Influence of Check Dams on Flood and Erosion Dynamic Processes of a Small Watershed in the Loss Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Model Set Up
2.4. Calibration and Validation of the Model
2.5. Model Effect Evaluation
2.6. Working Condition Design
2.7. Erosion Dynamic Parameter Calculation
3. Results
3.1. Variation Characteristics of Rainstorm and Flood Process in Small Watershed under Different Working Conditions
3.2. Variation of Dynamic Parameters of Channel Erosion under Different Working Conditions
3.3. Variation of Runoff Erosion Power along the Channel under Different Working Conditions
3.4. Impact of Different Dam Type Combinations on Sediment Discharge in Small Watershed
4. Discussion
4.1. Impact of Check Dam System on Flood Processes in Small Watershed
4.2. Impact of Check Dam System on Erosion Dynamics Process in Small Watershed
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pal, D.; Galelli, S.; Tang, H.; Ran, Q. Toward improved design of check dam systems: A case study in the Loess Plateau, China. J. Hydrol. 2018, 559, 762–773. [Google Scholar] [CrossRef]
- Zhao, G.; Kondolf, G.M.; Mu, X.; Han, M.; He, Z.; Rubin, Z.; Wang, F.; Gao, P.; Sun, W. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. CATENA 2017, 148, 126–137. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J. The correlation analysis on the landscape pattern index and hydrological processes in the Yanhe watershed, China. J. Hydrol. 2015, 524, 417–426. [Google Scholar] [CrossRef]
- Li, X.-G.; Wei, X. Soil erosion analysis of human influence on the controlled basin system of check dams in small watersheds of the Loess Plateau, China. Expert Syst. Appl. 2011, 38, 4228–4233. [Google Scholar] [CrossRef]
- Shi, H.; Shao, M. Soil and water loss from the Loess Plateau in China. J. Arid Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef]
- Ran, D.-C.; Luo, Q.-H.; Zhou, Z.-H.; Wang, G.-Q.; Zhang, X.-H. Sediment retention by check dams in the Hekouzhen-Longmen Section of the Yellow River. Int. J. Sediment Res. 2008, 23, 159–166. [Google Scholar] [CrossRef]
- Li, P.; Xu, G.; Lu, K.; Zhang, X.; Shi, P.; Bai, L.; Ren, Z.; Pang, G.; Xiao, L.; Gao, H.; et al. Runoff change and sediment source during rainstorms in an ecologically constructed watershed on the Loess Plateau, China. Sci. Total Environ. 2019, 664, 968–974. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Abbasi, M.; Keesstra, S.; Cerdà, A. Assessment of soil particle erodibility and sediment trapping using check dams in small semi-arid catchments. CATENA 2017, 157, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Zhang, Y.; Ren, Z.; Yu, Y.; Li, P.; Gong, J. Land-use changes and check dams reducing runoff and sediment yield on the Loess Plateau of China. Sci. Total Environ. 2019, 664, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Cui, B.; Song, Y.; Shi, W.; Wang, K.; Wang, Y.; Liang, J. How Many Check Dams Do We Need To Build on the Loess Plateau? Environ. Sci. Technol. 2012, 46, 8527–8528. [Google Scholar] [CrossRef]
- Guyassa, E.; Frankl, A.; Zenebe, A.; Poesen, J.; Nyssen, J. Effects of check dams on runoff characteristics along gully reaches, the case of Northern Ethiopia. J. Hydrol. 2017, 545, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Boix-Fayos, C.; Barberá, G.G.; López-Bermúdez, F.; Castillo, V. Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain). Geomorphology 2007, 91, 103–123. [Google Scholar] [CrossRef]
