Dissolved and Particulate Organic Carbon in Icelandic Proglacial Streams: A First Estimate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Points
2.2. Sample Preparation and Field Parameters
2.3. Analysis of DOC and POC Concentration
2.4. Absorbance Measurements, Excitation Emission Matrices (EEMs), and Parallel Factor Analysis (PARAFAC)
2.5. Statistical Analyses
3. Results and Discussion
3.1. DOC and POC Concentration in the Proglacial Streams
3.2. DOC and POC Concentrations along the River Hvitá (from Glacier Terminus to Ocean)
3.3. Composition and Spatial Variability of Glacial OC in Icelandic Proglacial Rivers
3.4. DOC Flux
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hood, E.; Battin, T.J.; Fellman, J.; O’neel, S.; Spencer, R.G. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 2015, 8, 91. [Google Scholar] [CrossRef]
- Anesio, A.M.; Hodson, A.J.; Fritz, A.; Psenner, R.; Sattler, B. High microbial activity on glaciers: Importance to the global carbon cycle. Glob. Chang. Biol. 2009, 15, 955–960. [Google Scholar] [CrossRef]
- Singer, G.A.; Fasching, C.; Wilhelm, L.; Niggemann, J.; Steier, P.; Dittmar, T.; Battin, T.J. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat. Geosci. 2012, 5, 710–714. [Google Scholar] [CrossRef]
- Stibal, M.; Šabacká, M.; Žárský, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 2012, 5, 771–774. [Google Scholar] [CrossRef]
- Mulholland, P.J. Dissolved organic matter concentration and flux in streams. J. N. Am. Benthol. Soc. 1997, 16, 131–141. [Google Scholar] [CrossRef]
- Barker, J.D.; Sharp, M.J.; Fitzsimons, S.J.; Turner, R.J. Abundance and dynamics of dissolved organic carbon in glacier systems. Arct. Antarct Alp. Res. 2006, 38, 163–172. [Google Scholar] [CrossRef]
- Bhatia, M.P.; Das, S.B.; Longnecker, K.; Charette, M.A.; Kujawinski, E.B. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim. Cosmochim. Acta 2010, 74, 3768–3784. [Google Scholar] [CrossRef]
- Volk, C.J.; Volk, C.B.; Kaplan, L.A. Chemical composition of biodegradable dissolved organic matter in streamwater. Limnol. Oceanogr. 1997, 42, 39–44. [Google Scholar] [CrossRef]
- Risse-Buhl, U.; Hagedorn, F.; Dümig, A.; Gessner, M.O.; Schaaf, W.; Nii-Annang, S.; Gerull, L.; Mutz, M. Dynamics, chemical properties and bioavailability of DOC in an early successional catchment. Biogeosciences 2013, 10, 4751–4765. [Google Scholar] [CrossRef]
- Castella, E.; Adalsteinsson, H.; Brittain, J.E.; Gislason, G.M.; Lehmann, A.; Lencioni, V.; Lods-Crozet, B.; Maiolini, B.; Milner, A.M.; Olafsson, J.S.; et al. Macrobenthic invertebrate richness and composition along a latitudinal gradient of European glacier-fed streams. Freshwater Biol. 2001, 46, 1811–1831. [Google Scholar] [CrossRef]
- Gíslason, G.M.; Ólafsson, J.S.; Adalsteinsson, H. Animal communities in Icelandic rivers in relation to catchment characteristics and water chemistry. Hydrol. Res. 1998, 29, 129–148. [Google Scholar] [CrossRef]
- Gíslason, G.M.; Ólafsson, J.S.; Adalsteinsson, H. Life in glacial and alpine rivers in central Iceland in relation to physical and chemical parameters. Hydrol. Res. 2000, 31, 411–422. [Google Scholar] [CrossRef]
- Gíslason, G.M.; Hansen, I.; Ólafsson, J.S.; Svavarsdóttir, K. Longitudinal changes in macroinvertebrate assemblages along a glacial river system in central Iceland. Freshwater Biol. 2001, 46, 1737–1751. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; Raymond, P.A.; Hudson, J.; Bozeman, M.; Arimitsu, M. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web. Limnol. Oceanogr. 2015, 60, 1118–1128. [Google Scholar] [CrossRef]
