Improving Water Use Efficiency of Spring Maize by Adopting Limited Supplemental Irrigation Following Sufficient Pre-Sowing Irrigation in Northwest China
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Irrigation Treatments and Management Practices
2.3. Measurements
2.3.1. Soil Water Content (SWC)
2.3.2. Crop Phenology, Plant Morphology and Photosynthesis
2.3.3. Shoot Dry Matter and Grain Yield
2.3.4. Root Length Density (RLD)
2.4. Data Analysis and Calculation
2.4.1. Evapotranspiration (ET) and WUE
2.4.2. Available Water Content (AWC) and Total Available Water Content (TAW)
2.4.3. Statistical Analysis
3. Results
3.1. Soil Available Water Content
3.2. Root Length Density (RLD)
3.3. Leaf Area Index (LAI) and Plant Height
3.4. Photosynthesis
3.5. Shoot Dry Matter, Grain Yield and Water Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, Z.K.; Wang, Y.J.; Li, F.M. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 2005, 75, 71–83. [Google Scholar] [CrossRef]
- Du, T.S.; Kang, S.Z.; Zhang, X.Y.; Zhang, J.H. China’s food security is threatened by the unsustainable use of water resources in North and Northwest China. Food Energy Secur. 2014, 3, 7–18. [Google Scholar] [CrossRef]
- Kang, S.Z.; Su, X.L.; Tong, L.; Zhang, J.H.; Zhang, L.; Davies, W.J. A warning from an ancient oasis: Intensive human activities are leading to potential ecological and social catastrophe. Int. J. Sustain. Dev. World 2008, 15, 440–447. [Google Scholar] [CrossRef]
- Wang, F.X. Experimental Study on Sowing with Water of Absolved Water-Storing Irrigation Technology on Maize in Inland Irrigation District of Hexi. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2009. (In Chinese with English abstract). [Google Scholar]
- Wang, S.H.; Wang, Y.B.; Ding, L.; Zhao, L. Experimental study on water storage irrigation in spring for wheat and corn in Huangyang irrigation district. GanSu Water Resour. Hydropower Technol. 2013, 49, 14–17. (In Chinese) [Google Scholar]
- Hu, Z.Q.; Ma, Z.M.; Bao, X.G.; Zhang, J.D. Effect of RDI on Yield and Water Consumption of Major Crops in Shiyang River Area. Water Sav. Irrig. 2010, 7, 10–13, (In Chinese with English abstract). [Google Scholar]
- Ding, R.S.; Kang, S.Z.; Li, F.S.; Zhang, Y.Q.; Ling, T.; Sun, Q.Y. Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest china. Agric. Water Manag. 2010, 98, 87–95. [Google Scholar] [CrossRef]
- Qin, S.J.; Kang, S.Z.; Du, T.S.; Tong, L.; Ding, R.S. Can the drip irrigation under film mulch reduce crop evapotranspiration and save water under the sufficient irrigation condition? Agric. Water Manag. 2016, 177, 128–137. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Yin, G.X.; Zhang, X. Determination of Several Water-saving Irrigation Indicators for Wheat and Corn with High Yield in Guanzhong Irrigated Region. Bull. Soil Water Conserv. 2009, 29, 142–145, (In Chinese with English abstract). [Google Scholar]
- Fang, Q.X.; Ma, L.W.; Yu, Q.; Ahuja, L.R.; Malone, R.W.; Hoogenboom, G. Irrigation strategies to improve the water use efficiency of wheat–maize double cropping systems in North China Plain. Agric. Water Manag. 2010, 97, 1165–1174. [Google Scholar] [CrossRef]