- Castillo, V.; Mosch, W.; García, C.C.; Barberá, G.G.; Cano, J.N.; López-Bermúdez, F.; Cano, J.A.N. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). CATENA 2007, 70, 416–427. [Google Scholar] [CrossRef]
- Hassanli, A.M.; Nameghi, A.E.; Beecham, S. Evaluation of the effect of porous check dam location on fine sediment retention (a case study). Environ. Monit. Assess. 2009, 152, 319–326. [Google Scholar] [CrossRef]
- Bombino, G.; Gurnell, A.M.; Tamburino, V.; Zema, D.A.; Zimbone, S.M. Adjustments in channel form, sediment calibre and vegetation around check-dams in the headwater reaches of mountain torrents, Calabria, Italy. Earth Surf. Process. Landf. 2010, 34, 1011–1021. [Google Scholar] [CrossRef]
- Leigh, D.S.; Kowalewski, S.A.; Holdridge, G. 3400 years of agricultural engineering in Mesoamerica: lama-bordos of the Mixteca Alta, Oaxaca, Mexico. J. Archaeol. Sci. 2013, 40, 4107–4111. [Google Scholar] [CrossRef]
- Castillo, C.; Pérez, R.; Gomez, J.A.; Rodríguez, C.C. A conceptual model of check dam hydraulics for gully control: efficiency, optimal spacing and relation with step-pools. Hydrol. Earth Syst. Sci. 2014, 18, 1705–1721. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.; Keesstra, S.D.; Stroosnijder, L.; Baartman, J.E.; Maroulis, J. Soil Conservation Through Sediment Trapping: A Review. Land Degrad. Dev. 2015, 26, 544–556. [Google Scholar] [CrossRef]
- Xu, Y.D.; Fu, B.J.; He, C.S. Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations. Hydrol. Earth Syst. Sci. 2013, 17, 2185–2193. [Google Scholar] [CrossRef] [Green Version]
- Boixfayos, C.; De Vente, J.; Martínez-Mena, M.; Barberá, G.G.; Castillo, V. The impact of land use change and check-dams on catchment sediment yield. Hydrol. Process. 2010, 22, 4922–4935. [Google Scholar] [CrossRef]
- Kondolf, G.; Piégay, H.; Landon, N. Channel response to increased and decreased bedload supply from land use change: contrasts between two catchments. Geomorphology 2002, 45, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Froebrich, J.; Gassman, P.W. Evaluation of the SWAT Model for Assessing Sediment Control Structures in a Small Watershed in India. Trans. ASABE 2007, 50, 469–477. [Google Scholar] [CrossRef]
- Xu, X.-Z.; Zhang, H.-W.; Zhang, O. Development of check-dam systems in gullies on the Loess Plateau, China. Environ. Sci. Policy 2004, 7, 79–86. [Google Scholar]
- Lenzi, M.A.; Comiti, F. Local scouring and morphological adjustments in steep channels with check-dam sequences. Geomorphology 2003, 55, 97–109. [Google Scholar] [CrossRef]
- Bracken, L.; Wainwright, J.; Parsons, A.J.; Poeppl, R.E.; Keesstra, S.D. Introduction to special issue on connectivity in water and sediment dynamics. Earth Surf. Process. Landf. 2015, 40, 1275–1277. [Google Scholar] [Green Version]
- Romero-Díaz, A.; Marín-Sanleandro, P.; Ortiz-Silla, R. Loss of soil fertility estimated from sediment trapped in check dams. South-eastern Spain. CATENA 2012, 99, 42–53. [Google Scholar]