- Bhatia, M.P.; Das, S.B.; Xu, L.; Charette, M.A.; Wadham, J.L.; Kujawinski, E.B. Organic carbon export from the Greenland ice sheet. Geochim. Cosmochim. Acta 2013, 109, 329–344. [Google Scholar] [CrossRef]
- Bhatia, M.; Das, S.B.; Kujawinski, E.B.; Henderson, P.; Burke, A.; Charette, M.A. Seasonal evolution of water contributions to discharge from a Greenland outlet glacier: Insight from a new isotope-mixing model. J. Glaciol. 2011, 57, 929–941. [Google Scholar] [CrossRef]
- Lawson, E.C.; Wadham, J.L.; Tranter, M.; Stibal, M.; Lis, G.P.; Butler, C.E.; Laybourn-Parry, J.; Nienow, P.; Chandler, D.; Dewsbury, P. Greenland ice sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 2014, 11, 4015–4028. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Wu, Y.; Liu, S.M.; Wenger, F.; Hu, J.; Zhang, J.; Zhang, R.F. Organic carbon flux and particulate organic matter composition in Arctic valley glaciers: Examples from the Bayelva River and adjacent Kongsfjorden. Biogeosciences 2016, 13, 975–987. [Google Scholar] [CrossRef]
- Spencer, R.G.; Guo, W.; Raymond, P.A.; Dittmar, T.; Hood, E.; Fellman, J.; Stubbins, A. Source and bioavailability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau. Geochim. Cosmochim. Acta 2014, 142, 64–74. [Google Scholar] [CrossRef]
- Björnsson, H.; Pálsson, F.; Gudmundsson, S.; Magnússon, E.; Adalgeirsdóttir, G.; Jóhannesson, T.; Berthier, E.; Sigurdsson, O.; Thorsteinsson, T. Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age. Geophys. Res. Lett. 2013, 40, 1546–1550. [Google Scholar] [CrossRef]
- Kitagawa, Y. An aspect of the water in clay minerals: An application of nuclear magnetic resonance spectrometry to clay mineralogy. Am. Mineral. 1972, 57, 751–764. [Google Scholar]
- Eiriksdottir, E.S.; Oelkers, E.H.; Hardardottir, J.; Gislason, S.R. The impact of damming on riverine fluxes to the ocean: A case study from Eastern Iceland. Water Res. 2017, 113, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Galeczka, I.; Oelkers, E.H.; Gislason, S.R. The chemistry and element fluxes of the July 2011 Múlakvísl and Kaldakvísl glacial floods, Iceland. J. Volcanol. Geoth. Res. 2014, 273, 41–57. [Google Scholar] [CrossRef]
- Galeczka, I.; Eiriksdottir, E.S.; Hardardottir, J.; Oelkers, E.H.; Torssander, P.; Gislason, S.R. The effect of the 2002 glacial flood on dissolved and suspended chemical fluxes in the Skaftá river, Iceland. J. Volcanol. Geoth. Res. 2015, 301, 253–276. [Google Scholar] [CrossRef]
- Lutz, S.; Anesio, A.M.; Edwards, A.; Benning, L.G. Microbial diversity on Icelandic glaciers and ice caps, Front. Microbiol. 2015, 6, 307. [Google Scholar] [CrossRef]
- Bradwell, T.; Sigurđsson, O.; Everest, J. Recent, very rapid retreat of a temperate glacier in SE Iceland. Boreas 2013, 42, 959–973. [Google Scholar] [CrossRef]
- Jaenicke, J.; Mayer, C.; Scharrer, K.; Münzer, U.; Gudmundsson, Á. The use of remote-sensing data for mass-balance studies at Mýrdalsjökull ice cap, Iceland. J. Glaciol. 2006, 52, 565–573. [Google Scholar] [CrossRef]
- Jóhannesson, T.; Björnsson, H.; Magnússon, E.; Gudmundsson, S.; Pálsson, F.; Sigurdsson, O.; Thorsteinsson, T.; Berthier, E. Ice-volume changes, bias estimation of mass-balance measurements and changes in subglacial lakes derived by lidar mapping of the surface of Icelandic glaciers. Ann. Glaciol. 2013, 54, 63–74. [Google Scholar] [CrossRef]
