Susceptibility of Hydropower Generation to Climate Change: Karun III Dam Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Circulation Models (GCMs)
2.2. Statistical Downscaling Model (SDSM)
2.3. Runoff Prediction by Artificial Neural Network Model (ANN)
2.4. HEC-ResSim Reservoir Model
2.5. Calibration and Validation Assessment
2.6. Case Study
3. Results and Discussion
3.1. Calibration and Validation of SDSM
3.2. Scenario Projection
3.3. Rainfall–Runoff Model
3.4. Reservoir Evaporation Loss
3.5. Hydropower Simulation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitig. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.-Y.; Deng, Z.D.; Ringler, C.; Gao, Y.; Hejazi, M.I.; Leung, L.R. Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development. Renew. Energy 2018, 116, 827–834. [Google Scholar] [CrossRef]
- Sternberg, R. Hydropower: Dimensions of social and environmental coexistence. Renew. Sustain. Energy Rev. 2008, 12, 1588–1621. [Google Scholar]
- Ma, Z.F.; Liu, J.; Yang, S.Q. Climate Change in Southwest China during 1961–2010: Impacts and Adaptation. Adv. Clim. Chang. Res. 2013, 4, 223–229. [Google Scholar]
- Blackshear, B.; Crocker, T.; Drucker, E.; Filoon, J.; Knelman, J.; Skiles, M. Hydropower Vulnerability and Climate Change, A Framework for Modeling the Future of Global Hydroelectric Resources; Middlebury College Environmental Studies Senior Seminar: Middlebury, VT, USA, 2011. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2014, Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- IPCC. Summary for policymakers. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IPCC. Intergovernmental Pannel on Climate Change—IPCC. Climate Change 2007: Synthesis Report; IPCC: Geneva, Switzerland, 2007. [Google Scholar] [CrossRef]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate Models and Their Evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Chu, J.T.; Xia, J.; Xu, C.Y.; Singh, V.P. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor. Appl. Clim. 2010, 99, 149–161. [Google Scholar] [CrossRef]
- Liu, W.; Fu, G.; Liu, C.; Song, X.; Ouyang, R. Projection of future rainfall for the North China Plain using two statistical downscaling models and its hydrological implications. Stoch. Environ. Res. Risk Assess. 2013, 27, 1783–1797. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, Y. A projection of future changes in summer precipitation and monsoon in East Asia. Sci. China Ser. D 2010, 53, 284–300. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W.; Barrow, E.M. SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 2002, 17, 147–159. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P. Statistical downscaling of daily rainfall for southeastern Australia. In Proceedings of the Symposium JH02 Held during IUGG2011, Melbourne, Australia, 28 June–7 July 2011; IAHS Publ 344. IAHS Press: Wallingford, Melbourn, Australia, 2011; pp. 69–74. [Google Scholar]
- Harpham, C.; Wilby, R.L. Multi-site downscaling of heavy daily precipitation occurrence and amounts. J. Hydrol. 2005, 312, 235–255. [Google Scholar] [CrossRef]
- Khan, M.S.; Coulibaly, P.; Dibike, Y. Uncertainty analysis of statistical downscaling methods. J. Hydrol. 2006, 319, 357–382. [Google Scholar] [CrossRef]
- Liu, L.L.; Liu, Z.F.; Xu, Z.X. Trends of climate change for the upper-middle reaches of the Yellow River in the 21st century. Adv. Clim. Chang. Res. 2008, 4, 167–172. [Google Scholar]
- Liu, L.L.; Liu, Z.F.; Xu, Y.; Ren, X.; Fischer, T. Hydrological impacts of climate change in the Yellow River Basin for the 21st century using hydrological model and statistical downscaling model. Quat. Int. 2011, 244, 211–220. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- Hassan, Z.; Shamsudin, S.; Harun, S. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theor. Appl. Clim. 2013, 116, 243–257. [Google Scholar] [CrossRef]
- IPCC. Emissions Scenarios. A Special Report of Working Group II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hattermann, F.; Post, J.; Krysanova, V.; Conradt, T.; Wechsung, F. Assessment of water availability in a central-European river basin (Elbe) under climate change. Adv. Clim. Chang. Res. 2008, 4, 42–50. [Google Scholar]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Lin, S.-H.; Liu, C.M.; Huang, W.C.; Lin, S.S.; Yen, T.H.; Wang, H.R.; Kuo, J.T.; Lee, Y.C. Developing a yearly warning index to assess the climatic impact on the water resources of Taiwan, a complex-terrain island. J. Hydrol. 2010, 390, 13–22. [Google Scholar] [CrossRef]
- de Jong, P.; Tanajura, C.A.S.; Sánchez, A.S.; Dargaville, R.; Kiperstok, A.; Torres, E.A. Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Sci. Total Environ. 2018, 634, 1540–1553. [Google Scholar] [CrossRef]
- Mishra, S.K.; Hayse, J.; Thomas, V.; Yan, E.; Kayastha, R.B.; LaGory, K.; McDonald, K.; Steiner, N. An integrated assessment approach for estimating the economic impacts of climate change on River systems: An application to hydropower and fisheries in a Himalayan River, Trishuli. Environ. Sci. Policy 2018, 87, 102–111. [Google Scholar] [CrossRef]
