Evaluation of the Effect of Channel Geometry on Streamflow and Water Quality Modeling and Modification of Channel Geometry Module in SWAT: A Case Study of the Andong Dam Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of SWAT
2.2. Development of New Regression Equations for Estimating Channel Geometries
2.2.1. Study Area
2.2.2. Development of New Regression Equations to Reflect Real Channel Geometry Information
2.3. Modification of Channel Geometry Estimation Module in SWAT
2.4. Input Data for SWAT
2.5. Streamflow and Water Quality Simulation Using SWAT
2.6. Model Calibration and its Evaluation
3. Results and Discussion
3.1. Comparison between Current and New Regression Equations for Applicability Assessment of the Middle-Scale Watershed
3.2. Model Performance Evaluation and Analysis of the Effect of Channel Geometry Data on Model Simulation
3.2.1. Comparison of Flow Velocity Estimation Results from Current and New Regression Equations.
3.2.2. Comparison of Simulated Streamflow for Scenarios 1 and 2
3.2.3. Comparison of Simulated Water Quality for Scenarios 1 and 2
3.3. Modification of the SWAT 2012 Code to Apply Various Shapes of Channel Cross-Sections
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Trans. ASAE 2003, 46, 1553. [Google Scholar] [CrossRef]
- Bárdossy, A. Calibration of hydrological model parameters for ungauged catchments. Hydrol. Earth Syst. Sci. 2007, 11, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Borah, D.K.; Bera, M. SWAT model background and application reviews. In Proceedings of the 2003 ASAE Annual Meeting, Lass Vegas, NV, USA, 27–30 July 2003. [Google Scholar]
- Choi, B.; Kang, H.; Lee, W. Baseflow Contribution to Streamflow and Aquatic Habitats Using Physical Habitat Simulations. Water 2018, 10, 1304. [Google Scholar] [CrossRef]
- Stewardson, M. Hydraulic geometry of stream reaches. J. Hydrol. 2005, 306, 97–111. [Google Scholar] [CrossRef]
- Ames, D.P.; Rafn, E.B.; Van Kirk, R.; Crosby, B. Estimation of stream channel geometry in Idaho using GIS-derived watershed characteristics. Environ. Model. Softw. 2009, 24, 444–448. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool: Theoretical Documentation Version-version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar]
- Muttiah, R.S.; Srinivasan, R.; Allen, P.M. Prediction of two-year peak stream discharges using neural networks. J. Am. Water Resour. Assoc. 1997, 33, 625–630. [Google Scholar] [CrossRef]
- Allen, P.M.; Arnold, J.C.; Byars, B.W. Downstream Channel Geometry For Use In Planning-Level Models. JAWRA J. Am. Water Resour. Assoc. 1994, 30, 663–671. [Google Scholar] [CrossRef]
- Leopold, L.B.; Maddock, T.J. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications; USGS Professional Paper: Pennsylvania, MD, USA, 1953; pp. 1–57.
