Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination
Abstract
:1. Introduction
2. Thermodynamics of Desalination
3. Conventional Desalination Technologies
4. Emerging Technologies
5. Economic Analysis on Two Case Studies
6. Capillary-Driven Desalination
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
A | Surface Area | n | Economic Life Time in years |
Annual Total Cost in USD/Annum | OpEx | Operational Expenditure | |
CapEx | Capital Expenditure | P | Pressure |
CDD | Capillary-Driven Desalination | Q | Heat |
CDWA | Capillary-Driven Water Ascension | Ideal Gas Constant | |
Cost of Electricity | RO | Reverse Osmosis | |
DDD | Diffusion-Driven Desalination | Entropy Generation | |
DOE | Department of Energy | SWRO | Seawater Reverse Osmosis |
ED | Electrodialysis | t | Year of Operation |
FO | Forward Osmosis | T | Temperature |
G | Gibbs Free Energy (Exergy) | Temperature of Cold Source | |
Enthalpy Change | TD | Thermal Desalination | |
HDH | Humidification Dehumidification | TDS | Total Dissolved salts |
i | Interest Rate | Temperature of Hot Source | |
Investment in USD | VC | Vapor Compression | |
LCOE | Levelized Cost of Electricity | Work | |
LCOW | Levelized Cost of Water | WH | Waste Heat |
LD | Liquid Discharge | Mole Fraction of Salt in Feed Water | |
MD | Membrane Desalination | Mole Fraction of Salt in Brine | |
MED | Multi-Effect Distillation | Mole Fraction of Salt in Product | |
Electricity Output in kWh/Year | Mole Fraction of Water in Feed Water | ||
MSF | Multi-Stage Flash | Mole Fraction of Water in Brine | |
Molar Mass of Product Water | Mole Fraction of Water in Product | ||
MTES | Minimum Thermodynamic Energy of Separation | ZLD | Zero Liquid Discharge |
MVC | Mechanical Vapor Compression | Osmotic Pressure | |
Produced Water/Year |
References
- Schnoor, J.L. Water–Energy Nexus. Environ. Sci. Technol. 2011, 45, 5065. [Google Scholar] [CrossRef]
- Li, Z.; Siddiqi, A.; Anadon, L.D.; Narayanamurti, V. Towards sustainability in water-energy nexus: Ocean energy for seawater desalination. Renew. Sustain. Energy Rev. 2018, 82, 3833–3847. [Google Scholar] [CrossRef]
- Khalkhali, M.; Westphal, K.; Mo, W. The water-energy nexus at water supply and its implications on the integrated water and energy management. Sci. Total Environ. 2018, 636, 1257–1267. [Google Scholar] [CrossRef]
- Sharif, M.N.; Haider, H.; Farahat, A.; Hewage, K.; Sadiq, R. Water Energy Nexus for Water Distribution Systems: A Literature Review. Environ. Rev. 2019. [Google Scholar] [CrossRef]
- Vakilifard, N.; Anda, M.; Bahri, P.A.; Ho, G. The role of water-energy nexus in optimising water supply systems—Review of techniques and approaches. Renew. Sustain. Energy Rev. 2018, 82, 1424–1432. [Google Scholar] [CrossRef]
- Kim, S.; Piao, G.; Han, D.S.; Shon, H.K.; Park, H. Solar desalination coupled with water remediation and molecular hydrogen production: A novel solar water-energy nexus. Energy Environ. Sci. 2018, 11, 344–353. [Google Scholar] [CrossRef]
- Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q. Water-energy nexus: A review of methods and tools for macro-assessment. Appl. Energy 2018, 210, 393–408. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Scale of water resources development and sustainability: small is beautiful, large is great. Hydrol. Sci. J. 2011, 56, 553–575. [Google Scholar] [CrossRef]
- Khan, M.; Akhtar, U.; Shah, A. Technical analysis of energy sources, technologies and infrastructure of energy. In Proceedings of the 2014 International Conference on Energy Systems and Policies, ICESP 2014, Islamabad, Pakistan, 24–26 November 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A.P.; Tong, T.; Warsinger, D.M.; Elimelech, M. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy Environ. Sci. 2018, 11, 1177–1196. [Google Scholar] [CrossRef]
- Antia, D. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer. Hydrology 2016, 4, 1. [Google Scholar] [CrossRef]
- Antia, D. Desalination of Groundwater and Impoundments using Nano-Zero Valent Iron, n-Fe0. Meteorol. Hydrol. Water Manag. 2015, 3, 21–38. [Google Scholar] [CrossRef]
- Antia, D.D.J. ZVI (Fe0) desalination: catalytic partial desalination of saline aquifers. Appl. Water Sci. 2018, 8, 71. [Google Scholar] [CrossRef]
- Antia, D.D.J. Desalination of water using ZVI (Fe0). Water (Switzerland) 2015, 7, 3671–3831. [Google Scholar] [CrossRef]
- Antia, D. ZVI (Fe0) Desalination: Stability of Product Water. Resources 2016, 5, 15. [Google Scholar] [CrossRef]
- Antia, D.D.J. Partial Desalination of Saline Irrigation Water Using [FexOy(OH)z(H2O)m)n+/−]. In Handbook of Ecomaterials; Springer International Publishing: Cham, Switzerland, 2019; pp. 323–352. [Google Scholar]
- Antia, D.D.J. Irrigation water desalination using PVP (polyvinylpyrrolidone) coated n-Fe0 (ZVI, zero valent iron). New Polym. Nanocomposites Environ. Remediat. 2018, 541–600. [Google Scholar]
- Cottier, F.R.; Nilsen, F.; Skogseth, R.; Tverberg, V.; Skarðhamar, J.; Svendsen, H. Arctic fjords: a review of the oceanographic environment and dominant physical processes. Geol. Soc. London, Spec. Publ. 2010, 344, 35–50. [Google Scholar] [CrossRef]
- Atkinson, C.; Sansom, C.L.; Almond, H.J.; Shaw, C.P. Coatings for concentrating solar systems - A review. Renew. Sustain. Energy Rev. 2015, 45, 113–122. [Google Scholar] [CrossRef]
- Hasani, H.; Ryan, K.; Amer, A.; Ricles, J.; Sause, R. Pre-Test Seismic Evaluation of Drywall Partition Walls Integrated With a Timber Rocking. In Proceedings of the Eleventh U.S. National Conference on Earthquake Engineering, Los Angeles, CA, USA, 25–29 June 2018. [Google Scholar]
- Qasim, M.; Darwish, N.A.; Sarp, S.; Hilal, N. Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination 2015, 374, 47–69. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Guerrero, F. The transmission of the US stock market crash of 2008 to the European stock markets: An applied time series investigation. Am. J. Econ. 2016, 6, 216–225. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Pingle, M. Bounded rationality, ambiguity, and choice. J. Behav. Exp. Econ. 2018, 75, 141–153. [Google Scholar] [CrossRef]
- Foolad, F.; Franz, T.E.; Wang, T.; Gibson, J.; Kilic, A.; Allen, R.G.; Suyker, A. Feasibility analysis of using inverse modeling for estimating field-scale evapotranspiration in maize and soybean fields from soil water content monitoring networks. Hydrol. Earth Syst. Sci. 2017, 21, 1263–1277. [Google Scholar] [CrossRef]
- Foolad, F.; Blankenau, P.; Kilic, A.; Allen, R.G.; Huntington, J.L.; Erickson, T.A.; Ozturk, D.; Morton, C.G.; Ortega, S.; Ratcliffe, I.; et al. Comparison of the Automatically Calibrated Google Evapotranspiration Application—EEFlux and the Manually Calibrated METRIC Application. Preprints 2018, 2018070040. [Google Scholar]
- Mohammadrezaei, V.; Ebrahimi, M.; Beyramabadi, S.A. Calculation of concentration of alanine in water using the activity coefficient model and ab initio model. Bulg. Chem. Commun. 2017, 49, 106–108. [Google Scholar]
- Mohammadrezaei, V.; Ebrahimi, M.; Beyramabadi, S.A. Study of the effect of molecular cluster size alanine concentrations in water by using the activity coefficient method and density functional theory. Bulg. Chem. Commun. 2017, 49, 147–151. [Google Scholar]
- Hasani, H.; Golafshani, A.A.; Estekanchi, H.E. Seismic performance evaluation of jacket-type offshore platforms using endurance time method considering soil-pile-superstructure interaction. Sci. Iran. 2017, 24, 1843–1854. [Google Scholar] [CrossRef]
- Werber, J.R.; Deshmukh, A.; Elimelech, M. Can batch or semi-batch processes save energy in reverse-osmosis desalination? Desalination 2017, 402, 109–122. [Google Scholar] [CrossRef]
- Karagiannis, I.C.; Soldatos, P.G. Water desalination cost literature: review and assessment. Desalination 2008, 223, 448–456. [Google Scholar] [CrossRef]
- Mathioulakis, E.; Belessiotis, V.; Delyannis, E. Desalination by using alternative energy: Review and state-of-the-art. Desalination 2007, 203, 346–365. [Google Scholar] [CrossRef]
- Subramani, A.; Jacangelo, J.G. Emerging desalination technologies for water treatment: A critical review. Water Res. 2015, 75, 164–187. [Google Scholar] [CrossRef]
- Subramani, A.; Badruzzaman, M.; Oppenheimer, J.; Jacangelo, J.G. Energy minimization strategies and renewable energy utilization for desalination: A review. Water Res. 2011, 45, 1907–1920. [Google Scholar] [CrossRef]
- Liyanaarachchi, S.; Shu, L.; Muthukumaran, S.; Jegatheesan, V.; Baskaran, K. Problems in seawater industrial desalination processes and potential sustainable solutions: A review. Rev. Environ. Sci. Biotechnol. 2014, 13, 203–214. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Christofides, P.D.; Cohen, Y. Effect of thermodynamic restriction on energy cost Optimization of RO membrane water desalination. Ind. Eng. Chem. Res. 2009, 48, 6010–6021. [Google Scholar] [CrossRef]
- Feinberg, B.J.; Ramon, G.Z.; Hoek, E.M. V Thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant. Environ. Sci. Technol. 2013, 47, 2982–2989. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination-Development to date and future potential. J. Memb. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef]
- Zhao, H.; Qiu, S.; Wu, L.; Zhang, L.; Chen, H.; Gao, C. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Memb. Sci. 2014, 450, 249–256. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Chen, B. Rejection of haloacetic acids in water by multi-stage reverse osmosis: Efficiency, mechanisms, and influencing factors. Water Res. 2018, 144, 383–392. [Google Scholar] [CrossRef]
- Chakraborty, P.; Ma, T.; Zahiri, A.H.; Cao, L.; Wang, Y. Carbon-Based Materials for Thermoelectrics. Adv. Condens. Matter Phys. 2018, 2018, 1–29. [Google Scholar] [CrossRef]
- Sharifi, S.; Tivay, A.; Rezaei, S.M.; Zareinejad, M.; Mollaei-Dariani, B. Leakage fault detection in Electro-Hydraulic Servo Systems using a nonlinear representation learning approach. ISA Trans. 2018, 73, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Rezaei, S.M.; Tivay, A.; Soleymani, F.; Zareinejad, M. Multi-class fault detection in electro-hydraulic servo systems using support vector machines. In Proceedings of the 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, Tehran, Iran, 26–28 October 2016; pp. 252–257. [Google Scholar]
- Sanaye, S.; Mohammadi Nasab, A. Modeling and optimizing a CHP system for natural gas pressure reduction plant. Energy 2012, 40, 358–369. [Google Scholar] [CrossRef]
- Sanaye, S.; Nasab, A.M. Modeling and optimization of a natural gas pressure reduction station to produce electricity using genetic algorithm. 2010. Available online: https://www.semanticscholar.org/paper/Modeling-and-optimization-of-a-natural-gas-pressure-Sanaye-Nasab/1dfc6d80d4b28e1f80857802b729c32ced6078d1 (accessed on 20 April 2019).