- Markoff, M.S.; Cullen, A.C. Impact of climate change on Pacific Northwest hydropower. Clim. Chang. 2008, 87, 451–469. [Google Scholar] [CrossRef]
- Minville, M.; Brissette, F.; Krau, S.; Leconte, R. Adaptation to Climate Change in the Management of a Canadian Water-Resources System Exploited for Hydropower. Water Resour. Manag. 2009, 23, 2965–2986. [Google Scholar] [CrossRef]
- Lehner, B.; Czisch, G.; Vassolo, S. The impact of global change on the hydropower potential of Europe: A model-based analysis. Energy Policy 2005, 33, 839–855. [Google Scholar] [CrossRef]
- Sharma, R.H.; Shakya, N.M. Hydrological changes and its impact on water resources of Bagmati watershed, Nepal. J. Hydrol. 2006, 327, 315–322. [Google Scholar] [CrossRef]
- Harrison, G.; Whittington, H. Vulnerability of Hydropower Projects to Climate Change. IEE Proc. Gener. Transm. Distrib. 2002, 149, 249–255. [Google Scholar] [CrossRef]
- Reichler, T.; Kim, J. How Well Do Coupled Models Simulate Today’s Climate? Bull. Am. Meteorol. Soc. 2008, 89, 303–311. [Google Scholar] [CrossRef]
- Gordon, C.; Cooper, C.; Senior, C.A.; Banks, H.; Gregory, J.M.; Johns, T.C.; Mitchell, J.F.B.; Wood, R.A. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 2000, 16, 147–168. [Google Scholar] [CrossRef]
- Pope, V.D.; Gallani, M.L.; Rowntree, P.R.; Stratton, R.A. The impact of new physical parameterizations in the Hadley Centre climate model—HadAM3. Clim. Dyn. 2000, 16, 123–146. [Google Scholar] [CrossRef]
- Chen, S.-T.; Yu, P.S.; Tang, Y.-H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 2010, 385, 13–22. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Coulibaly, P. Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic model. J. Hydrol. 2005, 307, 145–163. [Google Scholar] [CrossRef]
- He, B.; Takara, K.; Yamashiki, Y.; Kobayashi, K.; Luo, P. Statistical Analysis of Present and Future River Water Temperature in Cold Regions Usings Downscaled GCMs Data; Kyoto University: Kyoto, Japan, 2011; pp. 103–110. [Google Scholar]
- Wilby, R.L.; Dawson, C.W. SDSM 4.2—A Decision Support Tool for the Assessment of Regional Climate Change Impacts. User Manual; Environmental Agency of England and Wales: UK, 2007.
- Samadi, S.; Carbone, G.J.; Mahdavi, M.; Sharifi, F.; Bihamta, M.R. Statistical downscaling of climate data to estimate streamflow in a semi-arid catchment. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 4869–4918. [Google Scholar] [CrossRef]
- Sarwar, R.; Irwin, S.E.; King, L.M.; Simonovic, S.P. Assessment of Climatic Vulnerability in the Upper Thames River Basin: Downscaling with SDSM; Report No 080; The University of Western Ontario: London, ON, Canade, 2012; ISBN 978-0-7714-2963-7. [Google Scholar]
- Hessami, M.; Gachon, P.; Quarda, T.; St-Hilaire, A. Automated regression-based statistical downscaling tool. Environ. Model. Softw. 2008, 23, 813–834. [Google Scholar] [CrossRef]
- Kasiviswanathan, K.S.; Cibin, R.; Sudheer, K.P.; Chaubey, I. Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. J. Hydrol. 2013, 499, 275–288. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Bhadra, A.; Bandyopadhyay, A.; Singh, R.; Raghuwanshi, N.S. Rainfall-Runoff Modeling: Comparison of Two Approaches with Different Data Requirements. Water Resour. Manag. 2010, 24, 37–62. [Google Scholar] [CrossRef]
- Agarwal, A.; Mishra, A.K.; Ram, S.; Singh, J.K. Simulation of runoff and sediment yield using Artificial neural networks. Biosyst. Eng. 2006, 94, 596–613. [Google Scholar] [CrossRef]
- Lee, E.; Seong, C.; Kim, H.; Park, S.; Kang, M. Predicting the impacts of climate change on nonpoint source pollutant loads from agricultural small watershed using artificial neural network. J. Environ. Sci. 2010, 22, 840–845. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W.; Li, Y.S. Methods to improve neural network performance in daily flows prediction. J. Hydrol. 2009, 372, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Klipsch, J.D.; Hurst, M.B. HEC-ResSim Reservoir System Simulation user’s Manual, Version 3.0; US Army Corps of Engineers (USACE): Davis, CA, USA, 2007. [Google Scholar]
- IWPCO. Karun 3 Project; Iran Water & Power Resources Development Co.: Tehran, Iran, 2016. [Google Scholar]
- Mirzabozorg, H.; Hariri-Ardebili, M.A.; Heshmati, M.; Seyed-Kolbadi, S.M. Structural safety evaluation of Karun III Dam and calibration of its finite element model using instrumentation and site observation. J. Case Stud. Struct. Eng. 2014, 1, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Meyer, N.; Ahangari, K. An investigation on stability and support of intake rock slopes of the Karun III dam and power project. In Numerical Modeling of Discrete Materials; Konietzky, H., Ed.; Taylor & Francis Group: London, UK, 2004; pp. 229–234. ISBN 90 58096351. [Google Scholar]
- D-maps.com. 2019. Available online: https://d-maps.com/ (accessed on 30 April 2019).
