, R.E.; McLaren, A.J.; et al. The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev. 2011, 4, 723–757. [Google Scholar] [CrossRef]
- SWAT Literature Database for Peer-Reviewed Journal Articles. Available online: https://www.card.iastate.edu/swat_articles/ (accessed on 18 June 2018).
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool “SWAT” Input/Output Documentation; SWAT: Houston, TX, USA, 2012. [Google Scholar]
- Lietuvos Statistikos Departamentas/Statistics Lithuania. Lietuvos Statistikos Metraštis/Statistical Yearbook of Lithuania; The Lithuanian Department of Statistics: Vilnius, Lithuania, 2017.
- Umgiesser, G.; Čerkasova, N.; Erturk, A.; Mėžinė, J.; Kataržytė, M. New beach in a shallow estuarine lagoon: A model-based E. coli pollution risk assessment. J. Coast. Conserv. 2018, 22, 573–586. [Google Scholar] [CrossRef]
- Volungevičius, J.; Kavaliauskas, P. Lietuvos Dirvožemiai; Aleksandras Stulginskis University: Kaunas, Lithuania, 2012. [Google Scholar]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited: From Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Volk, M.; Williams, J.R.; Bosch, D.D. Assessment of Different Representations of Spatial Variability on SWAT Model Performance. Trans. ASABE 2010, 53, 1433–1443. [Google Scholar] [CrossRef]
- Hesse, C.; Krysanova, V.; Päzolt, J.; Hattermann, F.F. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecol. Model. 2008, 218, 135–148. [Google Scholar] [CrossRef]
- Kim, N.W.; Shin, A.H.; Lee, J. Effects of Streamflow Routing Schemes on Water Quality with SWAT. Trans. ASABE 2010, 53, 1457–1468. [Google Scholar] [CrossRef]
- Jencso, K.G.; McGlynn, B.L.; Gooseff, M.N.; Bencala, K.E.; Wondzell, M.S. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources. Water Resour. Res. 2010, 46, 1–18. [Google Scholar] [CrossRef]
- Kraft, P.; Haas, E.; Klatt, S.; Kiese, R.; Butterbach-Bahl, K.; Frede, H.-G.; Breuer, L. Modelling nitrogen transport and turnover at the hillslope scale—A process oriented approach. In Proceedings of the 6th International Congress on Environmental Modelling and Software: Managing Resources of a Limited Planet, Leipzig, Germany, 1–5 July 2012. [Google Scholar]
- Vigiak, O.; Malagó, A.; Bouraoui, F.; Vanmaercke, M.; Poesen, J. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Sci. Total Environ. 2015, 538, 855–875. [Google Scholar] [CrossRef]
- Zhao, Y.; Beighley, E. Upscaling Surface Runoff Routing Processes in Large-Scale Hydrologic Models: Application to the Ohio River Basin. J. Hydrol. Eng. 2016, 22, 04016068. [Google Scholar] [CrossRef]
- Hoang, L.; Schneiderman, E.M.; Moore, K.E.B.; Mukundan, R.; Owens, E.M.; Steenhuis, T.S. Predicting saturation-excess runoff distribution with a lumped hillslope model: SWAT-HS. Hydrol. Process. 2017, 31, 2226–2243. [Google Scholar] [CrossRef]
- Vigiak, O.; Malagó, A.; Bouraoui, F.; Vanmaercke, M.; Obreja, F.; Poesen, J.; Habersack, H.; Fehér, J.; Grošelj, S. Modelling sediment fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 599–600, 992–1012. [Google Scholar] [CrossRef]
- Gorgan, D.; Bacu, V.; Mihon, D.; Rodila, D.; Abbaspour, K.; Rouholahnejad, E. Grid based calibration of SWAT hydrological models. Nat. Hazards Earth Syst. Sci. 2012, 12, 2411–2423. [Google Scholar] [CrossRef]
- Pignotti, G.; Rathjens, H.; Cibin, R.; Chaubey, I.; Crawford, M. Comparative analysis of HRU and grid-based SWAT models. Water 2017, 9, 272. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid andaridregions Bridget. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Qin, C.-Z.; Liu, J.-Z.; Zhu, A.-X.; Zhu, L.-J.; Gao, H.-R.; Wu, H. Spatial optimization of watershed best management practices based on slope position units. J. Soil Water Conserv. 2018, 73, 504–517. [Google Scholar] [CrossRef]