- Lefebvre, O. Beyond NEWater: An insight into Singapore’s water reuse prospects. Curr. Opin. Environ. Sci. Heal. 2017, 2, 26–31. [Google Scholar] [CrossRef]
- Omarova, A.; Tussupova, K.; Berndtsson, R.; Kalishev, M.; Sharapatova, K. Protozoan parasites in drinking water: A system approach for improved water, sanitation and hygiene in developing countries. Int. J. Environ. Res. Public Health 2018, 15, 495. [Google Scholar] [CrossRef] [PubMed]
- Falkenberg, T.; Saxena, D.; Kistemann, T. Impact of wastewater-irrigation on in-household water contamination. A cohort study among urban farmers in Ahmedabad, India. Sci. Total Environ. 2018, 639, 988–996. [Google Scholar] [CrossRef]
- Castro, C.; Cocuzza, M.; Lamberti, A.; Laurenti, M.; Pedico, A.; Pirri, C.F.; Rocca, V.; Borello, E.S.; Scaltrito, L.; Serazio, C.; et al. Graphene-Based Membrane Technology: Reaching Out to the Oil and Gas Industry. Geofluids 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Charcosset, C. A review of membrane processes and renewable energies for desalination. Desalination 2009, 245, 214–231. [Google Scholar] [CrossRef]
- Semiat, R. Energy issues in desalination processes. Environ. Sci. Technol. 2008, 42, 8193–8201. [Google Scholar] [CrossRef] [PubMed]
- Mittelman, G.; Mouchtar, O.; Dayan, A. Large-scale solar thermal desalination plants: A review. Heat Transf. Eng. 2007, 28, 924–930. [Google Scholar] [CrossRef]
- Khawaji, A.D.; Kutubkhanah, I.K.; Wie, J.M. Advances in seawater desalination technologies. Desalination 2008, 221, 47–69. [Google Scholar] [CrossRef]
- Bundschuh, J.; Ghaffour, N.; Mahmoudi, H.; Goosen, M.; Mushtaq, S.; Hoinkis, J. Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes. Renew. Sustain. Energy Rev. 2015, 43, 196–206. [Google Scholar] [CrossRef]
- Esfahani, I.J.; Rashidi, J.; Ifaei, P.; Yoo, C. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review. Korean J. Chem. Eng. 2016, 33, 351–387. [Google Scholar] [CrossRef]
- Al-Kharabsheh, S.; Goswami, D.Y. Analysis of an innovative water desalination system using low-grade solar heat. Desalination 2003, 156, 323–332. [Google Scholar] [CrossRef]
- Ranjan, K.R.; Kaushik, S.C. Energy, exergy and thermo-economic analysis of solar distillation systems: A review. Renew. Sustain. Energy Rev. 2013, 27, 709–723. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Mistry, K.H.; Nayar, K.G.; Chung, H.W.; Lienhard, J.H.V. Entropy generation of desalination powered by variable temperature waste heat. Entropy 2015, 17, 7530–7566. [Google Scholar] [CrossRef]
- Kronenberg, G.; Lokiec, F. Low-temperature distillation processes in single-and dual-purpose plants. Desalination 2001, 136, 189–197. [Google Scholar] [CrossRef]
- Dardour, S.; Nisan, S.; Charbit, F. Utilisation of waste heat from GT-MHR and PBMR reactors for nuclear desalination. Desalination 2007, 205, 254–268. [Google Scholar] [CrossRef]
- Jouhara, H.; Anastasov, V.; Khamis, I. Potential of heat pipe technology in nuclear seawater desalination. Desalination 2009, 249, 1055–1061. [Google Scholar] [CrossRef]
- Najafi, B.; Shirazi, A.; Aminyavari, M.; Rinaldi, F.; Taylor, R.A. Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system. Desalination 2014, 334, 46–59. [Google Scholar] [CrossRef]
- Zhang, X.; Kan, W.; Jiang, H.; Chen, Y.; Cheng, T.; Jiang, H.; Hu, X. Capillary-driven low grade heat desalination. Desalination 2017, 410, 10–18. [Google Scholar] [CrossRef]
- Ghasemi, H.; Ni, G.; Marconnet, A.M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449. [Google Scholar] [CrossRef] [PubMed]
- Abu Tarboush, B.J.; Rana, D.; Matsuura, T.; Arafat, H.A.; Narbaitz, R.M. Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules. J. Memb. Sci. 2008, 325, 166–175. [Google Scholar] [CrossRef]
- Li, B.; Sirkar, K.K. Novel membrane and device for direct contact membrane distillation-based desalination process. Ind. Eng. Chem. Res. 2004, 43, 5300–5309. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X.; Wang, Y.; Lacey, S.D.; Dai, J.; Wang, C.; et al. Tree-Inspired Design for High-Efficiency Water Extraction. Adv. Mater. 2017, 29, 1704107. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, V.; Al-Bayati, A.; Sajadi, S.M.; Irajizad, P.; Wang, S.H.; Ghasemi, H. A flexible anti-clogging graphite film for scalable solar desalination by heat localization. J. Mater. Chem. A 2017, 5, 15227–15234. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Hong, Z.; Pu, Z.; Yao, Q.; Shi, J.; Yang, G.; Mi, B.; Yang, B.; Liu, X.; et al. A bioinspired capillary-driven pump for solar vapor generation. Nano Energy 2017, 42, 115–121. [Google Scholar] [CrossRef]
- Shin, H.; Kalista, B.; Jeong, S.; Jang, A. Optimization of simplified freeze desalination with surface scraped freeze crystallizer for producing irrigation water without seeding. Desalination 2019, 452, 68–74. [Google Scholar] [CrossRef]
- Miller, S.; Shemer, H.; Semiat, R. Energy and environmental issues in desalination. Desalination 2014, 366, 2–8. [Google Scholar] [CrossRef]
- Stark, M.; Thompson, P. Water Use in Shale Gas Developments. Disruptive Sci. Technol. 2013, 1, 164–168. [Google Scholar] [CrossRef]
- Estrada, J.M.; Bhamidimarri, R. A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing. Fuel 2016, 182, 292–303. [Google Scholar] [CrossRef]
- Ghobeity, A.; Mitsos, A. Optimal design and operation of desalination systems: New challenges and recent advances. Curr. Opin. Chem. Eng. 2014, 6, 61–68. [Google Scholar] [CrossRef]
- Kolesar Kohl, C.A.; Capo, R.C.; Stewart, B.W.; Wall, A.J.; Schroeder, K.T.; Hammack, R.W.; Guthrie, G.D. Strontium isotopes test long-term zonal isolation of injected and Marcellus formation water after hydraulic fracturing. Environ. Sci. Technol. 2014, 48, 9867–9873. [Google Scholar] [CrossRef]
- Kim, D.H. A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination 2011, 270, 1–8. [Google Scholar] [CrossRef]
- Ghaffour, N.; Bundschuh, J.; Mahmoudi, H.; Goosen, M.F.A. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination 2015, 356, 94–114. [Google Scholar] [CrossRef]
- Finnerty, C.; Zhang, L.; Sedlak, D.L.; Nelson, K.L.; Mi, B. Synthetic Graphene Oxide Leaf for Solar Desalination with Zero Liquid Discharge. Environ. Sci. Technol. 2017, 51, 11701–11709. [Google Scholar] [CrossRef]
- Roberts, D.A.; Johnston, E.L.; Knott, N.A. Impacts of desalination plant discharges on the marine environment: A critical review of published studies. Water Res. 2010, 44, 5117–5128. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz-Ferchmin, I.; Ferchmin, A.R. Ion hydration and large electrocaloric effect. J. Solution Chem. 2002, 31, 81–96. [Google Scholar] [CrossRef]
- Abell, T.N.; Bretz, S.L. Dissolving Salts in Water: Students’ Particulate Explanations of Temperature Changes. J. Chem. Educ. 2018, 95, 504–511. [Google Scholar] [CrossRef]
- Abell, T.N.; Bretz, S.L. Macroscopic Observations of Dissolving, Insolubility, and Precipitation: General Chemistry and Physical Chemistry Students’ Ideas about Entropy Changes and Spontaneity. J. Chem. Educ. 2019, 96, 469–478. [Google Scholar] [CrossRef]
- Yao, Y.; Kanai, Y. Free Energy Profile of NaCl in Water: First-Principles Molecular Dynamics with SCAN and ωB97X-V Exchange-Correlation Functionals. J. Chem. Theory Comput. 2018, 14, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, D.L.; Khajehpour, M. Probing the effect of water-water interactions on enzyme activity with salt gradients: A case-study using ribonuclease t1. J. Phys. Chem. B 2010, 114, 16918–16928. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Deng, S.; Shao, Y.; Zhao, L.; Lu, P.; Su, W. A new energy analysis model of seawater desalination based on thermodynamics. Energy Procedia 2019, 158, 5472–5478. [Google Scholar] [CrossRef]
- Piacentino, A. Application of advanced thermodynamics, thermoeconomics and exergy costing to a Multiple Effect Distillation plant: In-depth analysis of cost formation process. Desalination 2015, 371, 88–103. [Google Scholar] [CrossRef]
- Qureshi, B.A.; Zubair, S.M.; Thiel, G.P.; Lienhard V, J.H. The reversed chemical engine cycle with application to desalination processes. Desalination 2016, 398, 256–264. [Google Scholar] [CrossRef]
- Chung, H.W.; Nayar, K.G.; Swaminathan, J.; Chehayeb, K.M.; Lienhard V, J.H. Thermodynamic analysis of brine management methods: Zero-discharge desalination and salinity-gradient power production. Desalination 2017, 404, 291–303. [Google Scholar] [CrossRef]
- Wang, L.; Biesheuvel, P.M.; Lin, S. Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model. J. Colloid Interface Sci. 2018, 512, 522–528. [Google Scholar] [CrossRef]
- Wu, G.; Kutlu, C.; Zheng, H.; Su, Y.; Cui, D. A study on the maximum gained output ratio of single-effect solar humidification-dehumidification desalination. Sol. Energy 2017, 157, 1–9. [Google Scholar] [CrossRef]
