Spatial Heterogeneity in Glacier Mass-Balance Sensitivity across High Mountain Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Driving Data
2.3. Mass Balance Model
2.4. Model Parameter Optimization
3. Results
3.1. Mass Balance Sensitivity
3.2. Sensitivity of Mass Balance Gradients
3.3. Model Sensitivity
4. Discussion
4.1. Drivers of Mass Balance Sensitivity
4.2. Factors Influencing Temperature Sensitivity
4.3. Regional Patterns of Mass Balance and Sensitivity
4.4. Uncertainties in the Modeled Mass Balance and Sensitivity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yan, L.; Liu, X. Has Climatic Warming over the Tibetan Plateau Paused or Continued in Recent Years? J. Earth Ocean Atmos. Sci. 2014, 1, 13–28. [Google Scholar]
- Group, M.I.E.W.; Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [Green Version]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kaab, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 11, 543. [Google Scholar] [CrossRef]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Holzer, N.; Vijay, S.; Yao, T.; Xu, B.; Buchroithner, M.; Bolch, T. Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere 2015, 9, 2071–2088. [Google Scholar] [CrossRef]
- Brian, A.; Andrew, M. Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: The role of debris cover. J. Geophys. Res. Earth Surf. 2012, 117, 1–15. [Google Scholar]
- Oerlemans, J.; Fortuin, J.P. Sensitivity of glaciers and small ice caps to greenhouse warming. Science 1992, 258, 115–117. [Google Scholar] [CrossRef]
- De Woul, M.; Hock, R. Static mass-balance sensitivity of Arctic glaciers and ice caps using a degree-day approach. Ann. Glaciol. 2005, 42, 217–224. [Google Scholar] [CrossRef]
- Bach, E.; Radić, V.; Schoof, C. How sensitive are mountain glaciers to climate change? Insights from a block model. J. Glaciol. 2018, 64, 247–258. [Google Scholar] [CrossRef]
- Sakai, A.; Fujita, K. Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z.; Li, Q.; Wang, S.; Cheng, L. Sensitivity analysis of glacier systems to climate warming in China. J. Geogr. Sci. 2008, 18, 190–200. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim. Dyn. 2016, 46, 303–316. [Google Scholar] [CrossRef]
- Rupper, S.; Roe, G. Glacier Changes and Regional Climate: A Mass and Energy Balance Approach. J. Clim. 2008, 21, 5384–5401. [Google Scholar] [CrossRef]
- Fujita, K.; Nuimura, T. Spatially heterogeneous wastage of Himalayan glaciers. Proc. Natl Acad. Sci. USA 2011, 108, 14011–14014. [Google Scholar] [CrossRef] [Green Version]
- Oerlemans, J. On the Response of Valley Glaciers to Climatic Change; Springer: Utrecht, The Netherlands, 1989; pp. 353–371. [Google Scholar]
- Fujita, K. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet. Sci. Lett. 2008, 276, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Yao, T.; Guo, X.; Zhu, M.; Li, S.; Kattel, D.B. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res. Atmos. 2013, 118, 9579–9594. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K. Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol. 2000, 46, 244–252. [Google Scholar] [CrossRef]
- Liu, S.; Ding, Y.; Wang, N.; Xie, Z. Mass Balance Sensitivity to Climate Change of the Glacier No.1 at the Urumqi River Head, Tianshan Mts. J. Glaciol. Geocryol. 1998, 20, 9–13. (In Chinese) [Google Scholar]
- Radić, V.; Hock, R. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat. Geosci. 2011, 4, 91–94. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Kaser, G.; Kienholz, C. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Forsythe, N.; Fowler, H.J.; Li, X.-F.; Blenkinsop, S.; Pritchard, D. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Chang. 2017, 7, 664–670. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, S. Estimation on the response of glaciers in China to the global warming in the 21st century. Sci. Bull. 2000, 45, 668–672. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations & ndash; the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar]
- Shi, H.; Li, T.; Wei, J. Evaluation of the Gridded CRU TS Precipitation Dataset with the Point Raingauge Records over the Three-River Headwaters Region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef]
- Marzeion, B.; Jarosch, A.H.; Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosph. Discuss. 2012, 6, 1295–1322. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, Y.; Doll, P.; Kanae, S. Global-scale modeling of glacier mass balances for water resources assessments: Glacier mass changes between 1948 and 2006. J. Hydrol. 2010, 390, 245–256. [Google Scholar] [CrossRef]
