Analysis and Projection of Flood Hazards over China
Abstract
:1. Introduction
2. Data
2.1. Study Area and Observation Data
2.2. CMIP5 Projection Data
3. Methodology
3.1. Delimitation of Flood Hazard Indicators
3.2. Changes in the Flood Hazards in 21st Century and the Uncertainty of the Projection
4. Results
4.1. Characteristics of Floods in China during the Current Period
4.2. Projection of Flood Hazards in China during the 21st Century
4.2.1. Trends of Flood Hazards
4.2.2. Uncertainty of the Projection
4.2.3. Spatial Pattern of Flood Hazards with Confidence Regions
4.3. Effects of Floods on Agriculture and Its Adaptability
5. Discussion
6. Conclusions
- AP_HRP60 can capture most of the flood events in China.
- The flood hazards could increase under RCP4.5 and RCP8.5 and increase slightly under RCP2.6 during the 21st century (2011–2099). The spatial characteristics of APyear and ∆FA of the three RCPs are similar in most areas of China. More flooding could occur in southern China (Guangdong, Hainan, Guangxi and Fujian), which could become more serious in southeastern China and the northern Yunnan province in the southwest. A higher concentration of signal corresponds to more severe flood hazard trends.
- The MME demonstrated that the signal in the flood projection result is larger than the noise in eastern China; the noise is larger than the signal in the west, and the higher concentration of signal had greater uncertainty than the lower concentration.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1217. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, T.; Dai, A.; Han, Z. Observed Changes in the Distributions of Daily Precipitation Frequency and Amount over China from 1960 to 2013. J. Clim. 2015, 28, 6960–6978. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, T. Observed trends in the timing of wet and dry season in China and the associated changes in frequency and duration of daily precipitation. Int. J. Climatol. 2015, 35, 4631–4641. [Google Scholar] [CrossRef]
- Zhou, T.; Song, F.; Lin, R.; Chen, X.; Chen, X. The 2012 North China floods: Explaining an extreme rainfall event in the context of a long-term drying tendency (in “Explaining Extreme Events of 2012 from a Climate Perspective”). Bull. Am. Meteorol. Soc. 2013, 94, S49–S51. [Google Scholar]
- Murray, V.; Mcbean, G.M.; Bhatt, M.; Borsch, S.; Cheong, S.; Erian, L.S.; Nadim, F.; Núñez, M.; Oyun, R.; Suarez, A. Managing the risks of extreme events and disasters to advance climate change adaptation. J. Clin. Endocrinol. Metab. 2012, 18, 586–599. [Google Scholar]
- Peterson, T.C.; Alexander, L.V.; Allen, M.R.; Anel, J.A.; Barriopedro, D.; Black, M.T.; Carey-Smith, T.; Castillo, R.; Cattiaux, J.; et al. Explaining Extreme Events of 2012 from a Climate Perspective. Bull. Am. Meteorol. Soc. 2013, 94, S1–S74. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, T.; Stone, D.A.; Polson, D.; Dai, A.; Stott, P.A.; von Storch, H.; Qian, Y.; Burke, C.; Wu, P.; et al. Detectable Anthropogenic Shift toward Heavy Precipitation over Eastern China. J. Clim. 2017, 30, 1381–1396. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Plate, E.J. Recent flood disasters in China. Proce. Inst. Civ. Eng. Water Marit. Eng. 2012, 154, 177–188. [Google Scholar] [CrossRef]
- Jiang, F.; Zhu, C.; Mu, G.; Hu, R.; Meng, Q. Magnification of Flood Disasters and its Relation to Regional Precipitation and Local Human Activities since the 1980s in Xinjiang, Northwestern China. Nat. Hazards 2005, 36, 307–330. [Google Scholar]
- Teng, W.-H.; Hsu, M.-H.; Wu, C.-H.; Chen, A.S. Impact of Flood Disasters on Taiwan in the Last Quarter Century. Nat. Hazards 2006, 37, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–241. [Google Scholar] [CrossRef]
- Bocchiola, D.; De Michele, C.; Rosso, R. Review of recent advances in index flood estimation. Hydrol. Earth Syst. Sci. 2003, 7, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Zhai, P.M.; Zhang, X.B.; Wan, H.; Pan, X.H. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Harding, K.J.; Snyder, P.K. Examining future changes in the character of Central, U.S. warm-season precipitation using dynamical downscaling. J. Geophys. Res. Atmos. 2014, 119, 13116–13136. [Google Scholar] [CrossRef]
- Huang, X.Y.; Ullrich, P.A. The changing character of twenty-first-century precipitation over the western United States in the variable-resolution CESM. J. Clim. 2017, 30, 7555–7575. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Boston, MA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Palmer, W.C. Meteorological drought US. Weather Bur. Res. Pap. 1965, 45, 58. [Google Scholar]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.R.; Qian, Y. Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Guan, Y.; Zheng, F.; Zhang, X.; Wang, B. Trends and variability of daily precipitation and extremes during 1960–2012 in the Yangtze River Basin, China. Int. J. Climatol. 2017, 37, 1282–1298. [Google Scholar] [CrossRef]