- Akhatov, J.S. Energy and exergy analysis of solar PV powered reverse osmosis desalination. Appl. Sol. Energy 2017, 52, 265–270. [Google Scholar] [CrossRef]
- Dong, G.; Kim, J.F.; Kim, J.H.; Drioli, E.; Lee, Y.M. Open-source predictive simulators for scale-up of direct contact membrane distillation modules for seawater desalination. Desalination 2017, 402, 72–87. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, X.; Liu, C.; Zhou, C.; Huang, A. Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance. Desalination 2019, 460, 56–63. [Google Scholar] [CrossRef]
- Li, K.; Hou, D.; Fu, C.; Wang, K.; Wang, J. Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination. J. Environ. Sci. (China) 2019, 75, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Orfi, J.; Loussif, N.; Davies, P.A. Heat and mass transfer in membrane distillation used for desalination with slip flow. Desalination 2016, 381, 135–142. [Google Scholar] [CrossRef]
- Wang, Q.; Li, N.; Bolto, B.; Hoang, M.; Xie, Z. Desalination by pervaporation: A review. Desalination 2016, 387, 46–60. [Google Scholar] [CrossRef]
- Cerci, Y.; Cengel, Y.; Wood, B.; Kahraman, N.; Karkas, E.S. Improving the thermodynamic and economic efficiencies of desalination plants: Minimum work required for desalination and case studies of four working plants. 2003. [Google Scholar]
- Johnson, D.J.; Suwaileh, W.A.; Mohammed, A.W.; Hilal, N. Osmotic’s potential: An overview of draw solutes for forward osmosis. Desalination 2018, 434, 100–120. [Google Scholar] [CrossRef]
- Essalhi, M.; Khayet, M. Membrane Distillation (MD). Prog. Filtr. Sep. 2015, 61–99. [Google Scholar]
- Astashov, A.G.; Samokhin, A.V.; Alekseev, N.V.; Litvinova, I.S.; Tsvetkov, Y.V. Heat and mass transfer in confined jet plasma reactor with peripheral vortex flow. J. Phys. Conf. Ser. 2018, 1134, 12004. [Google Scholar] [CrossRef]
- Badran, A. Analysis of an Off-Grid Photovoltaic-Wind Hybrid Power System for Disi Water Pumping Project. Int. J. Therm. Environ. Eng. 2017, 14, 41–48. [Google Scholar]
- Lee, H.; Ryu, H.; Lim, J.H.; Kim, J.O.; Dong Lee, J.; Kim, S. An optimal design approach of gas hydrate and reverse osmosis hybrid system for seawater desalination. Desalin. Water Treat. 2016, 57, 9009–9017. [Google Scholar] [CrossRef]
- Babu, P.; Nambiar, A.; He, T.; Karimi, I.A.; Lee, J.D.; Englezos, P.; Linga, P. A Review of Clathrate Hydrate Based Desalination to Strengthen Energy-Water Nexus. ACS Sustain. Chem. Eng. 2018, 6, 8093–8107. [Google Scholar] [CrossRef]
- Gupta, P.; Chandrasekharan Nair, V.; Sangwai, J.S. Phase Equilibrium of Methane Hydrate in the Presence of Aqueous Solutions of Quaternary Ammonium Salts. J. Chem. Eng. Data 2018, 63, 2410–2419. [Google Scholar] [CrossRef]
- Zhang, Y.; Sheng, S.M.; Shen, X.D.; Zhou, X.B.; Wu, W.Z.; Wu, X.P.; Liang, D.Q. Phase Equilibrium of Cyclopentane + Carbon Dioxide Binary Hydrates in Aqueous Sodium Chloride Solutions. J. Chem. Eng. Data 2017, 62, 2461–2465. [Google Scholar] [CrossRef]
- Mistry, K.H.; Lienhard, J.H. Generalized least energy of separation for desalination and other chemical separation processes. Entropy 2013, 15, 2046–2080. [Google Scholar] [CrossRef]
- Post, J.W.; Huiting, H.; Cornelissen, E.R.; Hamelers, H.V.M. Pre-desalination with electro-membranes for SWRO. Desalin. Water Treat. 2011, 31, 296–304. [Google Scholar] [CrossRef]
- Banat, F.; Qiblawey, H.; Nasser, Q.A.-. Design and Operation of Small-Scale Photovoltaic-Driven Reverse Osmosis (PV-RO) Desalination Plant for Water Supply in Rural Areas. Comput. Water, Energy Environ. Eng. 2012, 01, 31–36. [Google Scholar] [CrossRef]
- Garcia, C.; Molina, F.; Zarzo, D. 7 year operation of a BWRO plant with raw water from a coastal aquifer for agricultural irrigation. Desalin. Water Treat. 2011, 31, 331–338. [Google Scholar] [CrossRef]
- Mistry, K.H.; McGovern, R.K.; Thiel, G.P.; Summers, E.K.; Zubair, S.M.; Lienhard, J.H. Entropy generation analysis of desalination technologies. Entropy 2011, 13, 1829–1864. [Google Scholar] [CrossRef]
- Mistry, K.H.; Lienhard, J.H.; Zubair, S.M. Effect of entropy generation on the performance of humidification- dehumidification desalination cycles. Int. J. Therm. Sci. 2010, 49, 1837–1847. [Google Scholar] [CrossRef]
- Chen, L.; Wu, C.; Sun, F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilibrium Thermodyn. 1999, 24, 327–359. [Google Scholar] [CrossRef]
- Narayan, G.P.; Lienhard V, J.H.; Zubair, S.M. Entropy generation minimization of combined heat and mass transfer devices. Int. J. Therm. Sci. 2010, 49, 2057–2066. [Google Scholar] [CrossRef]
- Sciacovelli, A.; Verda, V.; Sciubba, E. Entropy generation analysis as a design tool - A review. Renew. Sustain. Energy Rev. 2015, 43, 1167–1181. [Google Scholar] [CrossRef]
- Durmayaz, A.; Yavuz, H. Exergy analysis of a pressurized-water reactor nuclear-power plant. Appl. Energy 2001, 69, 39–57. [Google Scholar] [CrossRef]
- Lior, N. Thoughts about future power generation systems and the role of exergy analysis in their development. Energy Convers. Manag. 2002, 43, 1187–1198. [Google Scholar] [CrossRef]
- Mago, P.J.; Srinivasan, K.K.; Chamra, L.M.; Somayaji, C. An examination of exergy destruction in organic Rankine cycles. Int. J. Energy Res. 2008, 32, 926–938. [Google Scholar] [CrossRef]
- Dincer, I.; Cengel, Y.A. Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy 2001, 3, 116–149. [Google Scholar] [CrossRef]
- Choi, S.; Chang, B.; Kang, J.H.; Diallo, M.S.; Choi, J.W. Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery. J. Memb. Sci. 2017, 541, 580–586. [Google Scholar] [CrossRef]
- Ahdab, Y.D.; Thiel, G.P.; Böhlke, J.K.; Stanton, J.; Lienhard, J.H. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets. Water Res. 2018, 141, 387–404. [Google Scholar] [CrossRef]
- Lin, S.; Elimelech, M. Staged reverse osmosis operation: Configurations, energy efficiency, and application potential. Desalination 2015, 366, 9–14. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Burhan, M.; Ng, K.C. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration. Desalination 2017, 416, 54–64. [Google Scholar] [CrossRef]
- Zarzo, D.; Prats, D. Desalination and energy consumption. What can we expect in the near future? Desalination 2018, 427, 1–9. [Google Scholar] [CrossRef]
- Manju, S.; Sagar, N. Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renew. Sustain. Energy Rev. 2017, 73, 594–609. [Google Scholar] [CrossRef]
- Tajima, H.; Hayashi, M. Finite-size effect on optimal efficiency of heat engines. Phys. Rev. E 2017, 96, 012128. [Google Scholar] [CrossRef] [PubMed]
- Lostaglio, M.; Jennings, D.; Rudolph, T. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 2015, 6, 6383. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.M.; Deng, Y. Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. J. Mater. Chem. A 2016, 4, 3554–3559. [Google Scholar] [CrossRef]
- Monroe, J.G.; Kumari, S.; Fairley, J.D.; Walters, K.B.; Berg, M.J.; Thompson, S.M. On the energy harvesting and heat transfer ability of a ferro-nanofluid oscillating heat pipe. Int. J. Heat Mass Transf. 2019, 132, 162–171. [Google Scholar] [CrossRef]
- Bi, X.; Liu, P.; Li, Z. Thermo-dynamic analysis and simulation of a combined air and hydro energy storage (CAHES) system. Energy 2016, 116, 1385–1396. [Google Scholar] [CrossRef]
- Baldvinsson, I.; Nakata, T. A feasibility and performance assessment of a low temperature district heating system - A North Japanese case study. Energy 2016, 95, 155–174. [Google Scholar] [CrossRef]
- Liang, Y. Theoretical Analysis of a Novel Electricity-Cooling Cogeneration System Based on Waste Heat Recovery of Marine Engine. In Proceedings of the SAE Technical Paper Series, Detroit, MI, USA, 12–14 April 2016; Volume 1. [Google Scholar] [CrossRef]
- Li, H.; Song, J.; Sun, Q.; Wallin, F.; Zhang, Q. A dynamic price model based on levelized cost for district heating. Energy Ecol. Environ. 2019, 4, 15–25. [Google Scholar] [CrossRef]
- Xueliang, B.; Shaoxiang, Z. Specific Consumption Analysis of Vapor Compression Refrigeration System. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017; p. V006T08A077. [Google Scholar]
- Lu, L.; Wang, X.; Wang, S.; Liu, X. A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation. Heat Mass Transf. und Stoffuebertragung 2017, 53, 2331–2339. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, X. Heat-work conversion optimization of one-stream heat exchanger networks. Energy 2012, 47, 421–429. [Google Scholar] [CrossRef]
- De Vos, A. Efficiency of some heat engines at maximum-power conditions. Am. J. Phys. 2005, 53, 570–573. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G.; Saito, K.; Whitney, R.S. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 2017, 694, 1–124. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G.; Lin, K.; Zhang, Q.; Di, H. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build. Environ. 2007, 42, 2197–2209. [Google Scholar] [CrossRef]
