Sensitivity Analysis of Extreme Daily Rainfall Depth in Summer Season on Surface Air Temperature and Dew-Point Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Observed Data and Sensitivity Analysis
2.3. Future Climate Data and Trend Analysis
3. Results and Discussion
3.1. Sensitivity Analysis of Observed Data
3.2. Trend Analysis of Future Projection Data
3.3. Sensitivity Analysis of Future Projection Data
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rosenzweig, C.; Iglesias, A.; Yang, X.B.; Epstein, P.R.; Chivian, E. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Chang. Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Easterling, D.R.; Karl, T.R.; Hegerl, G.C.; Razuvaev, V.N. Trends in intense precipitation in the climate record. J. Clim. 2005, 18, 1326–1350. [Google Scholar] [CrossRef]
- Elsner, J.B.; Kossin, J.P.; Jagger, T.H. The increasing intensity of the strongest tropical cyclones. Nature 2008, 455, 92–95. [Google Scholar] [CrossRef]
- Tsuboki, K.; Yoshioka, M.K.; Shinoda, T.; Kato, M.; Kanada, S.; Kitoh, A. Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett. 2015, 42, 646–652. [Google Scholar] [CrossRef] [Green Version]
- Bates, B.; Evans, J.; Green, J.; Griesser, A.; Jakob, D.; Lau, R.; Lehmann, E.; Leonard, M.; Phatak, A.; Rafter, T.; et al. Australian Rainfall and Runoff Revision Project 1: Development of Intensity-Frequency-Duration Information Across Australia; Engineers Australia, Water Engineering: Barton, Australia, 2015. [Google Scholar]
- O’Gorman, P.A. Precipitation extremes under climate change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef]
- Coles, S.; Pericchi, L.R.; Sisson, S. A fully probabilistic approach to extreme rainfall modeling. J. Hydrol. 2003, 273, 35–50. [Google Scholar] [CrossRef]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.S.; Xavier, P.K. Increasing trend of extreme rain events over India in a warming environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Sreejith, O.P.; Menon, P.A. Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci. 2011, 120, 359. [Google Scholar] [CrossRef]
- Ávila, Á.; Guerrero, F.C.; Escobar, Y.C.; Justino, F. Recent precipitation trends and floods in the Colombian Andes. Water 2019, 11, 379. [Google Scholar] [CrossRef]
- Utsumi, N.; Seto, S.; Kanae, S.; Maeda, E.E.; Oki, T. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett. 2011, 38, L16708. [Google Scholar] [CrossRef]
- Panthou, G.; Mailhot, A.; Laurence, E.; Talbot, G. Relationship between surface temperature and extreme rainfalls: A multi-time-scale and event-based analysis. J. Hydrometeorol. 2014, 15, 1999–2011. [Google Scholar] [CrossRef]
- Wasko, C.; Sharma, A.; Johnson, F. Does storm duration modulate the extreme precipitation-temperature scaling relationship? Geophys. Res. Lett. 2015, 42, 8783–8790. [Google Scholar] [CrossRef]
- Herath, S.M.; Sarukkalige, R.; Van Nguyen, V.T. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia. J. Hydrol. 2018, 556, 1171–1181. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224. [Google Scholar] [CrossRef]
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378. [Google Scholar] [CrossRef]
- Fujita, M.; Mizuta, R.; Ishii, M.; Endo, H.; Sato, T.; Okada, Y.; Kawazoe, S.; Sugimoto, S.; Ishihara, K.; Watanabe, S. Precipitation changes in a climate with 2-K surface warming from large ensemble simulations using 60-km global and 20-km regional atmospheric models. Geophys. Res. Lett. 2019, 46, 435–442. [Google Scholar] [CrossRef]
- Sachindra, D.A.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Impact of climate change on urban heat island effect and extreme temperatures: A case-study. Q. J. R. Meteorol. Soc. 2016, 142, 172–186. [Google Scholar] [CrossRef]
- Crowley, T.J. Causes of climate change over the past 1000 years. Science 2000, 289, 270–277. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Hirabayashi, Y.; Kanae, S.; Emori, S.; Oki, T.; Kimoto, M. Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J. 2008, 53, 754–772. [Google Scholar] [CrossRef] [Green Version]
- Kawagoe, S.; Kazama, S.; Sarukkalige, P.R. Probabilistic modelling of rainfall induced landslide hazard assessment. Hydrol. Earth Syst. Sci. 2010, 14, 1047–1061. [Google Scholar] [CrossRef] [Green Version]
- Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 2015, 5, 560. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 2019, 10, 73–89. [Google Scholar] [CrossRef]