- Quiñonero-Rubio, J.M.; Nadeu, E.; Boix-Fayos, C.; de Vente, J. Evaluation of the Effectiveness of Forest Restoration and Check-Dams to Reduce Catchment Sediment Yield. Land Degrad. Dev. 2016, 27, 1018–1031. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Denisi, P.; Lucas-Borja, M.E.; Zimbone, S.M. Evaluating the effects of check dams on channel geometry, bed sediment size and riparian vegetation in Mediterranean mountain torrents. Sci. Total Environ. 2018, 642, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Cheng, S.; Li, P.; Li, Z.; Gao, H.; Yu, K.; Lu, K.; Shi, P.; Cheng, Y.; Zhao, B. Soil total nitrogen sources on dammed farmland under the condition of ecological construction in a small watershed on the Loess Plateau, China. Ecol. Eng. 2018, 121, 19–25. [Google Scholar] [CrossRef]
- Zhao, B.; Li, Z.; Li, P.; Xu, G.; Gao, H.; Cheng, Y.; Chang, E.; Yuan, S.; Zhang, Y.; Feng, Z. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma 2017, 296, 10–17. [Google Scholar] [CrossRef]
- Qin, C.-Z.; Ai, B.-B.; Zhu, A.-X.; Liu, J.-Z. An efficient method for applying a differential equation to deriving the spatial distribution of specific catchment area from gridded digital elevation models. Comput. Geosci. 2017, 100, 94–102. [Google Scholar] [CrossRef]
- Guo, D.; Westra, S.; Maier, H.R. Impact of evapotranspiration process representation on runoff projections from conceptual rainfall-runoff models. Water Resour. Res. 2016, 53, 435–454. [Google Scholar] [CrossRef]
- Van Cuyk, S.; Siegrist, R.L. Virus removal within a soil infiltration zone as affected by effluent composition, application rate, and soil type. Water Res. 2007, 41, 699–709. [Google Scholar] [CrossRef]
- Madsen, H. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv. Water Resour. 2003, 26, 205–216. [Google Scholar] [CrossRef]
- McMichael, C.E.; Hope, A.S.; Loaiciga, H.A. Distributed hydrological modelling in California semi-arid shrublands: MIKE SHE model calibration and uncertainty estimation. J. Hydrol. 2006, 317, 307–324. [Google Scholar] [CrossRef]
- Cibin, R.; Sudheer, K.P.; Chaubey, I. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrol. Process. 2010, 24, 1133–1148. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, S.; Cai, Y.; Li, X.; Jiang, Y. Improvement of hydrological model calibration by selecting multiple parameter ranges. Hydrol. Earth Syst. Sci. Discuss. 2016, 21, 1–24. [Google Scholar] [CrossRef]
- Henriksen, H.J.; Troldborg, L.; Nyegaard, P.; Sonnenborg, T.O.; Refsgaard, J.C.; Madsen, B. Methodology for construction, calibration and validation of a national hydrological model for Denmark. J. Hydrol. 2003, 280, 52–71. [Google Scholar] [CrossRef] [Green Version]
- Mo, X.; Pappenberger, F.; Beven, K.; Liu, S.; De Roo, A.; Lin, Z. Parameter conditioning and prediction uncertainties of the LISFLOOD-WB distributed hydrological model. Hydrol. Sci. J. 2006, 51, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Butts, M.B.; Payne, J.T.; Kristensen, M.; Madsen, H. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. J. Hydrol. 2004, 298, 242–266. [Google Scholar] [CrossRef]
- Hooke, J. Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology 2003, 56, 79–94. [Google Scholar] [CrossRef]