- Zhu, L.J.; Qin, C.Z.; Zhu, A.X.; Liu, J.; Wu, H. Effects of different spatial configuration units for the spatial optimization of watershed best management practice scenarios. Water 2019, 11, 262. [Google Scholar] [CrossRef]
- Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Volk, M.; Srinivasan, R. Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool. J. Am. Water Resour. Assoc. 2017, 53. [Google Scholar] [CrossRef]
- Linker, L.C.; Shenk, G.W.; Wang, P.; Hopkins, K.J.; Pokharel, S. A Short History of Chesapeake Bay Modeling and the Next Generation of Watershed and Estuarine Models. Proc. Water Environ. Fed. 2012, 2002, 569–582. [Google Scholar] [CrossRef]
- Shenk, G.W.; Wu, J.; Linker, L.C. Enhanced HSPF Model Structure for Chesapeake Bay Watershed Simulation. J. Environ. Eng. 2012, 138, 949–957. [Google Scholar] [CrossRef]
- Chesapeake Bay Program Chesapeake Assessment and Scenario Tool (CAST) Version 2017d. Available online: https://cast.chesapeakebay.net/Documentation/ModelDocumentation (accessed on 10 December 2018).
- European Parliament. Directive of the European Parliament and of the Council 2000/60/EC. Establishing a Framework for Community Action in the Field of Water Policy; Official Journal of the European Communities: Brussels, Belgium, 2000; Volume L327. [Google Scholar]
- Tan, M.L.; Ficklin, D.L.; Dixon, B.; Ibrahim, A.L.; Yusop, Z.; Chaplot, V. Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Appl. Geogr. 2015, 63, 357–368. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, R.; Bao, Y.; Wang, J.; Yu, W.; Shen, Z. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Res. 2014, 53, 132–144. [Google Scholar] [CrossRef]
- Chaplot, V. Impact of spatial input data resolution on hydrological and erosion modeling: Recommendations from a global assessment. Phys. Chem. Earth 2014, 67–69, 23–35. [Google Scholar] [CrossRef]
- National Land Service under the Ministry of Agriculture. Dirv_DR10LT—Spatial Data Set of Soil of the Territory of the Republic of Lithuania at Scale 1:10 000. Available online: http://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7B449450A9-AD8C-6E9E-6FCB-06A0584BF88C%7D (accessed on 12 May 2018).
- National Land Service under the Ministry of Agriculture. SEŽP_0,5LT—Digital Spatial Laser Scanning Points Data of Land Surface of the Republic of Lithuania. Available online: https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7B3AC99DBC-4C8A-F5B5-C859-38EFF4E2DE60%7D (accessed on 12 May 2018).
- Ghaffari, G. The Impact of DEM Resolution on Runoff and Sediment Modelling Results. Res. J. Environ. Sci. 2011, 5, 691–702. [Google Scholar] [CrossRef]
- Goulden, T.; Hopkinson, C.; Jamieson, R. Sensitivity of topographic slope and modelled watershed soil loss to DEM resolution. IAHS-AISH Publ. 2012, 352, 345–349. [Google Scholar]
- Cotter, A.S.; Chaubey, I.; Costello, T.A.; Soerens, T.S.; Nelson, M.A. Water quality model output uncertainty as affected by spatial resolution of input data. J. Am. Water Resour. Assoc. 2003, 39, 977–986. [Google Scholar] [CrossRef]
- Chaubey, I.; Cotter, A.S.; Costello, T.A.; Soerens, T.S. Effect of DEM data resolution on SWAT output uncertainty. Hydrol. Process. 2005, 19, 621–628. [Google Scholar] [CrossRef]
- Chang, C.L.; Chao, Y.C. Effects of spatial data resolution on runoff predictions by the BASINS model. Int. J. Environ. Sci. Technol. 2014, 11, 1563–1570. [Google Scholar] [CrossRef]
- State Forest Survey Service under the Ministry of Environment WMS. Boundaries of State Forest Areas. Available online: https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7BBB076254-3F65-C1B0-6C75-3875C9D7F3E5%7D (accessed on 18 May 2018).