- William, K.M.; Lau, H.T.; Kim, K.M. A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett. 2013, 40, 3163–3169. [Google Scholar] [Green Version]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and Future Climate Change in Northwest China. Clim. Chang. 2006, 80, 379–393. [Google Scholar] [CrossRef]
- Seiler, R.A.; Hayes, M.; Bressan, L. Using the standardized precipitation index for flood risk monitoring. Int. J. Climatol. 2002, 22, 1365–1376. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Schlosser, C.A.; O’Gorman, P.A.; Monier, E.; Entekhabi, D. Twenty-First-Century Changes in U.S. Regional Heavy Precipitation Frequency Based on Resolved Atmospheric Patterns. J. Clim. 2017, 30, 2501–2521. [Google Scholar] [CrossRef]
- Kundu, A.; Dwivedi, S.; Chandra, V. Precipitation Trend Analysis over Eastern Region of India Using Cmip5 Based Climatic Models. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL–8, 1437–1442. [Google Scholar] [CrossRef]
- Lee, J.W.; Hong, S.Y.; Chang, E.C.; Suh, M.S.; Kang, H.S. Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dyn. 2013, 42, 733–747. [Google Scholar] [CrossRef]
- Lee, O.; Park, M.; Lee, J.; Kim, S. Future PMPs projection according to precipitation variation under RCP 8.5 climate change scenario. J. Korea Water Resour. Assoc. 2016, 49, 107–119. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Zampieri, M.; Navarra, A. Heavy Precipitation Events in a Warmer Climate: Results from CMIP5 Models. J. Clim. 2013, 26, 7902–7911. [Google Scholar] [CrossRef] [Green Version]
- Shaw, S.B.; Riha, S.J. Assessing possible changes in flood frequency due to climate change in mid-sized watersheds in New York State, USA. Hydrol. Process. 2011, 25, 2542–2550. [Google Scholar] [CrossRef]
- Dong, S.; Xu, Y.; Zhou, B.; Shi, Y. Assessment of Indices of Temperature Extremes Simulated byMultiple CMIP5 Models over China. Adv. Atoms. Sci. 2015, 32, 1077–1091. [Google Scholar] [CrossRef]
- Zhou, B.; Wen, Q.H.; Xu, Y.; Song, L.; Zhang, X. Projected changes in temperature and precipitation extremes in china by the cmip5 multimodel ensembles. J. Clim. 2014, 27, 6591–6611. [Google Scholar] [CrossRef]
- Grade of Precipitation, PRC National Standard; GB/T GB T 28592-2012; Science China Press: Beijing, China, 2012.
- Liang, Y.; Wang, Y.; Yan, X.; Liu, W.; Jin, S.; Han, M. Projection of drought hazards in China during twenty-first century. Theor. Appl. Climatol. 2018, 133, 331–341. [Google Scholar] [CrossRef]
- Li, B.; Zhou, T. Projected Climate Change over China Under SRES A1B Scenario: Multi-model Ensemble and Uncertainties. Adv. Clim. Chang. Res. 2010, 6, 270–276. [Google Scholar]
- Liang, Y.; Yan, X.; Huang, L.; Lu, H.; Jin, S. Projection and uncertainty of climate change in China during 21st century under RCPs. J. Trop. Meteorol. 2018, 24, 102–110. [Google Scholar]
- Sikka, A.K.; Rao, B.B.; Rao, V.U.M. Agricultural disaster management and contingency planning to meet the challenges of extreme weather events. Mausam 2016, 67, 155–168. [Google Scholar]
- Ivancic, T.J.; Shaw, S.B. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Clim. Chang. 2015, 133, 681–693. [Google Scholar] [CrossRef]
- Radatz, T.F.; Thompson, A.M.; Madison, F.W. Soil moisture and rainfall intensity thresholds for runoff generation in southwestern Wisconsin agricultural watersheds. Hydrol. Process. 2013, 27, 3521–3534. [Google Scholar] [CrossRef]
- -Oh, S.G.; Park, J.H.; Lee, S.H.; Suh, M.S. Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos. 2014, 119, 2913–2927. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Sun, J. Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteorol. Atmos. Phys. 2013, 121, 55–77. [Google Scholar] [CrossRef]
No. | Model Name (for Sort) | Country | Original Resolution (Row × Col) |
---|---|---|---|
1 | BCC-CSM1-1 | China | 64 × 128 |
2 | CCSM4 | USA | 192 × 288 |
3 | EC-EARTH | EU | 160 × 320 |
4 | GFDL-ESM2G | USA | 90 × 144 |
5 | IPSL-CM5A-MR | France | 143 × 144 |
6 | MRI-CGCM3 | Japan | 160 × 320 |
7 | NORESM1-M | Norway | 96 × 144 |
Flood Days Reported by AP_HRP | Vacancy Rate (%) | Missing Rate (%) | Remarks |
---|---|---|---|
Total AP_HRP | 135 | 2 | |
over 60% fractile of AP_HRP | 18 | 8 | Indicates floods |
over 80% fractile of AP_HRP | 10 | 34 | |
over 95% fractile of AP_HRP | 1 | 76 | Indicates serious floods |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Wang, Y.; Zhao, Y.; Lu, Y.; Liu, X. Analysis and Projection of Flood Hazards over China. Water 2019, 11, 1022. https://doi.org/10.3390/w11051022
Liang Y, Wang Y, Zhao Y, Lu Y, Liu X. Analysis and Projection of Flood Hazards over China. Water. 2019; 11(5):1022. https://doi.org/10.3390/w11051022
Chicago/Turabian StyleLiang, Yulian, Yongli Wang, Yinjun Zhao, Yuan Lu, and Xiaoying Liu. 2019. "Analysis and Projection of Flood Hazards over China" Water 11, no. 5: 1022. https://doi.org/10.3390/w11051022
APA StyleLiang, Y., Wang, Y., Zhao, Y., Lu, Y., & Liu, X. (2019). Analysis and Projection of Flood Hazards over China. Water, 11(5), 1022. https://doi.org/10.3390/w11051022