- Bieger, K.; Rathjens, H.; Allen, P.M.; Arnold, J.G. Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States. J. Am. Water Resour. Assoc. 2015. [Google Scholar] [CrossRef]
- Staley, N.; Bright, T.; Zeckoski, R.W.; Benham, B.L.; Brannan, K.M. Comparison of Hspf Outputs Using Ftables Generated with Field Survey and Digital Data. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 1153–1162. [Google Scholar] [CrossRef]
- Chan Min, S. Improving HSFP model’s hydraulic accuracy with FTABLES based on surveyed cross sections. J. Korean Soc. Water Environ. 2016, 32, 582–588. [Google Scholar]
- Richards, K.S. Channel and flow geometry: A geomorphological perspective. Prog. Phys. Geogr. 1977, 1, 65–102. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol. 2009, 1, 65–102. [Google Scholar] [CrossRef]
- Cohen Liechti, T.; Matos, J.P.; Ferràs Segura, D.; Boillat, J.L.; Schleiss, A.J. Hydrological modelling of the Zambezi River Basin taking into account floodplain behaviour by a modified reservoir approach. Int. J. River Basin Manag. 2014, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xie, Y.; Bi, M.; Wang, X.; Lu, Y.; Fan, Z. Effects of best management practices on nitrogen load reduction in tea fields with different slope gradients using the SWAT model. Appl. Geogr. 2018, 90, 200–213. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Catchment response to climate and land use changes in the Upper Blue Nile sub-basins, Ethiopia. Sci. Total Environ. 2018, 644, 193–206. [Google Scholar] [CrossRef]
- Lee, S.; Sadeghi, A.M.; McCarty, G.W.; Baffaut, C.; Lohani, S.; Duriancik, L.F.; Thompson, A.; Yeo, I.Y.; Wallace, C. Assessing the suitability of the Soil Vulnerability Index (SVI) on identifying croplands vulnerable to nitrogen loss using the SWAT model. CATENA 2018, 167, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, J.; Shao, Q.; Zhai, X. Water quantity and quality simulation by improved SWAT in highly regulated Huai River Basin of China. Stoch. Environ. Res. Risk Assess. 2013, 27, 11–27. [Google Scholar] [CrossRef]
- Her, Y.; Jeong, J.; Bieger, K.; Rathjens, H.; Arnold, J.; Srinivasan, R. Implications of Conceptual Channel Representation on SWAT Streamflow and Sediment Modeling. J. Am. Water Resour. Assoc. 2017, 53, 725–747. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Jang, W.S.; Engel, B.; Ryu, J. Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT). Ecol. Eng. 2018, 125, 50–67. [Google Scholar] [CrossRef]
- Singh, V.P. Elementary Hydrology; Prentice Hall: Englewood Cliffs, NJ, USA, 1992. [Google Scholar]
- Cinotto, P.J. Development of Regional Curves of Bankfull-Channel Geometry and Discharge for Streams in the Non-Urban; US Department of the Interior, US Geological Survey: Pennsylvania, MD, USA, 2003.
- Hyams, D.G. CurveExpert Professional. 2018, pp. 1–213. Available online: https://www.curveexpert.net/products/curveexpert-professional/ (accessed on 6 April 2019).
- Abbaspour, K.C. SWAT Calibration and Uncertainty Programs—A User Manual; Eawag: Zurich, Switzerland, 2008. [Google Scholar]
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S. SWAT-CUP Calibration and Uncertainty Programs for SWAT. In Proceedings of the Fourth International SWAT Conference, Delft, The Netherlands, 2–6 July 2007. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Griensven, V.; Liew, V. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models of the Watershed Management Committee, I. and D. D. Criteria for evaluation of watershed models. J. Irrig. Drain. Eng. 1993, 119, 429–442.
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Tung, Y.K.; Asce, A.M. River flood routing by nonlinear Muskingum method. J. Hydraul. Eng. 1985, 111, 1447–1460. [Google Scholar] [CrossRef]
- Nguyen, V.; Dietrich, J.; Uniyal, B.; Tran, D. Verification and Correction of the Hydrologic Routing in the Soil and Water Assessment Tool. Water 2018, 10, 1419. [Google Scholar] [CrossRef]
- U.S. EPA Office of Wetland, Oceans and Watersheds. An Approach for Using Load Duration Curves in the Development of TMDLs; U.S. Environmental Protection Agentcy: Washington, DC, USA, 2007; EPA 841-B-07-006.