- O’Gorman, P.A.; Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Nat. Acad. Sci. USA 2009, 106, 14773–14777. [Google Scholar] [CrossRef] [Green Version]
- Johnson, F.; White, C.J.; van Dijk, A.; Ekstrom, M.; Evans, J.P.; Jakob, D.; Kiem, A.S.; Leonard, M.; Rouillard, A.; Westra, S. Natural hazards in Australia: Floods. Clim. Chang. 2016, 139, 21–35. [Google Scholar] [CrossRef]
- Romps, D.M. Response of tropical precipitation to global warming. J. Atmos. Sci. 2011, 68, 123–138. [Google Scholar] [CrossRef]
- Bae, D.H.; Jung, I.W.; Lee, B.J.; Lee, M.H. Future Korean water resources projection considering uncertainty of GCMs and hydrological models. J. Korea Water Res. Assoc. 2011, 44, 389–406. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Keum, J.; Park, M.; Kim, S. Uncertainty of future intensity-duration-frequency curves using multi-regional climate models. J. Korean Soc. Hazard Mitig. 2018, 18, 405–416. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci. 2012, 5, 697–700. [Google Scholar] [CrossRef]
- Tramblay, Y.; Neppel, L.; Carreau, J.; Najib, K. Non-stationary frequency analysis of heavy rainfall events in southern France. Hydrol. Sci. J. 2013, 58, 280–294. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.C.; Kendon, E.J.; Roberts, N.M.; Fowler, H.J.; Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 2016, 9, 24–28. [Google Scholar] [CrossRef]
- Ivancic, T.J.; Shaw, S.B. A US-based analysis of the ability of the Clausius-Clapeyron relationship to explain changes in extreme rainfall with changing temperature. J. Geophys. Res. Atmos. 2016, 121, 3066–3078. [Google Scholar] [CrossRef]
- Ali, H.; Mishra, V. Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Sci. Rep. 2017, 7, 1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasko, C.; Lu, W.T.; Mehrotra, R. Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia. Environ. Res. Lett. 2018, 13, 074031. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, B.K.; Kyung, M.S.; Kim, H.S. Impact assessment of climate change on extreme rainfall and IDF analysis. J. Korea Water Res. Assoc. 2008, 41, 379–394. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, B.S. Analysis of impact climate change on extreme rainfall using B2 climate change scenario and extreme indices. J. Korean Soc. Civ. Eng. 2009, 29, 23–33. [Google Scholar]
- Kwon, M.; Lee, G.; Jun, K.S. Analysis of annual maximum daily rainfall using RCP climate change scenario in Korean peninsula. J. Korean Soc. Hazard Mitig. 2015, 15, 99–110. [Google Scholar] [CrossRef]
- Lenderink, G.; Mok, H.Y.; Lee, T.C.; Van Oldenborgh, G.J. Scaling and trends of hourly precipitation extremes in two different climate zones–Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 2011, 15, 3033–3041. [Google Scholar] [CrossRef]
- Yu, R.; Li, J. Hourly rainfall changes in response to surface air temperature over eastern contiguous China. J. Clim. 2012, 25, 6851–6861. [Google Scholar] [CrossRef]
- Lenderink, G.; Van Meijgaard, E. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett. 2010, 5, 025208. [Google Scholar] [CrossRef] [Green Version]
- Shaw, S.B.; Royem, A.A.; Riha, S.J. The relationship between extreme hourly precipitation and surface temperature in different hydroclimatic regions of the United States. J. Hydrometeorol. 2011, 12, 319–325. [Google Scholar] [CrossRef]
- Berg, P.; Moseley, C.; Haerter, J.O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 2013, 6, 181. [Google Scholar] [CrossRef]
- Kwon, T.Y.; Oh, S.N.; Park, S.W. Long-term variability and regional characteristics of summer rainfall in Korea. J. Korean Meteorol. Soc. 1998, 34, 20–30. [Google Scholar]
- Choi, J.W.; Lee, J.S.; Moon, I.J. Second Changma retreat variability in Korea using the available water resources index and relevant large-scale atmospheric circulation. Int. J. Climatol. 2016, 36, 2273–2287. [Google Scholar] [CrossRef]
- Choi, J.; Lee, O.; Jang, J.; Jang, S.; Kim, S. Future intensity-depth-frequency curves estimation in Korea under representative concentration pathway scenarios of Fifth assessment report using scale-invariance method. Int. J. Climatol. 2019, 39, 887–900. [Google Scholar] [CrossRef]
- Kim, G.; Cha, D.H.; Park, C.; Lee, G.; Jin, C.S.; Lee, D.K.; Suh, M.S.; Ahn, J.B.; Min, S.K.; Hong, S.Y.; et al. Future changes in extreme precipitation indices over Korea. Int. J. Climatol. 2018, 38, e862–e874. [Google Scholar] [CrossRef]
- The Daily ASOS Meteorological Data on the KMA Website. Available online: http://data.kma.go.kr (accessed on 12 April 2019).
