Zootechnical Farm Wastewaters in Ecuador: A Treatment Proposal and Cost-benefit Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Area under Study
2.2. Zootechnical Farm Wastewater
2.3. The Proposed Treatment Train
2.4. Cost-Benefit Analysis
2.4.1. Willingness to Pay (WTP) Evaluation–The Questionnaire
2.4.2. WTP Survey
2.4.3. Economic Indicators Used in CBA
- The Benefit-Cost Ratio (BCR) defined as the present value of benefits divided by the present value of costs Equation (4):
- The Pay-Back Period (PBP) is defined as the first year in which the benefit covers the accrued cost, which is the first year in which the cumulative NPV is > 0.
- The Internal Rate of Return (IRR) is defined as the discount rate that equates the present value of the overall benefit and the present value of the overall cost Equation (5):
3. Results and Discussion
3.1. The Proposed Wastewater Treatment Train
3.2. Financial Analysis
3.3. Economic Analysis
3.4. Focus on the Collected Data for the Evaluation of the WTP
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BCR | Benefit Cost Ratio |
CBA | Cost-Benefit Analysis |
CVM | Contingent Valuation Method |
CW | Constructed wetland |
HSSF | Horizontal subsurface flow |
IRR | Internal rate of return |
NPV | Net present value |
O&M | Operation and maintenance |
PBP | Payback period |
VSSF | Vertical subsurface flow |
WTP | Willingness to Pay |
WWTP | Wastewater treatment plant |
References
- World Bank Group. Reducing Inequalities in Water Supply, Sanitation, and Hygiene in the Era of the Sustainable Development Goals; World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- Metcalf & Eddy. Wastewater Engineering, Treatment, Disposal, Reuse; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Taylor and Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Verlicchi, P.; Al Aukidy, M.; Galletti, A.; Zambello, E.; Zanni, G.; Masotti, L. A project of reuse of reclaimed wastewater in the Po Valley, Italy: Polishing sequence and cost benefit analysis. J. Hydrol. 2012, 432–433, 127–136. [Google Scholar] [CrossRef]
- Masotti, L.; Verlicchi, P. Depurazione Delle Acque Di Piccole Comunità, Tecniche Naturali E Tecniche Impiantistiche; Hoepli: Milano, Italy, 2005. (In Italian) [Google Scholar]
- INEC (Instituto Nacional de Estadísticas y Censos del Ecuador). Encuesta Nacional de Empleo, Desempleo y Subempleo; Instituto Nacional de Estadísticas y Censos del Ecuador: Quito, Ecuador, 2018.
- Gobierno Autónomo Descentralizado del Cantón Paute. Plan de Desarrollo y Ordenamiento Territorial del Cantón Paute; Gobierno Autónomo Descentralizado del Cantón Paute: Paute, Ecuador, 2014.
- Salazar, D.; Cuichán, M.; Ballesteros, C.; Márquez, J.; Orbe, D. Encuesta de Superficie y Producción Agropecuaria Continua ESPAC 2017; Instituto Nacional de Estadísticas y Censos del Ecuador INEC: Quito, Ecuador, 2017.
- PDOT (Plan de Desarrollo y Ordenamiento Territorial del cantón Paute). 2015. Available online: http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdiagnostico/0160000510001_DIAGN%C3%93STICO_GADM_PAUTE%20FINAL_12-03-2015_09-21-02.pdf (accessed on 28 February 2019).
- Ministerio del Ambiente del Ecuador, Texto Unificado de Legislacion Secundaria de Medio Ambiente, Quito-Ecuador. 2003. Available online: http://www.ambiente.gob.ec/wp-content/uploads/downloads/2015/06/Texto-Unificado-de-Legislacion-Secundaria-del-Ministerio-del-Ambiente.pdf (accessed on 28 February 2019).
- American Public Health Association. APHA Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Rojas Bustamante, O. Manual Básico Para Medir Caudales. 2006. Available online: http://www.bivica.org/upload/medir-caudales-manual.pdf (accessed on 28 February 2019).