No. | Area (km2) | Ch_w (m) | Fld_w (m) | No. | Area (km2) | Ch_w (m) | Fld_w (m) |
---|---|---|---|---|---|---|---|
1 | 54.1 | 8.1 | 20.0 | 18 | 545.2 | 34.2 | 68.4 |
2 | 41.5 | 8.3 | 17.9 | 19 | 104.4 | 18.3 | 37.1 |
3 | 134.8 | 14.4 | 30.2 | 20 | 141.0 | 22.0 | 37.4 |
4 | 59.2 | 7.8 | 18.8 | 22 | 661.4 | 43.8 | 66.9 |
5 | 201.2 | 15.7 | 39.9 | 25 | 169.9 | 17.7 | 32.6 |
6 | 49.3 | 8.5 | 21.1 | 26 | 702.0 | 45.6 | 75.2 |
8 | 42.9 | 8.2 | 18.8 | 27 | 754.7 | 39.2 | 82.6 |
9 | 260.8 | 21.5 | 43.6 | 28 | 90.8 | 9.3 | 24.6 |
11 | 50.4 | 12.4 | 19.8 | 30 | 197.6 | 19.4 | 35.7 |
12 | 28.6 | 9.3 | 21.4 | 33 | 41.0 | 6.1 | 12.8 |
13 | 362.1 | 23.8 | 54.1 | 34 | 85.2 | 15.4 | 31.2 |
14 | 35.9 | 7.1 | 21.8 | 35 | 39.3 | 9.6 | 23.3 |
15 | 404.7 | 26.4 | 56.2 | 40 | 1187.5 | 62.5 | 89.0 |
16 | 57.0 | 13.2 | 27.6 |
Parameter | Definition | Variation Method | Fitted Value | |||
---|---|---|---|---|---|---|
Dosan | Andong Dam | |||||
S1 | S2 | S1 | S2 | |||
ALPHA_BF | Baseflow alpha factor | Replace | 0.61 | 0.61 | 0.83 | 0.83 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium | Replace | 13.34 | 13.47 | 0.77 | 0.78 |
CN2 | SCS runoff curve number | Multiply | 0.82 | 0.83 | 0.75 | 0.76 |
ESCO | Soil evaporation compensation factor | Replace | 0.45 | 0.46 | 0.09 | 0.09 |
GW_DELAY | Groundwater delay time | Replace | 113 | 114 | 269 | 271 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur | Replace | 2451 | 2476 | 822 | 830 |
LAT_TTIME | Lateral flow travel time | Replace | 3.16 | 3.19 | 1.45 | 1.47 |
MSK_CO1 | Calibration coefficient used to control impact of the storage time constant for normal flow | Replace | 4.03 | 4.03 | 4.03 | 4.03 |
MSK_CO2 | Calibration coefficient used to control impact of the storage time constant from low flow | Replace | 3.94 | 3.94 | 3.94 | 3.94 |
MSK_X | Weighting factor controlling relative importance of inflow rate and outflow rate in determining water storage in a reach | Replace | 0.01 | 0.01 | 0.01 | 0.01 |
SOL_AWC | Available water capacity of the soil layer | Multiply | 0.83 | 0.84 | 1.24 | 1.25 |
SURLAG | Surface runoff lag time | Replace | 6.65 | 6.72 | 6.65 | 6.72 |
Parameter | Definition | Variation Method | VALUES | |
---|---|---|---|---|
S1 | S2 | |||
CDN | Denitrification exponential rate coefficient | Replace | 2.63 | 2.51 |
N_UPDIS | Nitrogen uptake distribution parameter | Replace | 16.70 | 38.10 |
PRF_BSN | Peak rate adjustment factor for sediment routing in the main channel | Replace | 0.46 | 0.21 |
ADJ_PKR | Peak rate adjustment factor for sediment routing in tributary | Replace | 1.13 | 0.62 |
RSDCO | Residue decomposition coefficient | Replace | 0.06 | 0.07 |
SOL_NO3 | Initial NO3 concentration in the soil layer | Replace | 7.90 | 27.50 |
LAT_ORGN | Organic N in the baseflow | Replace | 0.05 | 0.45 |
HLIFE_NGW | Half-life of nitrate in the shallow aquifer | Replace | 56.66 | 77.80 |
SLSUBBSN | Average slope length | Multiply | 1.23 | 0.86 |
HRU_SLP | Average slope steepness | Multiply | 1.03 | 1.24 |
USLE_P | USLE equation support practice | Replace | 0.35 | 0.84 |
BIOMIX | Biological mixing efficiency | Replace | 0.14 | 0.16 |