- The Ministry of Agriculture of the Republic of Lithuania. GRPK—Spatial Data Set of (GEO) Reference Base Cadastre. Available online: https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7B9F44EFEC-709F-1696-7D93-B0EA850A2D0E%7D (accessed on 3 September 2017).
- Ashraf Vaghefi, S.; Abbaspour, N.; Kamali, B.; Abbaspour, K.C. A toolkit for climate change analysis and pattern recognition for extreme weather conditions—Case study: California-Baja California Peninsula. Environ. Model. Softw. 2017, 96, 181–198. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar]
- The Guardian Crop Failure and Bankruptcy Threaten Farmers as Drought Grips Europe. Available online: https://www.theguardian.com/environment/2018/jul/20/crop-failure-and-bankruptcy-threaten-farmers-as-drought-grips-europe (accessed on 10 November 2018).
- Feyereisen, G.W.; Strickland, T.C.; Bosch, D.D.; Sullivan, D.G. Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River watershed. Am. Soc. Agric. Biol. Eng. 2007, 50, 843–856. [Google Scholar] [CrossRef]
- Dakhlalla, A.O.; Parajuli, P.B. Evaluation of the Best Management Practices at the Watershed Scale to Attenuate Peak Streamflow under Climate Change Scenarios. Water Resour. Manag. 2016, 30, 963–982. [Google Scholar] [CrossRef]
- Spellman, P.; Webster, V.; Watkins, D. Bias correcting instantaneous peak flows generated using a continuous, semi-distributed hydrologic model. J. Flood Risk Manag. 2018, 11, e12342. [Google Scholar] [CrossRef]
- Du, X.; Shrestha, N.K.; Wang, J. Integrating organic chemical simulation module into SWAT model with application for PAHs simulation in Athabasca oil sands region, Western Canada. Environ. Model. Softw. 2019, 111, 432–443. [Google Scholar] [CrossRef]
- Moriasi, D. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Environmental Protection Agency of Lithuania. Požeminio Vandens Būklė ir jo Sąveika su Paviršinio Vandens Telkiniais; Environmental Protection Agency of Lithuania: Vilnius, Lithuania, 2010.
- Kirtman, B.; Adedoyin, A.; Bindoff, N. Chapter 11—Near-term Climate Change: Projections and Predictability. In Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5; IPCC, Ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 953–1028. [Google Scholar]
- Ertürk, A. Biogeninių Medžiagų Apkrovos Modeliavimas Estuarinėse Lagūnose; Klaipeda University: Klaipeda, Lithuania, 2008. [Google Scholar]
- Vybernaite-Lubiene, I.; Zilius, M.; Saltyte-Vaisiauske, L.; Bartoli, M. Recent Trends (2012–2016) of N, Si, and P Export from the Nemunas River Watershed: Loads, Unbalanced Stoichiometry, and Threats for Downstream Aquatic Ecosystems. Water 2018, 10, 1178. [Google Scholar] [CrossRef]
- Zemlys, P.; Ferrarin, C.; Umgiesser, G.; Gulbinskas, S.; Bellafiore, D. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipeda Strait using finite element hydrodynamic model. Ocean Sci. 2013, 9, 573–584. [Google Scholar] [CrossRef]