- European Commission. Guide to Cost-Benefit Analysis of Investment Projects: Economic Appraisal Tool for Cohesion Policy 2014–2020. Available online: https://ec.europa.eu/inea/sites/inea/files/cba_guide_cohesion_policy.pdf (accessed on 28 February 2019).
- Verlicchi, P.; Al Aukidy, M.; Zanni, G. Willingness to pay for recreational benefits evaluation in a wastewater reuse project. Analysis of a case study. Water 2018, 10, 922. [Google Scholar]
- Welsh, M.P.; Poe, G.L. Elicitation effects in contingent valuation: Comparisons to a multiple bounded discrete choice approach. J. Environ. Econ. Manag. 1998, 36, 170–185. [Google Scholar] [CrossRef]
- Pearce, D.W.; Turner, R.K. Economics of Natural Resources and the Environment; The John Hopkins University Press: Baltimore, MD, USA, 1980. [Google Scholar]
- Alp, E.; Yetiş, Ü. Application of the contingent valuation method in a developing country: A case study of the yusufeli dam in Northeast Turkey. Water Sci. Technol. 2010, 62, 99–105. [Google Scholar] [CrossRef]
- Tudela-Mamani, J.W. Willingness to pay for improvements in wastewater treatment: Application of the contingent valuation method in Puno, Peru. Revista Chapingo Serie Ciencias Forestales y del Ambiente 2017, 23, 191–213. [Google Scholar] [CrossRef]
- Irwin, N.; Irwin, E.; Marti, J.; Aracena, P. Constructed wetlands for water quality improvements: Benefit transfer analysis from Ohio. J. Environ. Manag. 2018, 206, 1063–1071. [Google Scholar] [CrossRef]
- Guerrini, A.; Vigolo, V.; Romano, G.; Testa, F. Levers supporting tariff growth for water services: Evidence from a contingent valuation analysis. J. Environ. Manag. 2018, 207, 23–31. [Google Scholar] [CrossRef]
- Alcon, F.; Pedrero, F.; Martin-Ortega, J.; Arcas, N.; Alarcon, J.J.; de Miguel, M.D. The non-market value of reclaimed wastewater for use in agriculture: A contingent valuation approach. Span. J. Agric. Res. 2010, 8, 187–196. [Google Scholar] [CrossRef]
- Chui, T.F.M.; Ngai, W.Y. Willingness to pay for sustainable drainage systems in a highly urbanised city: A contingent valuation study in Hong Kong. Water Environ. J. 2016, 30, 62–69. [Google Scholar] [CrossRef]
- INEC (Instituto Nacional de Estadísticas y Censos del Ecuador). Censo de Población y Vivienda del Ecuador; Instituto Nacional de Estadísticas y Censos del Ecuador: Quito, Ecuador, 2010.
- Sacoto, E.C.A. A Treatment Train Based on Constructed Wetlands for the Treatment of Zootechnical Wastewater. A Study Case in Paute-Ecuador. Ph.D. Thesis, University of Ferrara, Ferrara, Italy, 2019. [Google Scholar]
- Masi, F.; Rizzo, A.; Martinuzzi, N.; Wallace, S.D.; Van Oirschot, D.; Salazzari, P.; Meers, E.; Bresciani, R. Up-flow anaerobic sludge blanket and aerated constructed wetlands for swine wastewater treatment: A pilot study. Water Sci. Technol. 2017, 76, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Asamblea Nacional Republica del Ecuador, Ley Orgánica de Recursos Hídricos, Usos Y Aprovechamiento Del Agua, Segundo Suplemento- Registro Oficial No 305-6/8/2014. Available online: http://extwprlegs1.fao.org/docs/pdf/ecu165480.pdf (accessed on 28 February 2019).