- Rees, H.G.; Collins, D.N. Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol. Process. 2006, 20, 2157–2169. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Simmons, A.J.; Jones, P.D.; Bechtold, V.D.C.; Beljaars, A.C.M.; Kållberg, P.W.; Saarinen, S.; Uppala, S.M.; Viterbo, P.; Wedi, N. Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res. Atmos. 2004, 109, 1–18. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Liu, Q.; Sun, M. Impacts and Risks of Climate Change; Science Press Beijing: Beijing, China, 2017; pp. 45–60. (In Chinese) [Google Scholar]
- Hennig, T.A.; Kretsch, J.L.; Pessagno, C.J.; Salamonowicz, P.H.; Stein, W.L. International Symposium on Digital Earth Moving. In Proceedings of the Shuttle Radar Topography Mission, Manno, Switzerland, 5–7 September 2001. [Google Scholar]
- Zemp, M.; Hoelzle, M.; Haeberli, W. Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Ann. Glaciol. 2009, 50, 101–111. [Google Scholar] [CrossRef]
- Vibhor, A.; Tobias, B.; Syed, T.H.; Tino, P.; Tazio, S.; Rishabh, N. Area and mass changes of Siachen Glacier (East Karakoram). J. Glaciol. 2017, 63, 148–163. [Google Scholar]
- Radić, V.; Bliss, A.; Beedlow, A.C.; Hock, R.; Miles, E.; Cogley, J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 2014, 42, 37–58. [Google Scholar] [CrossRef]
- John, W.; Martin, S.; Anthony, A. The influence of superimposed-ice formation on the sensitivity of glacier mass balance to climate change. Ann. Glaciol. 1997, 24, 186–190. [Google Scholar] [Green Version]
- Elsberg, D.H.; Harrison, W.D.; Echelmeyer, K.A.; Krimmel, R.M. Quatifying the effects of climate and surface change on glacier mass balance. J. Glaciol. 2001, 47, 649–658. [Google Scholar] [CrossRef]
- Zhang, Y.; Enomoto, H.; Ohata, T.; Kitabata, H.; Kadota, T.; Hirabayashi, Y. Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990–2011. J. Hydrol. 2017, 553C, 662–677. [Google Scholar] [CrossRef]
- Hock, R.; Radić, V.; De Woul, M. Climate sensitivity of Storglaciären, Sweden: An intercomparison of mass-balance models using ERA-40 re-analysis and regional climate model data. Ann. Glaciol. 2007, 46, 342–348. [Google Scholar] [CrossRef]
- Raper, S.C.; Braithwaite, R.J. Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 2006, 439, 311–313. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Petersen, L.; Ragettli, S.; Pellicciotti, F. The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res. 2014, 50, 2212–2226. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, R.J.; Zhang, Y.; Raper, S.C.B. Temperature sensitivity of the mass balance of mountain glaciers and ice caps as a climatological characteristic. Zeitsch. Gletsch. Glazialgeol. 2002, S, 35–61. [Google Scholar]
- Hock, R.; Woul, M.D.; Radi, V.; Dyurgerov, M. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 2009, 36, 251–254. [Google Scholar] [CrossRef]
- Anderson, B.; Mackintosh, A.; Stumm, D.; George, L.; Kerr, T.; Winterbillington, A.; Fitzsimons, S. Climate sensitivity of a high-precipitation glacier in New Zealand. J. Glaciol. 2010, 56, 114–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Ding, Y. Observed degree-day factors and their spatial variation on glaciers in western China. Ann. Glaciol. 2006, 43, 301–306. [Google Scholar] [CrossRef]
- Zhu, M.; Yao, T.; Yang, W.; Baiqing, X.U.; Guanjian, W.U.; Wang, X.; Xie, Y. Reconstruction of the mass balance of Muztag Ata No. 15 glacier, eastern Pamir, and its climatic drivers. J. Glaciol. 2018, 64, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Huintjes, E. Energy and Mass Balance Modelling for Glaciers on the Tibetan Plateau: Extension, Validation and Application of a Coupled Snow and Energy Balance Model. Ph.D. Thesis, Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen, Germany, 2014. [Google Scholar]
- Oerlemans, J. Extracting a climate signal from 169 glacier records. Science 2005, 308, 675–677. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K. Influence of precipitation seasonality on glacier mass balance and its sensitivity to climate change. Ann. Glaciol. 2008, 48, 88–92. [Google Scholar] [CrossRef]
- Zhang, G.S.; Kang, S.C.; Fujita, K.; Huintjes, E.; Xu, J.Q.; Yamazaki, T.; Haginoya, S.; Wei, Y.; Scherer, D.; Schneider, C.; et al. Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. J. Glaciol. 2013, 59, 137–148. [Google Scholar] [CrossRef]