- Ferrarin, C.; Razinkovas, A.; Gulbinskas, S.; Umgiesser, G.; Bliudžiute, L. Hydraulic regime-based zonation scheme of the Curonian Lagoon. Hydrobiologia 2008, 611, 133–146. [Google Scholar] [CrossRef]
No. | Name | Description | Period | Analysed Period |
---|---|---|---|---|
1 | Baseline | Baseline scenario of the present situation with measured climate forcing for the observed period | 1995–2014 | 1995–2014 |
2a | RCP 4.5 Near-term | Climate change scenario, based on projection of the RCP 4.5 from the HadGEM2-ES, downscaled [15]; | 2020–2050 | 2040–2050 |
2b | RCP 4.5 Long-term | 2051–2099 | 2090–2099 | |
3a | RCP 8.5 Near-term | Climate change scenario, based on projection of the RCP 8.5 from the HadGEM2-ES, downscaled [15]; | 2020–2050 | 2040–2050 |
3b | RCP 8.5 Long-term | 2051–2099 | 2090–2099 |
Scenario | Temperature (°C change) | Precipitation (% change) | ||||||
---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Fall | Winter | Spring | Summer | Fall | |
2a | 2.9 | 4.5 | 5.0 | 4.0 | −10.6 | 23.7 | −25.5 | −20.5 |
2b | 3.5 | 5.3 | 6.2 | 5.2 | −17.2 | 48.9 | −21.5 | −36.5 |
3a | 2.9 | 4.4 | 5.9 | 4.3 | −16.5 | 22.2 | −35.5 | −19.5 |
3b | 6.9 | 7.6 | 9.3 | 7.7 | −4.7 | 52.4 | −35.2 | −35.3 |
No. | Parameter | Associated Process and Description | Assigned Value |
---|---|---|---|
1 | ALPHA_BF | Baseflow alpha factor—baseflow recession constant, a direct index of groundwater flow response to changes in recharge (1/days) | 0.1 |
2 | GW_DELAY | Groundwater delay time—the lag between the time that water exits the soil profile and enters the shallow aquifer (days) | 7 |
3 | ESCO | Soil evaporation compensation factor—the depth distribution used to meet the soil evaporative demand to account for the effect of capillary action, crusting and cracks | 0.75 |
4 | CN * | Initial SCS runoff curve number—function of the soil’s permeability, land use and antecedent soil water conditions | 35.8–61.6 |
5 | SOL_K | Saturated hydraulic conductivity—is a measure of ease of water movement through the soil (mm/h) | 84.52–1200 |
6 | SOL_AWC | Available water capacity of the soil (mm H2O/mm soil) | 0.02–0.06 |
7 | ADJ_PKR | Peak rate adjustment for sediment routing in the sub-basin tributary channels—factor which impacts the amount of erosion generated in the HRUs | 0.5 |
8 | PRF | Peak rate adjustment for sediment routing in the main channel—impacts channel degradation | 1.25 |
9 | RSDCO | Residue decomposition coefficient—the fraction of residue which will decompose in a day assuming optimal conditions | 0.05 |
10 | SDNCO | Denitrification threshold water content—fraction of field capacity water content above which denitrification takes place | 1.0 |
11 | GWSOLP | Concentration of soluble phosphorus in groundwater contribution to streamflow from sub-basin (mg P/L or ppm) | 0.03 |
Station Name | Time Period: Calibration Validation | Performance (Calibration/Validation) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flow | TN | TP | SS | ||||||||||
R2 | NS | PBIAS | R2 | NS | PBIAS | R2 | NS | PBIAS | R2 | NS | PBIAS | ||