- Londero, E.H.; Cervini, H. Shadow-Prices for Project Appraisal: Theory and Practice; Edward Elgar: Cheltenham, UK, 2003. [Google Scholar]
- Mitchell, R.C.; Carson, R.T. Using Surveys to Value Public Goods: The Contingent Valuation Method, Resources for the Future; RFF Press: New York, NY, USA, 1989. [Google Scholar]
- Bergstrom, J.C.; Stoll, J.R.; Titre, J.P.; Wright, V.L. Economic value of wetlands-based recreation. Ecol. Econ. 1990, 2, 129–147. [Google Scholar] [CrossRef]
- Donovan, E.; Unice, K.; Roberts, J.D.; Harris, M.; Finley, B. Risk of gastrointestinal disease associated with exposure to pathogens in the water of the lower passaic river. Appl. Environ. Microbiol. 2008, 74, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- De Simone Souza, H.H.; Paulo, P.; Boncz, M.A. A constructed wetland system for residential greywater reuse: Economic feasibility of and willingness to pay for. Desalin. Wat. Treat. 2017, 91, 336–348. [Google Scholar] [CrossRef]
- Lizinski, T.; Wroblewska, A.; Rauba, K. Application of CVM method in the evaluation of flood control and water and sewage management projects. J. Water Land Dev. 2015, 24, 41–49. [Google Scholar] [CrossRef]
Parameter | Mean ± SD | Minimum | Maximum | Legal limits [10] |
---|---|---|---|---|
Flow rate, m3/d | 12 ± 1.4 | 9.2 | 14.5 | |
COD, mg/L | 3495 ± 1204 | 1513 | 5700 | 250 |
BOD5, mg/L | 1613 ± 679 | 679 | 2803 | 100 |
TSS, mg/L | 1133 ± 402 | 522 | 2203 | 100 |
TN, mg/L | 140 ± 56 | 70 | 252 | 15 |
TP, mg/L | 43 ± 10 | 28 | 62 | 10 |
1 | 15 | 35 | 60 | 100 | 300 |
2 | 20 | 40 | 70 | 150 | 500 |
5 | 25 | 45 | 80 | 200 | 700 |
10 | 30 | 50 | 90 | 250 | 1000 |
Other (specify) |
Step | Length (m) | Width (m) | Height (m) | HRT | Medium | Vegetation |
---|---|---|---|---|---|---|
Equalization tank | 4.75 | 2 | 1 | - | - | - |
Sedimentation tank | 1.28 | 0.32 | 3 | 2.42 h | - | - |
Facultative lagoon | 20 | 5 | 1.8 | 15 day | - | - |
HSSF CW* (2 beds) For each bed | 26.5 | 20 | 0.6 | 18 day | Fine gravel 16 mm Porosity ε = 0.35 Hydraulic conductivity 104 m/day | Ph. australis |
Dosing tank | 2 | 1.5 | 1 | - | - | - |
VSSF CW* (3 beds) For each bed | 14 | 10 | 0.6 | 8 day | Fine gravel 16 mm Porosity ε = 0.35 Hydraulic conductivity 104 m/day | Ph. australis |
Cost Type | Amount |
---|---|
Construction (USD) | 66,658 |
Operation and maintenance (USD/year) | 3600 |
Year | Costs Ck (USD) | Benefits Bk (USD) | Bk-Ck (USD) |
---|---|---|---|
0 | 66,658 | −66,658 | |
1 | 3600 | 3937 | 337 |
2 | 3600 | 3937 | 337 |
3 | 3600 | 3937 | 337 |
4 | 3600 | 3937 | 337 |
5 | 3600 | 3937 | 337 |
6 | 3600 | 3937 | 337 |
7 | 3600 | 3937 | 337 |
8 | 3600 | 3937 | 337 |
9 | 3600 | 3937 | 337 |