- Yu, G.R.; Zhuang, J.; Nakayama, K.; Jin, Y. Root water uptake and profile soil water as affected by vertical root distribution. Plant Ecol. 2007, 189, 15–30. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Mosallaeepour, E.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Modeling Maize Yield and Soil Water Content with AquaCrop under Full and Deficit Irrigation Managements. Water Resour. Manag. 2015, 29, 2837–2853. [Google Scholar] [CrossRef]
- Passioura, J. Increasing crop productivity when water is scarce-from breeding to field management. Agric. Water Manag. 2006, 80, 176–196. [Google Scholar] [CrossRef]
- Zuo, Q.; Shi, J.; Li, Y.; Zhang, R. Root length density and water uptake distributions of winter wheat under sub-irrigation. Plant Soil 2006, 285, 45–55. [Google Scholar] [CrossRef]
- Greaves, G.E.; Wang, Y.M. Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment. Agric. Water Manag. 2017, 188, 115–125. [Google Scholar] [CrossRef]
- Du, T.S.; Kang, S.Z.; Zhang, J.H.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Z.; Hu, X.T.; Cai, H.J.; Feng, S.Y. New ideas and development tendency of theory for water saving in modern agriculture and ecology. J. Hydraul. Eng. 2004, 35, 1–7, (In Chinese with English abstract). [Google Scholar]
- Heng, T.; Liao, R.K.; Wang, Z.H.; Wu, W.Y.; Li, W.H.; Zhang, J.Z. Effects of combined drip irrigation and sub-surface pipe drainage on water and salt transport of saline-alkali soil in Xinjiang, China. J. Arid Land 2018, 10, 932–945. [Google Scholar] [CrossRef]
- Ritchie, S.W.; Hanway, J.J. How a Corn Plant Develops; Iowa State Univ: Ames, IA, USA, 1992. [Google Scholar]
- Ding, R.S.; Tong, L.; Li, F.S.; Zhang, Y.Q.; Hao, X.M.; Kang, S.Z. Variations of crop coefficient and its influencing factors in an arid advective cropland of northwest china. Hydrol. Process. 2015, 29, 239–249. [Google Scholar] [CrossRef]
- Li, S.E.; Kang, S.Z.; Li, F.S.; Zhang, L. Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China. Agric. Water Manag. 2008, 95, 1214–1222. [Google Scholar] [CrossRef]
- Karam, F.; Breidy, J.; Stephan, C.; Rouphael, J. Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon. Agric. Water Manag. 2003, 63, 125–137. [Google Scholar] [CrossRef]
- Yan, Z.X.; Gao, C.; Ren, Y.J.; Zong, R.; Ma, Y.Z.; Li, Q.Q. Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain. Agric. Water Manag. 2017, 186, 21–28. [Google Scholar] [CrossRef]
- Ma, S.Q.; Wang, Q.; Lv, H.Q.; Xu, L.P.; Yu, H.; Zhang, T.L. Impact of water and temperature on spring maize emergence speed and emergence rate. Acta Ecologica Sinica 2012, 32, 3378–3385, (In Chinese with English abstract). [Google Scholar]
- Ma, L.; Trout, T.J.; Ahuja, L.R.; Bausch, W.C.; Saseendran, S.A.; Malone, R.W.; Nielsen, D.C. Calibrating RZWQM2 model for maize responses to deficit irrigation. Agric. Water Manag. 2012, 103, 140–149. [Google Scholar] [CrossRef]
- Schlegel, A.J.; Stone, L.R.; Dumler, T.J.; Lamm, F.R. Managing diminished irrigation capacity with preseason irrigation and plant density for crop production. Trans. ASABE 2012, 55, 525–531. [Google Scholar] [CrossRef]
- Kisekka, I.; Schlegel, A.; Ma, L.; Gowda, P.H.; Prasad, P.V.V. Optimizing preplant irrigation for maize under limited water in the High Plains. Agric. Water Manag. 2017, 187, 154–163. [Google Scholar] [CrossRef]