Minija—Lankupiai | 2000–2005 | 0.75 0.67d | 0.72 0.65d | 9.8 14.5d | N/A | N/A | N/A | ||||||
2006–2010 | 0.70 0.62d | 0.68 0.60d | 7.1 −3.3d | N/A | N/A | N/A | |||||||
Minija—Kartena | 1995–2002 | 0.84 0.70d | 0.73 0.68d | 10.2 11.3d | N/A | N/A | N/A | ||||||
2003–2010 | 0.77 0.66d | 0.70 0.63d | 9.1 −2.9d | N/A | N/A | N/A | |||||||
Minija—near Suvernai | 2006–2008 | 0.55 | 0.52 | 8.6 | 0.85 | 0.80 | −11.0 | 0.45 | 0.40 | −11.2 | N/A | ||
2008–2010 | 0.52 | 0.49 | 9.8 | 0.63 | 0.62 | −9.3 | 0.36 | 0.35 | 1.3 | N/A | |||
Minija—below Priekulė | (Flow: 1995–2001) 1998–2001 | 0.70 | 0.69 | 10.2 | 0.45 | 0.40 | −25.9 | 0.45 | 0.39 | −11.8 | N/A | ||
2002–2004 | 0.69 | 0.65 | 12.1 | 0.42 | 0.39 | −14.5 | 0.43 | 0.37 | −12.6 | N/A | |||
Minija—below Gargždai | 2000–2002 | 0.94 | 0.92 | 3.5 | 0.50 | 0.50 | −11.4 | 0.68 | 0.64 | 13.3 | 0.60 | 0.54 | 14.6 |
2003–2004 | 0.92 | 0.92 | 5.7 | 0.52 | 0.51 | 2.4 | 0.70 | 0.62 | 20.6 | 0.56 | 0.53 | −11.6 | |
Minija—above Plungė | 1996–2000 | 0.52 | 0.50 | 12.3 | 0.50 | 0.47 | 18.7 | N/A | N/A | ||||
2001–2004 | 0.52 | 0.47 | 14.5 | 0.43 | 0.40 | 20.8 | N/A | N/A | |||||
Minija—below Plungė | 1996–2000 | 0.56 | 0.55 | −10.5 | 0.52 | 0.5 | 20.1 | N/A | N/A | ||||
2001–2004 | 0.45 | 0.47 | −8.3 | 0.48 | 0.44 | 15.6 | N/A | N/A |
Parameter | Baseline [1994–2014] | RCP 4.5 [2020–2099] | RCP 8.5 [2020–2099] |
---|---|---|---|
Precipitation | 776.6 mm | −15% | −14% |
Snow fall | 91.50 mm | −60% | −60% |
Temperature stress duration | 159 days | −34% | −31% |
Water stress duration | 19 days | +55% | +68% |
Total Water yield | 470.40 mm | −30% | −26% |
Total N loading | 143 tonnes | −34% | −28% |
Total P loading | 6.9 tonnes | −30% | −11% |
Average flow | 38 m3/s | −35% | −30% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čerkasova, N.; Umgiesser, G.; Ertürk, A. Assessing Climate Change Impacts on Streamflow, Sediment and Nutrient Loadings of the Minija River (Lithuania): A Hillslope Watershed Discretization Application with High-Resolution Spatial Inputs. Water 2019, 11, 676. https://doi.org/10.3390/w11040676
Čerkasova N, Umgiesser G, Ertürk A. Assessing Climate Change Impacts on Streamflow, Sediment and Nutrient Loadings of the Minija River (Lithuania): A Hillslope Watershed Discretization Application with High-Resolution Spatial Inputs. Water. 2019; 11(4):676. https://doi.org/10.3390/w11040676
Chicago/Turabian StyleČerkasova, Natalja, Georg Umgiesser, and Ali Ertürk. 2019. "Assessing Climate Change Impacts on Streamflow, Sediment and Nutrient Loadings of the Minija River (Lithuania): A Hillslope Watershed Discretization Application with High-Resolution Spatial Inputs" Water 11, no. 4: 676. https://doi.org/10.3390/w11040676
APA StyleČerkasova, N., Umgiesser, G., & Ertürk, A. (2019). Assessing Climate Change Impacts on Streamflow, Sediment and Nutrient Loadings of the Minija River (Lithuania): A Hillslope Watershed Discretization Application with High-Resolution Spatial Inputs. Water, 11(4), 676. https://doi.org/10.3390/w11040676