- Vince, F.; Aoustin, E.; Bréant, P.; Marechal, F. LCA tool for the environmental evaluation of potable water production. Desalination 2008, 220, 37–56. [Google Scholar] [CrossRef]
- Glade, H.; Meyer, J.H.; Will, S. The release of CO2 in MSF and ME distillers and its use for the recarbonation of the distillate: A comparison. Desalination 2005, 182, 99–110. [Google Scholar] [CrossRef]
- Tchanche, B.F.; Lambrinos, G.; Frangoudakis, A.; Papadakis, G. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system. Appl. Energy 2010, 87, 1295–1306. [Google Scholar] [CrossRef]
- Yip, N.Y.; Elimelech, M. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 2012, 46, 5230–5239. [Google Scholar] [CrossRef]
- Seppälä, A.; Lampinen, M.J. Thermodynamic optimizing of pressure-retarded osmosis power generation systems. J. Memb. Sci. 1999, 161, 115–138. [Google Scholar] [CrossRef]
- Narayan, G.P.; McGovern, R.K.; Zubair, S.M.; Lienhard, J.H. High-temperature-steam-driven, varied-pressure, humidification-dehumidification system coupled with reverse osmosis for energy-efficient seawater desalination. Energy 2012, 37, 482–493. [Google Scholar] [CrossRef]
- Sharqawy, M.H.; Zubair, S.M.; Lienhard, J.H. Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis. Energy 2011, 36, 6617–6626. [Google Scholar] [CrossRef]
- Qiblawey, H.M.; Banat, F. Solar thermal desalination technologies. Desalination 2008, 220, 633–644. [Google Scholar] [CrossRef]
- Al-Sahali, M.; Ettouney, H. Developments in thermal desalination processes: Design, energy, and costing aspects. Desalination 2007, 214, 227–240. [Google Scholar] [CrossRef]
- Ng, K.C.; Thu, K.; Kim, Y.; Chakraborty, A.; Amy, G. Adsorption desalination: An emerging low-cost thermal desalination method. Desalination 2013, 308, 161–179. [Google Scholar] [CrossRef]
- Schwarzer, K.; Vieira, M.E.; Faber, C.; Müller, C. Solar thermal desalination system with heat recovery. Desalination 2001, 137, 23–29. [Google Scholar] [CrossRef]
- Ghaffour, N.; Missimer, T.M.; Amy, G.L. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination 2013, 309, 197–207. [Google Scholar] [CrossRef]
- García-Rodríguez, L. Seawater desalination driven by renewable energies: A review. Desalination 2002, 143, 103–113. [Google Scholar] [CrossRef]
- Zambrano, A.; Ruiz, Y.; Hernández, E.; Raventós, M.; Moreno, F.L. Freeze desalination by the integration of falling film and block freeze-concentration techniques. Desalination 2018, 436, 56–62. [Google Scholar] [CrossRef]
- Walmsley, T.G.; Varbanov, P.S.; Su, R.; Klemeš, J.J.; Ong, C.W.; Chen, C.-L. Techno-Economic Analysis of Seawater Freezing Desalination using Liquefied Natural Gas. Chem. Eng. Trans. 2018, 70, 373–379. [Google Scholar]
- Chang, J.; Zuo, J.; Lu, K.J.; Chung, T.S. Membrane development and energy analysis of freeze desalination-vacuum membrane distillation hybrid systems powered by LNG regasification and solar energy. Desalination 2019, 449, 16–25. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Z.; Zhan, Z.; Zhang, H.; Yao, Y. Effects of watering parameters in a combined seawater desalination process. Desalination 2018, 425, 77–85. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, L.; Liu, Y.; Lv, Q.; Ruan, G.; Hosseini, S.S. A direct contact type ice generator for seawater freezing desalination using LNG cold energy. Desalination 2018, 435, 293–300. [Google Scholar] [CrossRef]
- Kalista, B.; Shin, H.; Cho, J.; Jang, A. Current development and future prospect review of freeze desalination. Desalination 2018, 447, 167–181. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, Z.; Zheng, Z.; Lv, G.; Wang, L.; Tian, B.; Hua, Y. Antioxidative and hepatoprotective activities of deinoxanthin-rich extract from Deinococcus radiodurans R1 against carbon tetrachloride-induced liver injury in mice. Trop. J. Pharm. Res. 2014, 13, 573–580. [Google Scholar] [CrossRef]
- Rahmani, K.; Jadidian, R.; Haghtalab, S. Evaluation of inhibitors and biocides on the corrosion, scaling and biofouling control of carbon steel and copper–nickel alloys in a power plant cooling water system. Desalination 2016, 393, 174–185. [Google Scholar] [CrossRef]
- Touir, R.; Dkhireche, N.; Ebn Touhami, M.; Lakhrissi, M.; Lakhrissi, B.; Sfaira, M. Corrosion and scale processes and their inhibition in simulated cooling water systems by monosaccharides derivatives. Part I: EIS study. Desalination 2009, 249, 922–928. [Google Scholar] [CrossRef]
- El-Dahshan, M.E. Corrosion and scaling problems present in some desalination plants in Abu Dhabi. Desalination 2001, 138, 371–377. [Google Scholar]
- Abdel-Gaber, A.M.; Abd-El-Nabey, B.A.; Khamis, E.; Abd-El-Khalek, D.E. A natural extract as scale and corrosion inhibitor for steel surface in brine solution. Desalination 2011, 278, 337–342. [Google Scholar] [CrossRef]
- Ullah, I.; Rasul, M.G. Recent developments in solar thermal desalination technologies: A review. Energies 2019, 12, 119. [Google Scholar]
- Jia, Y.; Alva, G.; Fang, G. Development and applications of photovoltaic–thermal systems: A review. Renew. Sustain. Energy Rev. 2019, 102, 249–265. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, M.; Lababidi, H.M.S.; Al-Adwani, H.; Gleason, K.K. A review of heterogeneous nucleation of calcium carbonate and control strategies for scale formation in multi-stage flash (MSF) desalination plants. Desalination 2018, 442, 75–88. [Google Scholar] [CrossRef]
- Brogioli, D.; La Mantia, F.; Yip, N.Y. Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination 2018, 428, 29–39. [Google Scholar] [CrossRef]
- Jani, H.K.; Modi, K.V. A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices. Renew. Sustain. Energy Rev. 2018, 93, 302–317. [Google Scholar] [CrossRef]
- Srithar, K.; Rajaseenivasan, T. Recent fresh water augmentation techniques in solar still and HDH desalination – A review. Renew. Sustain. Energy Rev. 2018, 82, 629–644. [Google Scholar] [CrossRef]
- Yuan, G.; Wang, Z.; Li, H.; Li, X. Experimental study of a solar desalination system based on humidification-dehumidification process. Desalination 2011, 277, 92–98. [Google Scholar] [CrossRef]
- Narayan, G.P.; Sharqawy, M.H.; Summers, E.K.; Lienhard, J.H.; Zubair, S.M.; Antar, M.A. The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production. Renew. Sustain. Energy Rev. 2010, 14, 1187–1201. [Google Scholar] [CrossRef]
- Sharaf, M.A.; Nafey, A.S.; García-Rodríguez, L. Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process. Desalination 2011, 272, 135–147. [Google Scholar] [CrossRef]
- Alarcón-Padilla, D.C.; García-Rodríguez, L.; Blanco-Gálvez, J. Design recommendations for a multi-effect distillation plant connected to a double-effect absorption heat pump: A solar desalination case study. Desalination 2010, 262, 11–14. [Google Scholar] [CrossRef]
- Al-Hallaj, S.; Farid, M.M.; Tamimi, A.R. Solar desalination with a humidification - dehumidification cycle: Performance of the unit. Desalination 1998, 120, 273–280. [Google Scholar] [CrossRef]
- Nafey, A.S.; Fath, H.E.S.; El-Helaby, S.O.; Soliman, A. Solar desalination using humidification-dehumidification processes. Part II. An experimental investigation. Energy Convers. Manag. 2004, 45, 1263–1277. [Google Scholar] [CrossRef]
- Tleimat, B.W.; Howe, E.D.; Laird, A.D.K. An assessment of vapor compression distillation. Desalination 1967, 2, 287–298. [Google Scholar] [CrossRef]
- Mabrouk, A.A.; Nafey, A.S.; Fath, H.E.S. Analysis of a new design of a multi-stage flash-mechanical vapor compression desalination process. Desalination 2007, 204, 482–500. [Google Scholar] [CrossRef]
- Darwish, M.A.; Al-Najem, N.M. Energy consumption by multi-stage flash and reverse osmosis desalters. Appl. Therm. Eng. 2000, 20, 399–416. [Google Scholar] [CrossRef]
- Hamed, O.A.; Al-Sofi, M.A.K.; Imam, M.; Mustafa, G.M.; Ba Mardouf, K.; Al-Washmi, H. Thermal performance of multi-stage flash distillation plants in Saudi Arabia. Desalination 2000, 128, 281–292. [Google Scholar] [CrossRef]
- El-Dessouky, H.; Alatiqi, I.; Ettouney, H. Process synthesis: the multi-stage flash desalination system. Desalination 1998, 115, 155–179. [Google Scholar] [CrossRef]
- El-Dessouky, H.T.; Ettouney, H.M.; Al-Roumi, Y. Multi-stage flash desalination: Present and future outlook. Chem. Eng. J. 1999, 73, 173–190. [Google Scholar] [CrossRef]
- Spiegler, K.S.; El-Sayed, Y.M. The energetics of desalination processes. Desalination 2001, 134, 109–128. [Google Scholar] [CrossRef]
- Senatore, S.J. Vapor compression distillation with maximum use of waste heat. Desalination 1981, 38, 3–12. [Google Scholar] [CrossRef]
- Khoshrou, I.; Jafari Nasr, M.R.; Bakhtari, K. New opportunities in mass and energy consumption of the Multi-Stage Flash Distillation type of brackish water desalination process. Sol. Energy 2017, 153, 115–125. [Google Scholar] [CrossRef]