- Foster, G.R.; Huggins, L.F.; Meyer, L.D. A Laboratory Study of Rill Hydraulics: I. Velocity Relationships. Trans. ASAE 1984, 27, 790–796. [Google Scholar] [CrossRef]
- Kexin, L.; Zhanbin, L.; Hua, J. Application of Runoff Erosion Power in the Calculation of Soil Erosion and Sediment Yield on Hillslopes. J. Water Resour. Water Eng. 2009, 20, 70–73. (In Chinese) [Google Scholar]
- Suyanto; Rintis, H.; Rian, M.S.P. The Analysis of Sediment Transport Using Yang Method, Engelund-Hansen Method, and Bagnold Method in Bah Bolon River, Simalungun Regency of North Sumatera. Appl. Mech. Mater. 2016, 845, 30–34. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.; Yu, K.; Lu, K.; Tang, S. Parameters of sediment transport model for individual rainstorm in the Loess Hilly and Gully Region under changing environment. Sci. Soil Water Conserv. 2016, 14, 1–9. (In Chinese) [Google Scholar]
- Zhang, L.-T.; Li, Z.-B.; Wang, H.; Xiao, J.-B. Influence of intra-event-based flood regime on sediment flow behavior from a typical agro-catchment of the Chinese Loess Plateau. J. Hydrol. 2016, 538, 71–81. [Google Scholar] [CrossRef]
- Wei, X.; Li, X.; Wei, N. Fractal features of soil particle size distribution in layered sediments behind two check dams: Implications for the Loess Plateau, China. Geomorphology 2016, 266, 133–145. [Google Scholar] [CrossRef]
- Yazdi, J.; Moghaddam, M.S.; Saghafian, B. Optimal Design of Check Dams in Mountainous Watersheds for Flood Mitigation. Water Resour. Manag. 2018, 32, 4793–4811. [Google Scholar] [CrossRef]
- Fang, N.; Shi, Z.; Chen, F.; Zhang, H.; Wang, Y. Discharge and suspended sediment patterns in a small mountainous watershed with widely distributed rock fragments. J. Hydrol. 2015, 528, 238–248. [Google Scholar] [CrossRef]
- Modrick, T.M.; Georgakakos, K.P. The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change. J. Hydrol. Reg. Stud. 2015, 3, 312–336. [Google Scholar] [CrossRef] [Green Version]
- Parsons, A.; Stone, P.; Parsons, A. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion. CATENA 2006, 67, 68–78. [Google Scholar] [CrossRef]
- Gong, J.; Li, Z.; Li, P.; Ren, Z.; Yang, Y.; Han, L.; Tang, S.; Sun, Q. Spatial distribution of runoff erosion power based on SWAT Model in Yanhe River Basin. Trans. Chin. Soc. Agric. Eng. 2017, 33, 120–126. (In Chinese) [Google Scholar]
- Liao, Y.S.; Cai, Q.G.; Zhuo, M.N.; Zheng, M.G.; Luo, X. Influence of Channel Networks on the Sediment Yield Under Variant Temporal and Spatial Scales:A Case Study of Chabagou Watershed. Prog. Geogr. 2009, 28, 47–54. (In Chinese) [Google Scholar]
Stage | Flood Number | Observed Value (m3 s−1) | Simulated Value (m3 s−1) | Relative Error/Re (%) | Determination Coefficient/R2 | Nash–Sutcliffe Coefficient /NSE |
---|---|---|---|---|---|---|
calibration | 196303 | 0.58 | 0.59 | 1.72 | 0.90 | 0.80 |
196404 | 0.90 | 0.87 | 3.33 | 0.88 | 0.85 | |
validation | 196201 | 1.90 | 1.69 | 11.05 | 0.72 | 0.60 |
196304 | 0.83 | 0.73 | 12.05 | 0.72 | 0.71 |
Working Conditions | Coding | Different Dam Type Combinations in Watershed | Dam Name |
---|---|---|---|
1 | N | No dams | —— |
2 | K | Only key dams | Wangmaogou dam #1, Wangmaogou dam #2 |
3 | M | Only medium dams | Huangbaigou dam #2, Nianyangou dam #1, Kanghegou dam #2, Sidizui dam #1, Madizui dam, Guandigou dam #1, Guandigou dam #4 |