- Jóhannesson, T.; Björnsson, H.; Pálsson, F.; Sigurðsson, O.; Þorsteinsson, Þ. LiDAR mapping of the Snæfellsjökull ice cap, western Iceland. Jökull 2011, 61, 19–32. [Google Scholar]
- Björnsson, H.; Pálsson, F. Icelandic glaciers. Jökull 2008, 58, 365–386. [Google Scholar]
- Aðalgeirsdóttir, G.; Jóhannesson, T.; Björnsson, H.; Pálsson, F.; Sigurðsson, O. Response of Hofsjökull and southern Vatnajökull, Iceland, to climate change. J. Geophys. Res. 2006, 111, 15. [Google Scholar] [CrossRef]
- Pope, A.; Willis, I.C.; Pálsson, F.; Arnold, N.S.; Rees, W.G.; Björnsson, H.; Grey, L. Elevation change, mass balance, dynamics and surging of Langjökull, Iceland from 1997 to 2007. J. Glaciol. 2016, 62, 497–511. [Google Scholar] [CrossRef]
- Mayer, C.; Jaenicke, J.; Lambrecht, A.; Braun, L.; Völksen, C.; Minet, C.; Münzer, U. Local surface mass-balance reconstruction from a tephra layer—A case study on the northern slope of Mýrdalsjökull, Iceland. J. Glaciol. 2017, 63, 79–87. [Google Scholar] [CrossRef]
- Jónsdóttir, J.F.; Uvo, C.B. Long-term variability in precipitation and streamflow in Iceland and relations to atmospheric circulation. Int. J. Climatol. 2009, 29, 1369–1380. [Google Scholar] [CrossRef]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Cauvy-Fraunie, S.; Gíslason, G.M.; Jacobsen, D.; Hannah, D.M.; et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef] [PubMed]
- Shirokova, L.S.; Chupakova, A.A.; Chupakov, A.V.; Pokrovsky, O.S. Transformation of dissolved organic matter and related trace elements in the mouth zone of the largest European Arctic river: Experimental modeling. Inland Waters 2017, 7, 272–282. [Google Scholar] [CrossRef]
- Das, S.B.; Joughin, I.; Behn, M.D.; Howat, I.M.; King, M.A.; Lizarralde, D.; Bhatia, M.P. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 2008, 320, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Fasching, C.; Ulseth, A.J.; Schelker, J.; Steniczka, G.; Battin, T.J. Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone. Limnol. Oceanogr. 2016, 61, 558–571. [Google Scholar] [CrossRef]
- Maciejewska, A.; Pempkowiak, J. DOC and POC in the water column of the southern Baltic. Part, I. Evaluation of factors influencing sources, distribution and concentration dynamics of organic matter. Oceanologia 2014, 56, 523–548. [Google Scholar] [CrossRef]
- Lagaly, G. Reaktionen der Tonminerale. In Tonimerale und Tone; Steinkopff: Berlin, Germany, 1993; pp. 89–167. [Google Scholar]
- Hensen, E.J.; Smit, B. Why clays swell. J. Phys. Chem. B 2002, 106, 12664–12667. [Google Scholar] [CrossRef]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef]
- Chin, Y.-P.; Aiken, G.; Loughlin, E.O. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 1994, 28, 1853–1858. [Google Scholar] [CrossRef]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemos 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Parlanti, E.; Wörz, K.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Wilson, H.F.; Xenopoulos, M.A. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat. Geosci. 2009, 2, 37–41. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Meth. 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Andersson, C.A.; Bro, R. The N-way toolbox for MATLAB. Chemometr. Intell. Lab. 2000, 52, 1–4. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial OM in seawater using excitation emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B. vegan: Community Ecology Package. R package version 2.0-9. 2013. Available online: http:// CRAN.R-project.org/package = vegan (accessed on 10 April 2019).