- El-Ghonemy, A.M.K. Performance test of a sea water multi-stage flash distillation plant: Case study. Alexandria Eng. J. 2018, 57, 2401–2413. [Google Scholar] [CrossRef]
- Bamufleh, H.; Abdelhady, F.; Baaqeel, H.M.; El-Halwagi, M.M. Optimization of multi-effect distillation with brine treatment via membrane distillation and process heat integration. Desalination 2017, 408, 110–118. [Google Scholar] [CrossRef]
- Ortega-Delgado, B.; Palenzuela, P.; Alarcón-Padilla, D.C. Parametric study of a multi-effect distillation plant with thermal vapor compression for its integration into a Rankine cycle power block. Desalination 2016, 394, 18–29. [Google Scholar] [CrossRef]
- Qi, C.; Wang, X.; Feng, H.; Lv, Q. Performance analysis of low-temperature multi-effect distillation system under different feeding modes. Appl. Therm. Eng. 2017, 112, 1452–1459. [Google Scholar] [CrossRef]
- Tarpani, R.R.Z.; Miralles-Cuevas, S.; Gallego-Schmid, A.; Cabrera-Reina, A.; Cornejo-Ponce, L. Environmental assessment of sustainable energy options for multi-effect distillation of brackish water in isolated communities. J. Clean. Prod. 2019, 213, 1371–1379. [Google Scholar] [CrossRef]
- Patel, S.; Finan, M.A. New antifoulants for deposit control in MSF and MED plants. Desalination 1999, 124, 63–74. [Google Scholar] [CrossRef]
- Morin, O.J. Design and operating comparison of MSF and MED systems. Desalination 1993, 93, 69–109. [Google Scholar] [CrossRef]
- Raluy, G.; Serra, L.; Uche, J. Life cycle assessment of MSF, MED and RO desalination technologies. Energy 2006, 31, 2361–2372. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Hamed, M.H.; Omara, Z.M.; Sharshir, S.W. Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review. Nat. Resour. 2013, 04, 286–305. [Google Scholar] [CrossRef]
- Hamed, M.H.; Kabeel, A.E.; Omara, Z.M.; Sharshir, S.W. Mathematical and experimental investigation of a solar humidification-dehumidification desalination unit. Desalination 2015, 358, 9–17. [Google Scholar] [CrossRef]
- Yildirim, C.; Solmuş, I. A parametric study on a humidification-dehumidification (HDH) desalination unit powered by solar air and water heaters. Energy Convers. Manag. 2014, 86, 568–575. [Google Scholar] [CrossRef]
- Al-Hallaj, S.; Parekh, S.; Farid, M.M.; Selman, J.R. Solar desalination with humidification-dehumidification cycle: Review of economics. Desalination 2006, 195, 169–186. [Google Scholar] [CrossRef]
- Parekh, S.; Farid, M.M.; Selman, J.R.; Al-Hallaj, S. Solar desalination with a humidification-dehumidification technique—A comprehensive technical review. Desalination 2004, 160, 167–186. [Google Scholar] [CrossRef]
- Hutchens, C.F.; Long, D.A. Vapor Compression Distillation Urine Processor Lessons Learned from Development and Life Testing. In Proceedings of the International Conference On Environmental Systems, Denver, CO, USA, 12–15 July 2010; Volume 1. [Google Scholar] [CrossRef]
- Wenten, I.; Aryanti, P.; Hakim, A. Scale-up Strategies for Membrane-Based Desalination Processes: A Review. J. Menbrane Sci. Res. 2016, 2, 42–58. [Google Scholar] [CrossRef]
- Hosseini, M.; Azamat, J.; Erfan-Niya, H. Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane. Appl. Surf. Sci. 2018, 427, 1000–1008. [Google Scholar] [CrossRef]
- Chen, W.; Chen, S.; Liang, T.; Zhang, Q.; Fan, Z.; Yin, H.; Huang, K.W.; Zhang, X.; Lai, Z.; Sheng, P. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat. Nanotechnol. 2018, 13, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gupta, K.M.; Liu, Q.; Jiang, J.; Caro, J.; Huang, A. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination 2016, 385, 75–82. [Google Scholar] [CrossRef]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Xu, K.; Feng, B.; Zhou, C.; Huang, A. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination. Chem. Eng. Sci. 2016, 146, 159–165. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, K.; Cao, Y.; Koros, W.J. Composite Carbon Molecular Sieve Hollow Fiber Membranes: Resisting Support Densification via Silica Particle Stabilization. Ind. Eng. Chem. Res. 2018, 57, 16051–16058. [Google Scholar] [CrossRef]
- Cay-Durgun, P.; Lind, M.L. Nanoporous materials in polymeric membranes for desalination. Curr. Opin. Chem. Eng. 2018, 20, 19–27. [Google Scholar] [CrossRef]
- Selatile, M.K.; Ray, S.S.; Ojijo, V.; Sadiku, R. Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Adv. 2018, 8, 37915–37938. [Google Scholar] [CrossRef]
- Ahmadvand, S.; Elahifard, M.; Jabbarzadeh, M.; Mirzanejad, A.; Pflughoeft, K.; Abbasi, B.; Abbasi, B. Bacteriostatic Effects of Apatite-Covered Ag/AgBr/TiO2 Nanocomposite in the Dark: Anomaly in Bacterial Motility. J. Phys. Chem. B 2019, 123, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Hilal, N.; Al-Zoubi, H.; Darwish, N.A.; Mohammad, A.W.; Abu Arabi, M. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination 2004, 170, 281–308. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Matsuura, T. Progress in membrane scince and technology for seawater desalination - A review. Desalination 2001, 134, 47–54. [Google Scholar] [CrossRef]
- Malaeb, L.; Ayoub, G.M. Reverse osmosis technology for water treatment: State of the art review. Desalination 2011, 267, 1–8. [Google Scholar] [CrossRef]
- Soltanieh, M.; Gill, W.N. Review of reverse osmosis membranes and transport models. Chem. Eng. Commun. 1981, 12, 279–363. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Ghaffour, N.; Lattemann, S.; Missimer, T.; Ng, K.C.; Sinha, S.; Amy, G. Renewable energy-driven innovative energy-efficient desalination technologies. Appl. Energy 2014, 136, 1155–1165. [Google Scholar] [CrossRef]
- Tzen, E.; Morris, R. Renewable energy sources for desalination. Sol. Energy 2003, 75, 375–379. [Google Scholar] [CrossRef]
- Karimi, L.; Abkar, L.; Aghajani, M.; Ghassemi, A. Technical feasibility comparison of off-grid PV-EDR and PV-RO desalination systems via their energy consumption. Sep. Purif. Technol. 2015, 151, 82–94. [Google Scholar] [CrossRef]
- Kim, M.M.; Lin, N.H.; Lewis, G.T.; Cohen, Y. Surface nano-structuring of reverse osmosis membranes via atmospheric pressure plasma-induced graft polymerization for reduction of mineral scaling propensity. J. Memb. Sci. 2010, 354, 142–149. [Google Scholar] [CrossRef]
- Michaels, A.S. Membranes, membrane processes, and their applications: Needs, unsolved problems, and challenges of the 1990’s. Desalination 1990, 77, 5–34. [Google Scholar] [CrossRef]
- Herzberg, M.; Elimelech, M. Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. J. Memb. Sci. 2007, 295, 11–20. [Google Scholar] [CrossRef]
- Han, G.; Zhang, S.; Li, X.; Chung, T.S. Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation. Prog. Polym. Sci. 2014, 51, 1–27. [Google Scholar] [CrossRef]
- Abou Rayan, M.; Khaled, I. Seawater desalination by reverse osmosis (case study). Desalination 2003, 153, 245–251. [Google Scholar] [CrossRef]
- Wittholz, M.K.; O’Neill, B.K.; Colby, C.B.; Lewis, D. Estimating the cost of desalination plants using a cost database. Desalination 2008, 229, 10–20. [Google Scholar] [CrossRef]
- Côté, P.; Siverns, S.; Monti, S. Comparison of membrane-based solutions for water reclamation and desalination. Desalination 2005, 182, 251–257. [Google Scholar] [CrossRef]
- Maskan, F.; Wiley, D.E.; Johnston, L.P.M.; Clements, D.J. Optimal design of reverse osmosis module networks. AIChE J. 2000, 46, 946–954. [Google Scholar] [CrossRef]
- Jamaly, S.; Darwish, N.N.; Ahmed, I.; Hasan, S.W. A short review on reverse osmosis pretreatment technologies. Desalination 2014, 354, 30–38. [Google Scholar] [CrossRef]
- Liu, C.; Rainwater, K.; Song, L. Energy analysis and efficiency assessment of reverse osmosis desalination process. Desalination 2011, 276, 352–358. [Google Scholar] [CrossRef]
- Walha, K.; Amar, R.B.; Firdaous, L.; Quéméneur, F.; Jaouen, P. Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination 2007, 207, 95–106. [Google Scholar] [CrossRef]
- Schulze, K.D.; Hart, S.M.; Marshall, S.L.; O’Bryan, C.S.; Urueña, J.M.; Pitenis, A.A.; Sawyer, W.G.; Angelini, T.E. Polymer Osmotic Pressure in Hydrogel Contact Mechanics. Biotribology 2017, 11, 3–7. [Google Scholar] [CrossRef]
- She, Q.; Wei, J.; Ma, N.; Sim, V.; Fane, A.G.; Wang, R.; Tang, C.Y. Fabrication and characterization of fabric-reinforced pressure retarded osmosis membranes for osmotic power harvesting. J. Memb. Sci. 2016, 504, 75–88. [Google Scholar] [CrossRef]
- Sahebi, S.; Phuntsho, S.; Eun Kim, J.; Hong, S.; Kyong Shon, H. Pressure assisted fertiliser drawn osmosis process to enhance final dilution of the fertiliser draw solution beyond osmotic equilibrium. J. Memb. Sci. 2015, 481, 63–72. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Tow, E.W.; Nayar, K.G.; Maswadeh, L.A.; Lienhard V, J.H. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Res. 2016, 106, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Eshoul, N.M.; Agnew, B.; Al-Weshahi, M.A.; Atab, M.S. Exergy analysis of a two-pass Reverse Osmosis (RO) desalination unit with and without an energy recovery turbine (ERT) and pressure exchanger (PX). Energies 2015, 8, 6910–6925. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Qureshi, B.A.; Zubair, S.M. Improvement in design of electrodialysis desalination plants by considering the Donnan potential. Desalination 2018, 441, 62–76. [Google Scholar] [CrossRef]