10 | 3600 | 3937 | 337 |
11 | 3600 | 3937 | 337 |
12 | 3600 | 3937 | 337 |
13 | 3600 | 3937 | 337 |
14 | 3600 | 3937 | 337 |
15 | 3600 | 3937 | 337 |
16 | 3600 | 3937 | 337 |
17 | 3600 | 3937 | 337 |
18 | 3600 | 3937 | 337 |
19 | 3600 | 3937 | 337 |
20 | 3600 | 3937 | 337 |
NPV (USD) | −63,349 | ||
BCR | 0.49 | ||
IRR (%) | −16% | ||
PBP (year) | Never |
Cost Type | Total |
---|---|
Construction (USD) | 61,326 |
Operation and maintenance (USD/year) | 2750 |
Year | Costs Ck (USD) | Benefits Bk (USD) | Bk-Ck (USD) |
---|---|---|---|
0 | 61,326 | −61,326 | |
1 | 2750 | 6135 | 3385 |
2 | 2750 | 6135 | 3385 |
3 | 2750 | 6135 | 3385 |
4 | 2750 | 6135 | 3385 |
5 | 2750 | 6135 | 3385 |
6 | 2750 | 6135 | 3385 |
7 | 2750 | 6135 | 3385 |
8 | 2750 | 6135 | 3385 |
9 | 2750 | 6135 | 3385 |
10 | 2750 | 6135 | 3385 |
11 | 2750 | 6135 | 3385 |
12 | 2750 | 6135 | 3385 |
13 | 2750 | 6135 | 3385 |
14 | 2750 | 6135 | 3385 |
15 | 2750 | 6135 | 3385 |
16 | 2750 | 6135 | 3385 |
17 | 2750 | 6135 | 3385 |
18 | 2750 | 6135 | 3385 |
19 | 2750 | 6135 | 3385 |
20 | 2750 | 6135 | 3385 |
NPV (USD) | −28,092 | ||
BCR | 0.682 | ||
IRR (%) | 0.1 | ||
PBP (year) | never |
Description | Number | % | Description | Number | % |
---|---|---|---|---|---|
Gender | Job title | ||||
Male | 284 | 56 | Full time worker | 180 | 35 |
Female | 226 | 44 | Part time worker | 154 | 30 |
Age | Retired | 32 | 6 | ||
≤30 | 85 | 17 | Unemployed | 10 | 2 |
31–40 | 130 | 25 | Student | 66 | 13 |
41–50 | 139 | 27 | Housewife | 68 | 13 |
51–60 | 88 | 17 | |||
61–70 | 58 | 11 | Annual family income | ||
>70 | 10 | 2 | ≤ 12000 | 432 | 85 |
Education level | 12.000 to 20.000 | 57 | 11 | ||
None | 60 | 12 | 20.001 to 30.000 | 18 | 4 |
Primary | 174 | 34 | 30.001 to 40.000 | 2 | 0 |
Secondary | 215 | 42 | 40.001 to 50.000 | 1 | 0 |
University | 61 | 12 | >50.000 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verlicchi, P.; Sacoto, E.C.A.; Zanni, G. Zootechnical Farm Wastewaters in Ecuador: A Treatment Proposal and Cost-benefit Analysis. Water 2019, 11, 779. https://doi.org/10.3390/w11040779
Verlicchi P, Sacoto ECA, Zanni G. Zootechnical Farm Wastewaters in Ecuador: A Treatment Proposal and Cost-benefit Analysis. Water. 2019; 11(4):779. https://doi.org/10.3390/w11040779
Chicago/Turabian StyleVerlicchi, Paola, Estefania C. Avilés Sacoto, and Giacomo Zanni. 2019. "Zootechnical Farm Wastewaters in Ecuador: A Treatment Proposal and Cost-benefit Analysis" Water 11, no. 4: 779. https://doi.org/10.3390/w11040779
APA StyleVerlicchi, P., Sacoto, E. C. A., & Zanni, G. (2019). Zootechnical Farm Wastewaters in Ecuador: A Treatment Proposal and Cost-benefit Analysis. Water, 11(4), 779. https://doi.org/10.3390/w11040779