- Fellman, J.B.; Spencer, R.G.; Hernes, P.J.; Edwards, R.T.; D’Amore, D.V.; Hood, E. The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems. Mar. Chem. 2010, 121, 112–122. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Walsh, C.J.; Taylor, S.L. The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ. Manag. 2004, 34, 112–124. [Google Scholar] [CrossRef]
- Dubnick, A.; Barker, J.; Sharp, M.; Wadham, J.; Lis, G.; Telling, J.; Fitzsimons, S.; Jackson, M. Characterization of dissolved organic matter (DOM) from glacial environments using total fluorescence spectroscopy and parallel factor analysis. Ann. Glaciol. 2010, 51, 111–122. [Google Scholar] [CrossRef]
- Hodson, A.; Anesio, A.M.; Tranter, M.; Fountain, A.; Osborn, M.; Priscu, J.; Laybourn-Parry, J.; Sattler, B. Glacial ecosystems. Ecol. Monogr. 2008, 78, 41–67. [Google Scholar] [CrossRef]
- Hood, E.; Fellman, J.; Spencer, R.G.; Hernes, P.J.; Edwards, R.; D’amore, D.; Scott, D. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 2009, 462, 1044–1047. [Google Scholar] [CrossRef] [PubMed]
- Guillemette, F.; del Giorgio, P.A. Simultaneous consumption and production of fluorescent dissolved organic matter by lake bacterioplankton. Environ. Microbiol. 2012, 14, 1432–1443. [Google Scholar] [CrossRef]
- Findlay, S. Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone. Limnol. Oceanogr. 1995, 40, 159–164. [Google Scholar] [CrossRef]
- Dangles, O.; Guerold, F.; Usseglio-Polatera, P. Role of transported particulate organic matter in the macroinvertebrate colonization of litter bags in streams. Freshwater Biol. 2001, 46, 575–586. [Google Scholar] [CrossRef]
- Monaghan, M.T.; Thomas, S.A.; Minshall, G.W.; Newbold, J.D.; Cushing, C.E. The influence of filter-feeding benthic macroinvertebrates on the transport and deposition of particulate organic matter and diatoms in two streams. Limnol. Oceanogr. 2001, 46, 1091–1099. [Google Scholar] [CrossRef]
- Lods-Crozet, B.; Lencioni, V.; Olafsson, J.S.; Snook, D.L.; Velle, G.; Brittain, J.E.; Rossaro, B. Chironomid (Diptera: Chironomidae) communities in six European glacier-fed streams. Freshwater Biol. 2001, 46, 1791–1809. [Google Scholar] [CrossRef]
- Kaplan, L.A.; Bott, T.L. Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: Effects of temperature, water chemistry, and habitat. Limnol. Oceanogr. 1989, 34, 718–733. [Google Scholar] [CrossRef]