- Qureshi, B.A.; Zubair, S.M. Design of electrodialysis desalination plants by considering dimensionless groups and variable equivalent conductivity. Desalination 2018, 430, 197–207. [Google Scholar] [CrossRef]
- Nakayama, A.; Sano, Y.; Bai, X.; Tado, K. A boundary layer analysis for determination of the limiting current density in an electrodialysis desalination. Desalination 2017, 404, 41–49. [Google Scholar] [CrossRef]
- Wright, N.C.; Shah, S.R.; Amrose, S.E.; Winter, A.G. A robust model of brackish water electrodialysis desalination with experimental comparison at different size scales. Desalination 2018, 443, 27–43. [Google Scholar] [CrossRef]
- Tado, K.; Sakai, F.; Sano, Y.; Nakayama, A. An analysis on ion transport process in electrodialysis desalination. Desalination 2016, 378, 60–66. [Google Scholar] [CrossRef]
- Shah, S.R.; Walter, S.L.; Winter, A.G. Using feed-forward voltage-control to increase the ion removal rate during batch electrodialysis desalination of brackish water. Desalination 2019, 457, 62–74. [Google Scholar] [CrossRef]
- Khan, M.I.; Mondal, A.N.; Tong, B.; Jiang, C.; Emmanuel, K.; Yang, Z.; Wu, L.; Xu, T. Development of BPPO-based anion exchange membranes for electrodialysis desalination applications. Desalination 2016, 391, 61–68. [Google Scholar] [CrossRef]
- Nam, D.H.; Choi, K.S. Electrochemical Desalination Using Bi/BiOCl Electrodialysis Cells. ACS Sustain. Chem. Eng. 2018, 6, 15455–15462. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, C.; Dominguez-Ramos, A.; Ibañez, R.; Irabien, A. Desalination by Renewable Energy-Powered Electrodialysis Processes. Curr. Trends Futur. Dev. Membr. 2018, 111–131. [Google Scholar]
- Tufa, R.A.; Curcio, E.; Brauns, E.; van Baak, W.; Fontananova, E.; Di Profio, G. Membrane Distillation and Reverse Electrodialysis for Near-Zero Liquid Discharge and low energy seawater desalination. J. Memb. Sci. 2015, 496, 325–333. [Google Scholar] [CrossRef]
- Mei, Y.; Tang, C.Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 2018, 425, 156–174. [Google Scholar] [CrossRef]
- Xu, T.; Huang, C. Electrodialysis-Based separation technologies: A critical review. AIChE J. 2008, 54, 3147–3159. [Google Scholar] [CrossRef]
- Tongwen, X. Electrodialysis processes with bipolar membranes (EDBM) in environmental protection - A review. Resour. Conserv. Recycl. 2002, 37, 1–22. [Google Scholar] [CrossRef]
- Burn, S.; Hoang, M.; Zarzo, D.; Olewniak, F.; Campos, E.; Bolto, B.; Barron, O. Desalination techniques - A review of the opportunities for desalination in agriculture. Desalination 2015, 364, 2–16. [Google Scholar] [CrossRef]
- Ali, M.T.; Fath, H.E.S.; Armstrong, P.R. A comprehensive techno-economical review of indirect solar desalination. Renew. Sustain. Energy Rev. 2011, 15, 4187–4199. [Google Scholar] [CrossRef]
- Mezher, T.; Fath, H.; Abbas, Z.; Khaled, A. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 2011, 266, 263–273. [Google Scholar] [CrossRef]
- Huang, C.; Xu, T.; Zhang, Y.; Xue, Y.; Chen, G. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J. Memb. Sci. 2007, 288, 1–12. [Google Scholar] [CrossRef]
- Höpner, T.; Windelberg, J. Elements of environmental impact studies on coastal desalination plants. Desalination 1997, 108, 11–18. [Google Scholar] [CrossRef]
- Porada, S.; Weinstein, L.; Dash, R.; Van Der Wal, A.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P.M. Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl. Mater. Interfaces 2012, 4, 1194–1199. [Google Scholar] [CrossRef]
- Huang, D.; Liu, W.; Xu, Y.; Wu, Z.; Zheng, H.; Hu, N.; Lu, K.; Jia, L. Desalination for enhancing the recovery of creatine from its wastewater by foam fractionation. J. Mol. Liq. 2018, 255, 447–453. [Google Scholar] [CrossRef]
- Arconada, B.; Delgado, P.; García, Á. Minimizing environmental risks on constructing marine pipelines: Aguilas desalination plant. Desalin. Water Treat. 2013, 51, 246–261. [Google Scholar] [CrossRef]
- Davies, P.A. Wave-powered desalination: Resource assessment and review of technology. Desalination 2005, 186, 97–109. [Google Scholar] [CrossRef]
- Davies, P.A.; Wayman, J.; Alatta, C.; Nguyen, K.; Orfi, J. A desalination system with efficiency approaching the theoretical limits. Desalin. Water Treat. 2016, 57, 23206–23216. [Google Scholar] [CrossRef]
- Kasaeian, A.; Rajaee, F.; Yan, W.M. Osmotic desalination by solar energy: A critical review. Renew. Energy 2019, 134, 1473–1490. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Jones, G.F.; Fleischer, A.S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew. Sustain. Energy Rev. 2014, 31, 622–638. [Google Scholar] [CrossRef]
- Shu, G.; Liang, Y.; Wei, H.; Tian, H.; Zhao, J.; Liu, L. A review of waste heat recovery on two-stroke IC engine aboard ships. Renew. Sustain. Energy Rev. 2013, 19, 385–401. [Google Scholar] [CrossRef]
- Gude, V.G. Energy storage for desalination processes powered by renewable energy and waste heat sources. Appl. Energy 2015, 137, 877–898. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhengming, Z.; Yuan, L. A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 2009, 13, 2245–2262. [Google Scholar] [CrossRef]
- Miró, L.; Gasia, J.; Cabeza, L.F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Appl. Energy 2016, 179, 284–301. [Google Scholar] [CrossRef]
- Song, L.; Li, B.; Sirkar, K.K.; Gilron, J.L. Direct contact membrane distillation-based desalination: Novel membranes, devices, larger-scale studies, and a model. Ind. Eng. Chem. Res. 2007, 46, 2307–2323. [Google Scholar] [CrossRef]
- Singh, D.; Sirkar, K.K. Desalination of brine and produced water by direct contact membrane distillation at high temperatures and pressures. J. Memb. Sci. 2012, 389, 380–388. [Google Scholar] [CrossRef]
- Essalhi, M.; Khayet, M. Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation. J. Memb. Sci. 2013, 433, 167–179. [Google Scholar] [CrossRef]
- Eslamimanesh, A.; Hatamipour, M.S. Mathematical modeling of a direct contact humidification-dehumidification desalination process. Desalination 2009, 237, 296–304. [Google Scholar] [CrossRef]
- Sideman, S.; Isenberg, J. Direct contact heat transfer with change of phase: bubble growth in three-phase systems. Desalination 1967, 2, 207–214. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Wen, X.; Li, C.; Hu, X. Low-grade waste heat driven desalination with an open loop heat pipe. Energy 2018, 163, 221–228. [Google Scholar] [CrossRef]
- Alkaisi, A.; Mossad, R.; Sharifian-Barforoush, A. A Review of the Water Desalination Systems Integrated with Renewable Energy. Energy Procedia 2017, 110, 268–274. [Google Scholar] [CrossRef]
- Goosen, M.F.A.; Mahmoudi, H.; Ghaffour, N.; Bundschuh, J.; Al Yousef, Y. A critical evaluation of renewable energy technologies for desalination. In Proceedings of the Application of Materials Science and Environmental Materials Phuket Island, Thailand, 1–3 October 2015. [Google Scholar]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- Chandrashekara, M.; Yadav, A. Water desalination system using solar heat: A review. Renew. Sustain. Energy Rev. 2017, 67, 1308–1330. [Google Scholar]
- Schwarzer, T.; Bart, H.J. Mass and Heat Transfer at Different Heat Exchange Surfaces and Their Suitability for Use in Thermal Desalination Plants. Open Chem. Eng. J. 2016, 10, 74–86. [Google Scholar] [CrossRef]
- Dastgerdi, H.R.; Whittaker, P.B.; Chua, H.T. New MED based desalination process for low grade waste heat. Desalination 2016, 395, 57–71. [Google Scholar] [CrossRef]
- Bush, J.A.; Vanneste, J.; Gustafson, E.M.; Waechter, C.A.; Jassby, D.; Turchi, C.S.; Cath, T.Y. Prevention and management of silica scaling in membrane distillation using pH adjustment. J. Memb. Sci. 2018, 554, 366–377. [Google Scholar] [CrossRef]
- Matin, A.; Rahman, F.; Shafi, H.Z.; Zubair, S.M. Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control; future directions. Desalination 2019, 455, 135–157. [Google Scholar] [CrossRef]
- Piyadasa, C.; Ridgway, H.F.; Yeager, T.R.; Stewart, M.B.; Pelekani, C.; Gray, S.R.; Orbell, J.D. The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes - A review. Desalination 2017, 418, 19–34. [Google Scholar] [CrossRef]
- Sharon, H.; Reddy, K.S. A review of solar energy driven desalination technologies. Renew. Sustain. Energy Rev. 2015, 41, 1080–1118. [Google Scholar] [CrossRef]
- Efd Desalination Technology Solution–Eliminates Toxic Brine Discharge. Available online: http://efdcorp.com/solution/ (accessed on 20 April 2019).