- Lepore, C.; Veneziano, D.; Molini, A. Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys. Res. Lett. 2015, 42, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. J. R. Meteorol. Soc. 2007, 27, 1643–1655. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Choi, H.I.; Park, M.J.; Cho, S.J.; Kim, S. The effect of climate change on Korean drought occurrences using a stochastic soil water balance model. Sci. Res. Essays 2011, 6, 2771–2783. [Google Scholar]
- Seo, L.; Jeon, M.; Kim, T.W.; Kim, S. Ensemble prediction of future design rainfalls considering climate change. J. Korean Soc. Hazard Mitig. 2012, 12, 159–172. [Google Scholar] [CrossRef]
- Sim, H.J.; Ahn, M.; Kim, S. Feasibility assessment of RCP 8.5 in extreme air temperature. J. Korean Soc. Hazard Mitig. 2014, 14, 351. [Google Scholar] [CrossRef]
- Lee, A.; Cho, S.; Kang, D.K.; Kim, S. Analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration. J. Hydroenviron. Res. 2014, 8, 234–247. [Google Scholar] [CrossRef]
- Choi, J.; Lee, O.; Kim, S. Analysis of the effect of climate change on IDF curves using scale-invariance technique: Focus on RCP 8.5. J. Korea Water Res. Assoc. 2016, 49, 995–1006. [Google Scholar] [CrossRef]
- Lee, O.; Jo, D.J.; Kim, S. Future PMP estimation of Chungjudam watershed under KMA climate change scenarios. J. Korean Soc. Hazard Mitig. 2017, 17, 365–373. [Google Scholar] [CrossRef]
- Cha, W.; Lee, O.; Kim, S.; Park, Y. Analysis of indicators of hydrological alteration on the Geumho river basin under AR5 RCP scenarios. J. Korean Soc. Hazard Mitig. 2017, 17, 317–326. [Google Scholar] [CrossRef]
- Lee, O.; Jang, J.; Park, M.J.; Lee, Y.; Kim, S. Estimation of PMP in nuclear power plants area considering climate change. J. Korean Soc. Hazard Mitig. 2017, 17, 549–557. [Google Scholar] [CrossRef]
- Cha, W.; Lee, O.; Choi, J.; Lee, J.; Kim, S. Future hourly rainfall data production using point rainfall model and future stormwater analysis. J. Korean Soc. Hazard Mitig. 2018, 18, 483–492. [Google Scholar] [CrossRef]
- Lee, O.; Kim, S. Estimation of future probable maximum precipitation in Korea using multiple regional climate models. Water 2018, 10, 637. [Google Scholar] [CrossRef]
GCMs | RCMs | Scenarios | Spatial Resolution | Temporal Resolution | Temporal Scale |
---|---|---|---|---|---|
MPI-ESM-LR (LR) | MM5 | RCP 4.5 RCP 8.5 | 12.5-km | 3-h (365-Day in 1-year) | Present: 1981~2010 Future: 2021~2050 |
WRF | |||||
RegCM4 | |||||
RSM | |||||
HadGEM2-AO (H2) | MM5 | ||||
WRF | |||||
RegCM4 | 3-h (360-Day in 1-year) | ||||
RSM |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, I.; Lee, O.; Kim, S. Sensitivity Analysis of Extreme Daily Rainfall Depth in Summer Season on Surface Air Temperature and Dew-Point Temperature. Water 2019, 11, 771. https://doi.org/10.3390/w11040771
Sim I, Lee O, Kim S. Sensitivity Analysis of Extreme Daily Rainfall Depth in Summer Season on Surface Air Temperature and Dew-Point Temperature. Water. 2019; 11(4):771. https://doi.org/10.3390/w11040771
Chicago/Turabian StyleSim, Inkyeong, Okjeong Lee, and Sangdan Kim. 2019. "Sensitivity Analysis of Extreme Daily Rainfall Depth in Summer Season on Surface Air Temperature and Dew-Point Temperature" Water 11, no. 4: 771. https://doi.org/10.3390/w11040771
APA StyleSim, I., Lee, O., & Kim, S. (2019). Sensitivity Analysis of Extreme Daily Rainfall Depth in Summer Season on Surface Air Temperature and Dew-Point Temperature. Water, 11(4), 771. https://doi.org/10.3390/w11040771