- Farré, I.; Faci, J.M. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agric. Water Manag. 2009, 96, 383–394. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Rathje, W.R.; Martin, D.L.; Eisenhauer, D.E. Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Am. Soc. Agric. Biol. Eng. 2013, 56, 273–293. [Google Scholar]
- Payero, J.O.; Tarkalson, D.D.; Irmak, S.; Davison, D.; Petersen, J.L. Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass. Agric. Water Manag. 2009, 96, 1387–1397. [Google Scholar] [CrossRef]
- Panda, R.K.; Behera, S.K.; Kashyap, P.S. Effective management of irrigation water for maize under stressed conditions. Agric. Water Manag. 2004, 66, 181–203. [Google Scholar] [CrossRef]
- Li, Q.; Dong, B.; Qiao, Y.; Liu, M.; Zhang, J. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric. Water Manag. 2010, 97, 1676–1682. [Google Scholar] [CrossRef]
- Fang, Q.; Ma, L.; Yu, Q.; Malone, R.W.; Saseendran, S.A.; Ahuja, L.R. Modeling Nitrogen and Water Management Effects in a Wheat-Maize Double-Cropping System. J. Environ. Qual. 2008, 37, 2232–2242. [Google Scholar] [CrossRef]
- Kang, S.Z.; Zhang, J.H. Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. J. Exp. Bot. 2004, 55, 2437–2446. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.L.; Jensen, C.R.; Shahanzari, A.; Andersen, M.N.; Jacobsen, S.E. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 2005, 168, 831–836. [Google Scholar] [CrossRef]
- Dry, P.R.; Loveys, B.R. Factors influencing grapevine vigour and the potential for control with partial root zone drying. Aust. J. Grape Wine Res. 2010, 4, 140–148. [Google Scholar] [CrossRef]
- Deng, X.P.; Shan, L.; Zhang, H.P.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Zhang, S.L.; Sadras, V.; Chen, X.P.; Zhang, F.S. Water use efficiency of dryland maize in the Loess Plateau of China in response to crop management. Field Crops Res. 2014, 163, 55–63. [Google Scholar] [CrossRef]
- Howell, T.A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef]
- Shan, L.; Chen, G.L. The Theories and Practices of Dry-land Agriculture in Loess Plateau; Scientific Publisher: Beijing, China, 1993; pp. 222–229. (In Chinese) [Google Scholar]
- Klocke, N.L.; Currie, R.S.; Aiken, R.M. Soil water evaporation and crop residues. Trans. ASABE 2009, 52, 103–110. [Google Scholar] [CrossRef]
- Kuscu, H.; Karasu, A.; Oz, M.; Demir, A.O.; Turgut, I. Effect of irrigation amounts applied with drip irrigation on maize evapotranspiration, yield, water use efficiency, and net return in a sub-humid climate. Turk. J. Field Crops 2013, 18, 13–19. [Google Scholar]
- Steele, D.D.; Stegman, E.C.; Knighton, R.E. Irrigation management for corn in the northern Great Plains, USA. Irrig. Sci. 2000, 19, 107–114. [Google Scholar] [CrossRef]
- Wang, F.F.; Zhang, S.P.; Shao, L.J.; Li, G.; Chen, X.L.; Liu, P.; Zhao, B.Q.; Dong, S.T.; Zhang, J.W.; Zhao, B. Effect of Root in Different Soil Layers on Plant Growth and Yield Formation After Anthesis in Summer Maize. Sci. Agric. Sin. 2013, 46, 4007–4017, (In Chinese with English abstract). [Google Scholar]