- Arimitsu, M.L.; Hobson, K.A.; Webber, D.N.; Piatt, J.F.; Hood, E.W.; Fellman, J.B. Tracing biogeochemical subsidies from glacier runoff into Alaska’s coastal marine food webs. Glob. Chang. Biol. 2018, 24, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Grinsted, A. An estimate of global glacier volume. Cryos. 2013, 7, 141–151. [Google Scholar] [CrossRef]
- Hood, E.; Berner, L. Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J. Geophys. Res. Biogeo. 2009, 114. [Google Scholar] [CrossRef]
- Bliss, A.; Hock, R.; Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. 2014, 119, 717–730. [Google Scholar] [CrossRef]
Site | Main Glacier | Sub Glacier | Sampling Time (GMT) | Coordinates | Distance to Glacier (km) |
---|---|---|---|---|---|
HV01 | Langjökull | Hagafellsjökull/Nordurjökull | 24 July 2016 (18:00) | 63°52′42.6″ N, 21°12′43.2″ W | 137 |
HV02 | Langjökull | Hagafellsjökull/Nordurjökull | 24 July 2016 (18:30) | 63°56′17.7″ N, 21°0′20.9″ W | 120 |
HV03 | Langjökull | Hagafellsjökull/Nordurjökull | 24 July 2016 (19:30) | 64°6′38.4″ N, 20°30′39.6″ W | 80 |
HV04 | Langjökull | Hagafellsjökull | 25 July 2016 (11:15) | 64°11′17.4″ N, 20°24′19.2″ W | 44 |
HV05 | Langjökull | Nordurjökull/Hagafellsjökull | 25 July 2016 (11:00) | 64°9′4.1″ N, 20°21′53.4″ W | 68 |
HV06 | Langjökull | Hagafellsjökull | 25 July 2016 (11:50) | 64°18′49.5″ N, 20°15′56.7″ W | 26 |
HV07 | Langjökull | Hagafellsjökull | 25 July 2016 (13:15) | 64°22′22.8’’ N, 20°7′38.7″ W | 15 |
HV08 | Langjökull | Hagafellsjökull | 25 July 2016 (14:15) | 64°24′7.4’’ N, 20°3′12.6″ W | 18 |
HV09 | Langjökull | Hagafellsjökull | 25 July 2016 (15:20) | 64°27’55.8″ N, 20°14′48.0″ W | 3 |
HV10 | Langjökull | Nordurjökull | 25 July 2016 (17:00) | 64°32′12.0″ N, 19°46′51.6″ W | 12 |
HV11 | Langjökull | Nordurjökull/Hagafellsjökull | 25 July 2016 (12:30) | 64°15′43.5″ N, 20°13′21.0″ W | 55 |
BL01 | Unglaciated drainage area | 26 July 2016 (09:45) | 64°56′12.9″ N, 19°31′16.8″ W | ||
BL02 | Langjökull | Baldkökull | 26 July 2016 (10:00) | 64°56’12″ N, 19°31′14.9″ W | 18 |
AJ01 | Hofsjökull | Illvidrajökull | 26 July 2016 (16:30) | 65°3′32.8″ N, 18°29′17.9″ W | 19 |
ST01 | Unglaciated drainage area | 26 July 2016 (17:00) | 65°3′0.0″ N, 18°28′12.0″ W | ||
HN01 | Hofsjökull | Miklafellsjökull/Klakksjökull | 26 July 2016 (17:30) | 65°2′37.8″ N, 18°23′27.6″ W | 29 |
TJ01 | Tungnafellsjökull | Hagajökull | 27 July 2016 (10:20) | 64°46′21.0″ N, 18°1′12.0″ W | 4 |
TJ02 | Tungnafellsjökull | Tungnafellsjökull | 27 July 2016 (11:00) | 64°44′17.9″ N, 18°4′19.8″ W | 8 |
JK01 | Mýrdalsjökull | Sólheimajökull | 28 July 2016 (15:00) | 63°32′3.0″ N, 19°22′17.4″ W | 1 |