- Heck, N.; Lykkebo Petersen, K.; Potts, D.C.; Haddad, B.; Paytan, A. Predictors of coastal stakeholders’ knowledge about seawater desalination impacts on marine ecosystems. Sci. Total Environ. 2018, 639, 785–792. [Google Scholar] [CrossRef]
- Miller, J.E. Review of water resources and desalination techniques. Sandia national labs unlimited release report SAND-2003-0800. 2003. [Google Scholar] [CrossRef]
- Owlad, M.; Aroua, M.K.; Daud, W.A.W.; Baroutian, S. Removal of hexavalent chromium-contaminated water and wastewater: A review. Water. Air. Soil Pollut. 2009, 200, 59–77. [Google Scholar] [CrossRef]
- Ghernaout, D.; Ghernaout, B.; Naceur, M.W. Embodying the chemical water treatment in the green chemistry-A review. Desalination 2011, 271, 1–10. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z.; Bhatia, S. Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination 2011, 277, 1–14. [Google Scholar] [CrossRef]
- Jin, W.; Du, H.; Zheng, S.; Zhang, Y. Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochim. Acta 2016, 191, 1044–1055. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manage. 2016, 182, 351–366. [Google Scholar] [CrossRef]
- Shahmansouri, A.; Min, J.; Jin, L.; Bellona, C. Feasibility of extracting valuable minerals from desalination concentrate: A comprehensive literature review. J. Clean. Prod. 2015, 100, 4–16. [Google Scholar] [CrossRef]
- Kang, G.D.; Cao, Y.M. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600. [Google Scholar] [CrossRef]
- Matin, A.; Khan, Z.; Zaidi, S.M.J.; Boyce, M.C. Biofouling in reverse osmosis membranes for seawater desalination: Phenomena and prevention. Desalination 2011, 281, 1–16. [Google Scholar] [CrossRef]
- Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008, 42, 4591–4602. [Google Scholar] [CrossRef] [PubMed]
- Udriot, H.; Araque, A.; von Stockar, U. Azeotropic mixtures may be broken by membrane distillation. Chem. Eng. J. Biochem. Eng. J. 1994, 54, 87–93. [Google Scholar] [CrossRef]
- Verma, A.K.; Dash, R.R.; Bhunia, P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage. 2012, 93, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Williams, C.J.; Edyvean, R.G.J. Treatment of tannery wastewater by chemical coagulation. Desalination 2004, 164, 249–259. [Google Scholar] [CrossRef]
- Hoepner, T.; Lattemann, S. Chemical impacts from seawater desalination plants - A case study of the northern Red Sea. Desalination 2003, 152, 133–140. [Google Scholar] [CrossRef]
- Padervand, M.; Salari, H.; Ahmadvand, S.; Gholami, M.R. Removal of an organic pollutant from waste water by photocatalytic behavior of AgX/TiO2 loaded on mordenite nanocrystals. Res. Chem. Intermed. 2012, 38, 1975–1985. [Google Scholar] [CrossRef]
- Elahifard, M.R.; Ahmadvand, S.; Mirzanejad, A. Effects of Ni-doping on the photo-catalytic activity of TiO2 anatase and rutile: Simulation and experiment. Mater. Sci. Semicond. Process. 2018, 84, 10–16. [Google Scholar] [CrossRef]
- Ricker, J.D.; Mohammadrezaei, V.; Crippen, T.J.; Zell, A.M.; Geary, L.M. Nitrous Oxide Promoted Pauson-Khand Cycloadditions. Organometallics 2018, 37, 4556–4559. [Google Scholar] [CrossRef]
- Khayet, M.; Mengual, J.I.; Matsuura, T. Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation. J. Memb. Sci. 2005, 252, 101–113. [Google Scholar] [CrossRef]
- Ganesh, B.M.; Isloor, A.M.; Ismail, A.F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 2013, 313, 199–207. [Google Scholar] [CrossRef]
- Prince, J.A.; Singh, G.; Rana, D.; Matsuura, T.; Anbharasi, V.; Shanmugasundaram, T.S. Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) - Clay nanocomposite nanofiber membranes (PVDF-clay NNMs) for desalination using direct contact membrane distillation. J. Memb. Sci. 2012, 397–398, 80–86. [Google Scholar] [CrossRef]
- Peng, P.; Fane, A.G.; Li, X. Desalination by membrane distillation adopting a hydrophilic membrane. Desalination 2005, 173, 45–54. [Google Scholar] [CrossRef]
- Mahmoud, K.A.; Mansoor, B.; Mansour, A.; Khraisheh, M. Functional graphene nanosheets: The next generation membranes for water desalination. Desalination 2015, 356, 208–225. [Google Scholar] [CrossRef]
- Schiermeier, Q. Water: Purification with a pinch of salt. Nature 2008, 452, 260–261. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, R.L.; Elimelech, M. Global challenges in energy and water supply: The promise of engineered osmosis. Environ. Sci. Technol. 2008, 42, 8625–8629. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Klausner, J.F.; Mei, R. Performance characteristics of the diffusion driven desalination process. Desalination 2006, 196, 188–209. [Google Scholar] [CrossRef]
- Klausner, J.F.; Li, Y.; Darwish, M.; Mei, R. Innovative Diffusion Driven Desalination Process. J. Energy Resour. Technol. 2004, 126, 219. [Google Scholar] [CrossRef]
- Klausner, J.F.; Li, Y.; Mei, R. Evaporative heat and mass transfer for the diffusion driven desalination process. Heat Mass Transf. und Stoffuebertragung 2006, 42, 528–536. [Google Scholar] [CrossRef]
- Alnaimat, F.; Klausner, J.F.; Mei, R. Transient dynamic response of solar diffusion driven desalination. Appl. Therm. Eng. 2013, 51, 520–528. [Google Scholar] [CrossRef]
- Khan, J.R.; Klausner, J.F.; Ziegler, D.P.; Garimella, S.S. Diffusion Driven Desalination for Simultaneous Fresh Water Production and Desulfurization. J. Therm. Sci. Eng. Appl. 2010, 2, 031006. [Google Scholar] [CrossRef]
- Alnaimat, F.; Klausner, J.F. Solar diffusion driven desalination for decentralized water production. Desalination 2012, 289, 35–44. [Google Scholar] [CrossRef]
- Koschikowski, J.; Juülch, V.; Kec, T.; Hussein, N. Renewable Desalination: Technology Options for Islands; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2015; ISBN 978-92-95111-78-3.