- IPCC-TGICA. General Guidelines on the Use of Scenario Data for Climate Impact and Adaption Assessment. Version 2; Prepared by Carter, T.R.; on Behalf of the Intergovernmental Panel on Climate Change, Finnish Environment Institute: Helsinki, Finland, 2007. [Google Scholar]
- Abbaspour, K.C.; Faramarzi, M.; Seyed Ghasemi, S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45, 1–16. [Google Scholar] [CrossRef]
Statistical Index | MAE | BIAS | RMSE | Correlation | |
---|---|---|---|---|---|
Observed and downscaled precipitation | 13% | 10% | 17% | 97% | |
Observed and downscaled temperature | Max temperature | 0.26% | 0.04% | 0.33% | 99% |
Min temperature | 0.83% | 0.03% | 0.96% | 99% |
Train | Test | |||||||
---|---|---|---|---|---|---|---|---|
Statistical Index | MAE | BIAS | RMSE | Correlation | MAE | BIAS | RMSE | Correlation |
Wet (Dec-May) | 29% | 19% | 38% | 87% | 31% | 23% | 38% | 82% |
Dry (June-Nov) | 26% | 21% | 38% | 75% | 29% | 18% | 39% | 74% |
All months | 28% | 18% | 38% | 81% | 26% | 17% | 37% | 91% |
Emission Scenario | A2 | B2 | ||||
---|---|---|---|---|---|---|
Changes Compared with Historic Period | Maximum Change | Minimum Change | Average Change | Maximum Change | Minimum Change | Average Change |
2020–2049 | +51.3% | +32.1% | +41.7% | +33.7% | +17.5% | +25.6% |
2070–2099 | +7.1% | -1.5% | +3.5% | +28.1% | +7.5% | +18.2% |
Train (1983–1993) | Test (1994–1999) | |||||
---|---|---|---|---|---|---|
Statistical Index | RMSE | MAE | Correl | RMSE | MAE | Correl |
Evaporation | 25% | 19% | 96% | 19% | 15% | 95.7% |
Statistical Index: | MAE | BIAS | RMSE | Correlation |
---|---|---|---|---|
Daily | 11.8% | 8.4% | 19.6% | 83.3% |
Monthly | 8.6% | 6.3% | 11.3% | 88% |
Emission Scenarios | A2 | B2 | ||||
---|---|---|---|---|---|---|
Changes in Comparison with Control Period | Maximum Change | Minimum Change | Average Change | Maximum Change | Minimum Change | Average Change |
2020–2049 | +40.5% | +26.7% | +34.1% | +29.3% | +17.4% | +24% |
2070–2099 | +8.7% | +1.8% | +6.3% | +22% | +10.5% | +16.5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beheshti, M.; Heidari, A.; Saghafian, B. Susceptibility of Hydropower Generation to Climate Change: Karun III Dam Case Study. Water 2019, 11, 1025. https://doi.org/10.3390/w11051025
Beheshti M, Heidari A, Saghafian B. Susceptibility of Hydropower Generation to Climate Change: Karun III Dam Case Study. Water. 2019; 11(5):1025. https://doi.org/10.3390/w11051025
Chicago/Turabian StyleBeheshti, Maryam, Ali Heidari, and Bahram Saghafian. 2019. "Susceptibility of Hydropower Generation to Climate Change: Karun III Dam Case Study" Water 11, no. 5: 1025. https://doi.org/10.3390/w11051025
APA StyleBeheshti, M., Heidari, A., & Saghafian, B. (2019). Susceptibility of Hydropower Generation to Climate Change: Karun III Dam Case Study. Water, 11(5), 1025. https://doi.org/10.3390/w11051025