MV01 | Mýrdalsjökull | Kötlujökull | 28 July 2016 (16:10) | 63°26′15.0″ N, 18°51′6.0″ W | 14 |
SJ01 | Vatnajökull | Súlujökull | 28 July 2016 (18:00) | 63°57′20.9″ N, 17°28′9.6″ W | 8 |
SJ02 | Vatnajökull | Skeidarárjökull | 28 July 2016 (18:20) | 63°56′23.4″ N, 17°22′9.0″ W | 10 |
SV01 | Vatnajökull | Svinafellsjökull | 29 July 2016 (09:00) | 63°59′1.5″ N, 16°52′23.4″ W | 1 |
SK01 | Vatnajökull | Skaftafelljökull | 29 July 2016 (10:20) | 64°0′23.4″ N, 16°56’2.1″ W | 3 |
Site | Electrical Conductivity [µS·cm−1] | Total Suspended Solids (mg·L−1) | DOC (mg·L−1) | POC (mg·L−1) | |
---|---|---|---|---|---|
Ø | SD | ||||
HV01 | 300.0 | 13.3 | 0.23 | 0.00398 | 0.67 |
HV02 | 55.0 | 32.7 | 0.94 | 0.00261 | 7.33 |
HV03 | 102.0 | 28.0 | 0.34 | 0.00261 | 7.33 |
HV04 | 40.0 | 6.0 | 0.16 | 0.00230 | 2.67 |
HV05 | 51.0 | 144.7 | 0.20 | 0.01330 | 46.00 |
HV06 | 34.0 | 0.1 | 0.12 | 0.02227 | 4.00 |
HV07 | 21.0 | 7.3 | 0.20 | 0.00580 | 0.67 |
HV08 | 12.0 | 180.0 | 0.15 | 0.01562 | 56.00 |
HV09 | 2.0 | 210.7 | 0.13 | 0.00435 | 48.67 |
HV10 | 42.0 | 11.3 | 0.15 | 0.01577 | 4.00 |
HV11 | 48.0 | 149.3 | 0.12 | 0.00747 | 39.33 |
BL01 | 53.0 | 2.7 | 0.56 | 0.08799 | 0.00 * |
BL02 | 47.0 | 6.0 | 0.22 | 0.00139 | 1.33 |
AJ01 | 32.0 | 203.3 | 0.26 | 0.01925 | 41.33 |
ST01 | 38.0 | 4.7 | 0.29 | 0.01742 | 2.67 |
HN01 | 22.0 | 74.7 | 0.16 | 0.00652 | 9.33 |
TJ01 | 20.0 | 36.7 | 0.11 | 0.01405 | 4.00 |
TJ02 | 27.0 | 86.0 | 0.14 | 0.00215 | 20.00 |
JK01 | 48.0 | 536.0 | 0.15 | 0.00135 | NA |
MV01 | 160.0 | 412.0 | 0.15 | 0.01953 | 70.00 |
SJ01 | 18.0 | 260.7 | 0.15 | 0.01036 | 84.67 |
SJ02 | 35.0 | 401.3 | 0.22 | 0.01582 | 55.33 |
SV01 | 32.0 | 188.0 | 0.14 | 0.00252 | 46.00 |
SK01 | 14.0 | 158.0 | 0.15 | 0.02183 | 40.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chifflard, P.; Fasching, C.; Reiss, M.; Ditzel, L.; Boodoo, K.S. Dissolved and Particulate Organic Carbon in Icelandic Proglacial Streams: A First Estimate. Water 2019, 11, 748. https://doi.org/10.3390/w11040748
Chifflard P, Fasching C, Reiss M, Ditzel L, Boodoo KS. Dissolved and Particulate Organic Carbon in Icelandic Proglacial Streams: A First Estimate. Water. 2019; 11(4):748. https://doi.org/10.3390/w11040748
Chicago/Turabian StyleChifflard, Peter, Christina Fasching, Martin Reiss, Lukas Ditzel, and Kyle S. Boodoo. 2019. "Dissolved and Particulate Organic Carbon in Icelandic Proglacial Streams: A First Estimate" Water 11, no. 4: 748. https://doi.org/10.3390/w11040748