- Zhou, Y.; Tol, R.S.J. Evaluating the costs of desalination and water transport. Water Resour. Res. 2005, 41, 1–10. [Google Scholar] [CrossRef]
- Sommariva, C.; Hogg, H.; Callister, K. Cost reduction and design lifetime increase in thermal desalination plants: Thermodynamic and corrosion resistance combined analysis for heat exchange tubes material selection. Desalination 2003, 158, 17–21. [Google Scholar] [CrossRef]
- Midžić, I.; Štorga, M.; Marjanović, D. Energy quality hierarchy and “transformity” in evaluation of product’s working principles. Procedia CIRP 2014, 15, 300–305. [Google Scholar] [CrossRef]
- Blandin, G.; Verliefde, A.R.D.; Comas, J.; Rodriguez-Roda, I.; Le-Clech, P. Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: A critical review. Membranes (Basel) 2016, 6, 37. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 2015, 364, 17–32. [Google Scholar] [CrossRef]
- Bennett, A. Cost effective desalination: Innovation continues to lower desalination costs. Filtr. Sep. 2011, 48, 24–27. [Google Scholar] [CrossRef]
- Tufa, R.A. Perspectives on environmental ethics in sustainability of membrane based technologies for water and energy production. Environ. Technol. Innov. 2015, 4, 182–193. [Google Scholar] [CrossRef]
- Zak, G.M.; Mancini, N.D.; Mitsos, A. Integration of thermal desalination methods with membrane-based oxy-combustion power cycles. Desalination 2013, 311, 137–149. [Google Scholar] [CrossRef]
- Salimi, M.; Amidpour, M. Modeling, simulation, parametric study and economic assessment of reciprocating internal combustion engine integrated with multi-effect desalination unit. Energy Convers. Manag. 2017, 138, 299–311. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Fu, P.; Johnson, S.M.; Carrigan, C.R. Using Fully Coupled Hydro-Geomechanical Numerical Test Bed To Study Reservoir Stimulation With Low Hydraulic Pressure. In Proceedings of the 37 Stanford Geothermal Workshop, Stanford, CA, USA, 30 Jnauary 1–Feburary 2012. [Google Scholar]
- Rimedio, M.; Shannon, C.; Monti, L.; Lerza, A.; Roberts, M.; Quiroga, J. Interference Behavior Analysis in Vaca Muerta Shale Oil Development, Loma Campana Field, Argentina. In Proceedings of the 3rd Unconventional Resources Technology Conference, San Antonio, TX, USA, 20–22 July 2015. [Google Scholar]
- Cuss, R.; Harrington, J.; Graham, C.; Noy, D. Observations of pore pressure in clay-rich materials; Implications for the concept of effective stress applied to unconventional hydrocarbons. Energy Procedia 2014, 59, 59–66. [Google Scholar] [CrossRef]
- Wilson, H.M.; Rahman A.R., S.; Parab, A.E.; Jha, N. Ultra-low cost cotton based solar evaporation device for seawater desalination and waste water purification to produce drinkable water. Desalination 2019, 456, 85–96. [Google Scholar] [CrossRef]
- Gan, Q.; Zhang, T.; Chen, R.; Wang, X.; Ye, M. Simple, Low-Dose, Durable, and Carbon-Nanotube-Based Floating Solar Still for Efficient Desalination and Purification. ACS Sustain. Chem. Eng. 2019, 7, 3925–3932. [Google Scholar] [CrossRef]
- Rashidi, S.; Karimi, N.; Mahian, O.; Abolfazli Esfahani, J. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J. Therm. Anal. Calorim. 2019, 135, 1145–1159. [Google Scholar] [CrossRef]
- Li, X.; Xu, G.; Peng, G.; Yang, N.; Yu, W.; Deng, C. Efficiency enhancement on the solar steam generation by wick materials with wrapped graphene nanoparticles. 2019. Available online: https://arxiv.org/abs/1901.01683 (accessed on 20 April 2019).
- Kiriarachchi, H.D.; Awad, F.S.; Hassan, A.A.; Bobb, J.A.; Lin, A.; El-Shall, M.S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale 2018, 10, 18531–18539. [Google Scholar] [CrossRef]
- Yang, P.; Liu, K.; Chen, Q.; Li, J.; Duan, J.; Xue, G.; Xu, Z.; Xie, W.; Zhou, J. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 2017, 10, 1923–1927. [Google Scholar] [CrossRef]
- Hou, B.; Kong, D.; Qian, J.; Yu, Y.; Cui, Z.; Liu, X.; Wang, J.; Mei, T.; Li, J.; Wang, X. Flexible and portable graphene on carbon cloth as a power generator for electricity generation. Carbon N. Y. 2018, 140, 488–493. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Hsiung, C.-E.; Tian, Y.; Wang, J.; Han, Y.; Fratalocchi, A. High-Performance Large-Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles. Adv. Sustain. Syst. 2017, 1, 1600013. [Google Scholar] [CrossRef]
- Huang, L.; Pei, J.; Jiang, H.; Hu, X. Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination 2018, 442, 1–7. [Google Scholar] [CrossRef]
- Li, X.; Lin, R.; Ni, G.; Xu, N.; Hu, X.; Zhu, B.; Lv, G.; Li, J.; Zhu, S.; Zhu, J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 2018, 5, 70–77. [Google Scholar] [CrossRef]
- Liu, K.K.; Jiang, Q.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R.R.; Singamaneni, S. Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination. ACS Appl. Mater. Interfaces 2017, 9, 7675–7681. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pang, Y.; Huang, W.; Shaw, S.K.; Schiffbauer, J.; Pillers, M.A.; Mu, X.; Luo, S.; Zhang, T.; Huang, Y.; et al. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation. ACS Nano 2017, 11, 5510–5518. [Google Scholar] [CrossRef]
- Ren, H.; Tang, M.; Guan, B.; Wang, K.; Yang, J.; Wang, F.; Wang, M.; Shan, J.; Chen, Z.; Wei, D.; et al. Hierarchical Graphene Foam for Efficient Omnidirectional Solar–Thermal Energy Conversion. Adv. Mater. 2017, 29, 1702590. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hu, X.; Zhuang, S.; Wang, Y.; Li, X.; Zhou, L.; Zhu, S.; Zhu, J. Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination. Adv. Energy Mater. 2018, 8, 1702884. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, J.; Liu, D.; Xu, H.; Cui, F.; Wang, W. Origami system for efficient solar driven distillation in emergency water supply. Chem. Eng. J. 2019, 356, 869–876. [Google Scholar] [CrossRef]
- Li, Y.; Gao, T.; Yang, Z.; Chen, C.; Luo, W.; Song, J.; Hitz, E.; Jia, C.; Zhou, Y.; Liu, B.; et al. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination. Adv. Mater. 2017, 29, 1700981. [Google Scholar] [CrossRef]
Fundamental Strategies | Fundamental Impact |
---|---|
Surficial energy localization |
|
Using degradable draw solution |
|
Depressurized heating |
|
Pressurized heating |
|
Lowering saturation temperature |
|
Oversaturation |
|
Capillary action |
|
Surface evaporation |
|
MED | RO | |
---|---|---|
Electricity demand (kWh/m3) | 1.50 | 4.3 |
Electricity cost (USD/kWh) | 0.2–0.5 | 0.2–0.5 |
Heat demand (kWh/m3) | 52.6 | N/A |
Fuel price (USD/lit) | 1.0–2.0 | N/A |
CapEx (USD/m3/day) | 1700 | 2320 |
OpEx (except electricity, USD/m3) | 0.3 | 0.3 |
Lifetime (years) | 25 | 25 |
LCOW (USD/m3) | 4.5–8 | 1.7–3 |
LCOWWH (USD/m3) | 0.98–1.45 | N/A |
Water Back Pressure | Tower Height | Saturation Temperature | Saturation Pressure | LCOE | LCOW |
---|---|---|---|---|---|
~2 atm | 33 ft | 40–50 °C | 0.12 atm | ~60% | 50–90% |
Ref | Capillary Channel | Evaporator | Irradiation/Temperature | Efficiency |
---|---|---|---|---|
[64] | Carbon foam | Exfoliated graphite | 10 kW·m−2 | 85% |
[69] | Porous NiO disc | TiAlON-based | 1 kW·m−2 | 73% |
[333] | Nano porous filter paper | Gold plasmonic nanostructure | 2.3 kW·m−2 | 87% |
[269] | NiO wick | Naval brass | 34 °C | 65% |
[68] | Rayon carbon fiber | Exfoliated graphite | 1 kW·m−2 | 63% |
[330] | Cellulose fiber | Au/Ag-PFC | 1 kW·m−2 | 86% |
[334] | Polytetrafluoroethylene | Graphene-based film | 1 kW·m−2 | 79% |
[335] | Cotton rod-polystyrene | Graphene oxide | 1 kW·m−2 | 85% |
[78] | Cellulosic filter paper | Graphene oxide (lifted) | 0.82 kW·m−2 | 78% |
[336] | Basswood | Graphene oxide | 12 kW·m−2 | 83% |
[337] | ((Functionalized-)Chemically reduced-)Graphene oxide | 1 kW·m−2 | 38–48% | |
[338] | Hierarchical graphene foam | Graphene nanoparticles | 1 kW·m−2 | 93% |
[339] | Polyacrylonitrile | CB-PMMA | 1 kW·m−2 | 72% |
[331] | Nafion membrane | Carbon nanotube | 1 kW·m−2 | 75% |
[340] | Pristine draft paper | Pencil-drawn-paper | 1 kW·m−2 | 80% |
[67] | Basswood | Carbonized wood | 10 kW·m−2 | 87% |
[341] | GO/NFC | CNT/GO | 1 kW·m−2 | 86% |
[332] | Carbon cloth | Graphene | 1 kW·m−2 | 83% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadvand, S.; Abbasi, B.; Azarfar, B.; Elhashimi, M.; Zhang, X.; Abbasi, B. Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination. Water 2019, 11, 696. https://doi.org/10.3390/w11040696
Ahmadvand S, Abbasi B, Azarfar B, Elhashimi M, Zhang X, Abbasi B. Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination. Water. 2019; 11(4):696. https://doi.org/10.3390/w11040696
Chicago/Turabian StyleAhmadvand, Seyedsaeid, Behrooz Abbasi, Babak Azarfar, Mohammed Elhashimi, Xiang Zhang, and Bahman Abbasi. 2019. "Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination" Water 11, no. 4: 696. https://doi.org/10.3390/w11040696
APA StyleAhmadvand, S., Abbasi, B., Azarfar, B., Elhashimi, M., Zhang, X., & Abbasi, B. (2019). Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination. Water, 11(4), 696. https://doi.org/10.3390/w11040696