- Jiang, X.L.; Kang, S.Z.; Tong, L.; Li, F.S.; Li, D.H.; Ding, R.S.; Qiu, R.J. Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest china. Agric. Water Manag. 2014, 142, 135–143. [Google Scholar] [CrossRef]
Soil Layer (cm) | Texture (%) | Bulk Density (g cm−3) | Saturated Hydraulic Conductivity (cm h−1) | Field Capacity (cm3 cm−3) | Wilting Point (cm3 cm−3) | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||
0~20 | 71.5 | 14.7 | 13.8 | 1.54 | 1.21 | 0.23 | 0.10 |
20~40 | 71.1 | 13.2 | 15.7 | 1.58 | 0.52 | 0.25 | 0.12 |
40~60 | 40.9 | 41.1 | 18.0 | 1.48 | 0.76 | 0.28 | 0.14 |
60~80 | 24.0 | 63.3 | 13.7 | 1.32 | 1.23 | 0.32 | 0.15 |
80~100 | 21.3 | 68.1 | 10.6 | 1.42 | 0.98 | 0.32 | 0.15 |
Year | W1 | W2 | W3 | |||
---|---|---|---|---|---|---|
Dates (M/d) | I (mm) | Dates (M/d) | I (mm) | Dates (M/d) | I (mm) | |
2016 | 6/10 | 30 | 6/10 | 36 | 6/15 | 46 |
6/20 | 36 | 6/20 | 45 | 6/27 | 47 | |
7/2 | 36 | 7/2 | 35 | 7/7 | 52 | |
7/18 | 36 | 7/24 | 53 | 7/29 | 57 | |
7/29 | 38 | 8/3 | 44 | 8/8 | 58 | |
8/8 | 42 | 8/13 | 48 | 9/3 | 58 | |
9/3 | 38 | 9/3 | 46 | 9/15 | 30 | |
9/15 | 30 | 9/15 | 30 | |||
Overall | 286 | Overall | 337 | Overall | 348 | |
2018 | 5/31 | 24 | 5/31 | 24 | 5/31 | 24 |
6/10 | 31 | 6/15 | 41 | 6/15 | 54 | |
6/20 | 33 | 6/27 | 42 | 6/27 | 55 | |
7/7 | 36 | 7/12 | 43 | 7/12 | 54 | |
7/18 | 37 | 7/24 | 43 | 7/29 | 55 | |
8/18 | 36 | 9/8 | 40 | 9/13 | 30 | |
9/13 | 30 | 9/13 | 30 | |||
Overall | 227 | Overall | 263 | Overall | 272 |
Phenological Stage | 2016 | 2018 |
---|---|---|
Start Date (M/d) | Start Date (M/d) | |
Emergence (VE) | 5/9 | 5/10 |
6 leaf stage (V6) | 6/3 | 6/5 |
12 leaf stage (V12) | 7/12 | 7/10 |
Tasseling (VT) | 7/20 | 7/18 |
Silking (R1) | 7/27 | 7/28 |
Physiological Maturity (R6) | 9/18 | 9/20 |
Year | Treatment | SDM (t ha−1) | GY (t ha−1) | ET (mm) | WUE (kg m−3) |
---|---|---|---|---|---|
2016 | W1 | 25.7 a | 13.3 a | 476 | 2.79 a |
W2 | 26.5 a | 13.9 a | 544 | 2.55 ab | |
W3 | 27.2 a | 14.3 a | 606 | 2.36 b | |
2018 | W1 | 25.1 a | 13.1 a | 482 | 2.72 a |
W2 | 25.9 a | 13.6 a | 550 | 2.47 b | |
W3 | 26.6 a | 14.0 a | 585 | 2.39 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Hu, X.; Zhou, Z.; Wang, W.; Ran, H. Improving Water Use Efficiency of Spring Maize by Adopting Limited Supplemental Irrigation Following Sufficient Pre-Sowing Irrigation in Northwest China. Water 2019, 11, 802. https://doi.org/10.3390/w11040802
Zhou S, Hu X, Zhou Z, Wang W, Ran H. Improving Water Use Efficiency of Spring Maize by Adopting Limited Supplemental Irrigation Following Sufficient Pre-Sowing Irrigation in Northwest China. Water. 2019; 11(4):802. https://doi.org/10.3390/w11040802
Chicago/Turabian StyleZhou, Shiwei, Xiaotao Hu, Zhenjiang Zhou, Wen’e Wang, and Hui Ran. 2019. "Improving Water Use Efficiency of Spring Maize by Adopting Limited Supplemental Irrigation Following Sufficient Pre-Sowing Irrigation in Northwest China" Water 11, no. 4: 802. https://doi.org/10.3390/w11040802
APA StyleZhou, S., Hu, X., Zhou, Z., Wang, W., & Ran, H. (2019). Improving Water Use Efficiency of Spring Maize by Adopting Limited Supplemental Irrigation Following Sufficient Pre-Sowing Irrigation in Northwest China. Water, 11(4), 802. https://doi.org/10.3390/w11040802