- Bhakta, K.R. Positive degree-day factors for ablation on glaciers in the Nepalese Himalayas: Case study on Glacier AX010 in Shorong Himal, Nepal. Bull. Glaciol. Res. 2000, 17, 1–10. [Google Scholar]
- Su, Z.; Liang, D.; Hong, M. Developing Conditions, Amounts and Distributions of Glaciers in Gongga Mountains. J. Glaciol. Geocryol. 1993, 15, 551–558. (In Chinese) [Google Scholar]
- Shea, J.M.; Immerzeel, W.W.; Wagnon, P.; Vincent, C.; Bajracharya, S. Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere 2015, 9, 1105–1128. [Google Scholar] [CrossRef] [Green Version]
- Dehecq, A.; Gourmelen, N.; Gardner, A.S.; Brun, F.; Goldberg, D.; Nienow, P.W.; Berthie, E.; Vincent, C.; Wagnon, P.; Trouvé, E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2019, 12, 22–27. [Google Scholar] [CrossRef]
- Kapnick, S.B.; Delworth, T.L.; Ashfaq, M.; Malyshev, S.; Milly, P.C.D. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 2014, 7, 834–840. [Google Scholar] [CrossRef]
- Salerno, F.; Guyennon, N.; Thakuri, S.; Viviano, G.; Romano, E.; Vuillermoz, E.; Cristofanelli, P.; Stocchi, P.; Agrillo, G.; Ma, Y. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosphere 2015, 9, 1229–1247. [Google Scholar] [CrossRef]
- Radić, V.; Hock, R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res. Earth Surf. 2010, 115, 1–10. [Google Scholar] [CrossRef]
- Liu, S.; Yao, X.; Guo, W.; Xu, J.; Shangguan, D.; Wei, J.; Bao, W.; Wu, L. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 3–16. (In Chinese) [Google Scholar]
- Huss, M.; Hock, R.; Bauder, A.; Funk, M. Conventional versus reference-surface mass balance. J. Glaciol. 2012, 208, 278–286. [Google Scholar] [CrossRef]
- Mölg, T.; Maussion, F.; Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Chang. 2014, 4, 68–73. [Google Scholar] [CrossRef]
- Ragettli, S.; Immerzeel, W.W.; Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA 2016, 113, 9222–9227. [Google Scholar] [CrossRef] [Green Version]
- Radić, V.; Hock, R. Glaciers in the Earth’s Hydrological Cycle: Assessments of Glacier Mass and Runoff Changes on Global and Regional Scales. Surv. Geophys. 2014, 35, 813–837. [Google Scholar] [CrossRef]
- Cogley, J.G. Mass and energy balances of glaciers and ice sheets. Encycl. Hydrol. Sci. 2005, 165, 1–19. [Google Scholar]
Parameter | Initial | Calibrated Parameters | |||
---|---|---|---|---|---|
Name | Range | min | max | mean | σ |
Tlap [°C(100 m)−1] | −1.00 | −0.85 | −0.40 | −0.65 | 0.09 |
−0.01 | |||||
Glap [°C(100 m)−1] | −1.00 | −0.81 | −0.10 | −0.42 | 0.18 |
−0.01 | |||||
fsnow [mm w.e.d−1°C−1] | 2.00 | 2.00 | 6.20 | 3.17 | 1.08 |
8.00 | |||||
fice [mm w.e.d−1°C−1] | 4.00 | 4.00 | 8.40 | 5.02 | 1.43 |
12.00 | |||||
kp | 0.00 | 1.10 | 5.70 | 2.84 | 1.13 |
20.00 | |||||
dprec [(100 m)−1] | 0.00 | 0.00 | 0.17 | 0.05 | 0.04 |
0.90 | |||||
Tsnow [°C] | 0.00 | 0.50 | 2.00 | 1.25 | 0.50 |
2.00 |
Parameters | Value | RMSE | R2 | Mass Balance |
---|---|---|---|---|
(m w.e. year−1) | ||||
Standard | 0.38 | 0.54 | −0.41 | |
dpre | −20% | 0.36 | 0.53 | −0.37 |
dpre | 20% | 0.38 | 0.52 | −0.45 |
Glap | −20% | 0.41 | 0.48 | −0.21 |
Glap | 20% | 0.47 | 0.48 | −0.63 |
Tsnow | −20% | 0.37 | 0.52 | −0.45 |
Tsnow | 20% | 0.37 | 0.52 | −0.37 |
fsnow | −20% | 0.38 | 0.51 | −0.26 |
fsnow | 20% | 0.40 | 0.53 | −0.53 |
fice | −20% | 0.35 | 0.53 | −0.30 |
fice | 20% | 0.41 | 0.53 | −0.52 |
Tlap | −20% | 1.37 | 0.32 | −1.59 |
Tlap | 20% | 0.95 | 0.18 | 0.50 |
kp | −20% | 0.41 | 0.53 | −0.56 |
kp | 20% | 0.39 | 0.51 | −0.26 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Liu, S.; Shangguan, D.; Radić, V.; Zhang, Y. Spatial Heterogeneity in Glacier Mass-Balance Sensitivity across High Mountain Asia. Water 2019, 11, 776. https://doi.org/10.3390/w11040776
Wang R, Liu S, Shangguan D, Radić V, Zhang Y. Spatial Heterogeneity in Glacier Mass-Balance Sensitivity across High Mountain Asia. Water. 2019; 11(4):776. https://doi.org/10.3390/w11040776
Chicago/Turabian StyleWang, Rongjun, Shiyin Liu, Donghui Shangguan, Valentina Radić, and Yong Zhang. 2019. "Spatial Heterogeneity in Glacier Mass-Balance Sensitivity across High Mountain Asia" Water 11, no. 4: 776. https://doi.org/10.3390/w11040776
APA StyleWang, R., Liu, S., Shangguan, D., Radić, V., & Zhang, Y. (2019). Spatial Heterogeneity in Glacier Mass-Balance Sensitivity across High Mountain Asia. Water, 11(4), 776. https://doi.org/10.3390/w11040776