USLE_C | Min value of USLE C factor applicable to the land cover/plant | Multiply | 1.19 | 1.03 |
USLE_K | USLE equation soil erodibility (K) factor | Multiply | 1.45 | 1.30 |
AI1 | Fraction of algal biomass that is nitrogen | Replace | 0.07 | 0.08 |
Performance Rating | R2, NSE | RSR | PBIAS | ||
---|---|---|---|---|---|
Streamflow | Sediment | N, P | |||
Very good | 0.751.00 | 0.000.50 | 10 | 15 | 25 |
Good | 0.500.75 | 0.500.60 | 10 15 | 15 30 | 25 40 |
Satisfactory | 0.250.50 | 0.600.70 | 15 25 | 30 55 | 40 70 |
Unsatisfactory | 0.000.25 | 0.70 | 25 | 55 | 70 |
Criteria | Dosan Station | Andong Dam Station | ||||||
---|---|---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |||||
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
R2 | 0.79 | 0.78 | 0.61 | 0.62 | 0.78 | 0.77 | 0.69 | 0.70 |
NSE | 0.77 | 0.77 | 0.52 | 0.54 | 0.74 | 0.74 | 0.67 | 0.69 |
RSR | 0.51 | 0.48 | 0.68 | 0.69 | 0.51 | 0.51 | 0.57 | 0.56 |
PBIAS | 29.7 | 16.3 | 36.0 | 31.2 | 24.9 | 14.8 | 35.0 | 20.7 |
Criteria | Sediment | TN | DO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | Calibration | Validation | |||||||
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
R2 | 0.65 | 0.87 | 0.84 | 0.84 | 0.65 | 0.76 | 0.71 | 0.72 | 0.79 | 0.79 | 0.21 | 0.32 |
NSE | 0.65 | 0.87 | 0.78 | 0.80 | 0.41 | 0.65 | 0.32 | 0.41 | 0.59 | 0.62 | −0.49 | 0.21 |
RSR | 0.59 | 0.36 | 0.46 | 0.44 | 0.77 | 0.59 | 0.46 | 0.31 | 0.64 | 0.62 | 1.03 | 1.00 |
PBIAS | −7.7 | −9.9 | 37.6 | 22.6 | 75.3 | 57.4 | 18.8 | 14.4 | 62.3 | 49.9 | 95.8 | 66.6 |
Values | Sediment | TN | DO | |||
---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | |
5-year sum (tons) | 256,000 | 309,000 | 2427 | 4396 | 11,142 | 14,334 |
Percent difference | 20.8% | 81.1% | 28.6% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Lee, D.; Lee, S.; Chung, S.-W.; Kim, S.J.; Park, M.; Lim, K.J.; Kim, J. Evaluation of the Effect of Channel Geometry on Streamflow and Water Quality Modeling and Modification of Channel Geometry Module in SWAT: A Case Study of the Andong Dam Watershed. Water 2019, 11, 718. https://doi.org/10.3390/w11040718
Han J, Lee D, Lee S, Chung S-W, Kim SJ, Park M, Lim KJ, Kim J. Evaluation of the Effect of Channel Geometry on Streamflow and Water Quality Modeling and Modification of Channel Geometry Module in SWAT: A Case Study of the Andong Dam Watershed. Water. 2019; 11(4):718. https://doi.org/10.3390/w11040718
Chicago/Turabian StyleHan, Jeongho, Dongjun Lee, Seoro Lee, Se-Woong Chung, Seong Joon Kim, Minji Park, Kyoung Jae Lim, and Jonggun Kim. 2019. "Evaluation of the Effect of Channel Geometry on Streamflow and Water Quality Modeling and Modification of Channel Geometry Module in SWAT: A Case Study of the Andong Dam Watershed" Water 11, no. 4: 718. https://doi.org/10.3390/w11040718
APA StyleHan, J., Lee, D., Lee, S., Chung, S. -W., Kim, S. J., Park, M., Lim, K. J., & Kim, J. (2019). Evaluation of the Effect of Channel Geometry on Streamflow and Water Quality Modeling and Modification of Channel Geometry Module in SWAT: A Case Study of the Andong Dam Watershed. Water, 11(4), 718. https://doi.org/10.3390/w11040718