4 | S | Only small dams | Huangbaigou dam #1, Nianyangou dam #2, Nianyangou dam #3, Nianyangou dam #4, Kanghegou dam #1, Kanghegou dam #3, Sidizui dam #2, Wangtagou dam #1, Wangtagou dam #2, Guandigou dam #2 |
5 | KM | Key and medium dam combination | —— |
6 | KS | Key and small dam combination | —— |
7 | MS | Medium and small dam combination | —— |
8 | KMS | Key, medium, and small dam combination | —— |
Working Conditions | Flood Peak Discharge (m3 s−1) | Flood Peak Reduction (%) | Flood Volume (m3) | Flood Volume Reduction (%) |
---|---|---|---|---|
N | 1.26 | - | 4853.93 | - |
K | 0.92 | 27.28 | 4828.87 | 2.18 |
M | 0.84 | 33.39 | 3556.61 | 27.08 |
S | 0.76 | 40.13 | 2541.04 | 44.89 |
KM | 0.78 | 38.07 | 3532.24 | 27.37 |
KS | 0.51 | 59.71 | 2518.06 | 45.15 |
MS | 0.50 | 60.75 | 1802.36 | 58.42 |
KMS | 0.44 | 65.34 | 1779.58 | 58.67 |
Working Conditions | Velocity (m s−1) | Velocity Reduction (%) | Runoff Shear Stress (N S−2) | Runoff Shear Stress Reduction (%) |
---|---|---|---|---|
N | 1.99 | — | 15.51 | — |
K | 1.84 | 7.64 | 13.71 | 11.61 |
M | 1.80 | 9.70 | 13.45 | 13.31 |
S | 1.78 | 10.65 | 13.31 | 14.20 |
KM | 1.79 | 10.30 | 13.36 | 13.89 |
KS | 1.71 | 14.22 | 12.54 | 19.17 |
MS | 1.68 | 15.58 | 12.27 | 20.86 |
KMS | 1.55 | 22.26 | 10.69 | 31.08 |
Working Conditions | Flood Peak (m3 s−1) | Flood Volume (m3) | Runoff Erosion Power (m4 s−1 km−2) | Sediment Transport Modulus (t km−2) | Sediment Transport Modulus Reduction (%) |
---|---|---|---|---|---|
N | 1.26 | 4853.93 | 1.72 × 10−4 | 314.99 | - |
K | 0.92 | 4828.87 | 1.25 × 10−4 | 237.07 | 24.74 |
M | 0.84 | 3556.61 | 8.38 × 10−5 | 166.61 | 47.11 |
S | 0.76 | 2541.04 | 5.42 × 10−5 | 113.04 | 64.11 |
KM | 0.78 | 3532.24 | 7.73 × 10−5 | 155.03 | 50.78 |
KS | 0.51 | 2518.06 | 3.60 × 10−5 | 78.65 | 75.03 |
MS | 0.50 | 1802.36 | 2.53 × 10−5 | 57.41 | 81.78 |
KMS | 0.44 | 1779.58 | 2.20 × 10−5 | 50.66 | 83.92 |
\ | Channel Connectivity Index | Flood Peak Discharge (m3 s−1) | Flood Volume (m3) |
---|---|---|---|
N | 1 | 1.26 | 4853.93 |
K | 0.70 | 0.92 | 4828.87 |
M | 0.58 | 0.84 | 3556.61 |
S | 0.39 | 0.76 | 2541.04 |
KM | 0.52 | 0.78 | 3532.24 |
KS | 0.28 | 0.51 | 2518.06 |
MS | 0.26 | 0.50 | 1802.36 |
KMS | 0.21 | 0.44 | 1779.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Li, Z.; Li, P.; Xu, G.; Gao, H.; Xiao, L.; Wang, F.; Wang, T. Influence of Check Dams on Flood and Erosion Dynamic Processes of a Small Watershed in the Loss Plateau. Water 2019, 11, 834. https://doi.org/10.3390/w11040834
Yuan S, Li Z, Li P, Xu G, Gao H, Xiao L, Wang F, Wang T. Influence of Check Dams on Flood and Erosion Dynamic Processes of a Small Watershed in the Loss Plateau. Water. 2019; 11(4):834. https://doi.org/10.3390/w11040834
Chicago/Turabian StyleYuan, Shuilong, Zhanbin Li, Peng Li, Guoce Xu, Haidong Gao, Lie Xiao, Feichao Wang, and Tian Wang. 2019. "Influence of Check Dams on Flood and Erosion Dynamic Processes of a Small Watershed in the Loss Plateau" Water 11, no. 4: 834. https://doi.org/10.3390/w11040834
APA StyleYuan, S., Li, Z., Li, P., Xu, G., Gao, H., Xiao, L., Wang, F., & Wang, T. (2019). Influence of Check Dams on Flood and Erosion Dynamic Processes of a Small Watershed in the Loss Plateau. Water, 11(4), 834. https://doi.org/10.3390/w11040834