Stability of Irrigation Canal Slopes Considering the Sea Level Rise and Dynamic Changes: Case Study El-Salam Canal, Egypt
Abstract
:1. Introduction
2. Description of Study Area
3. Materials and Methods
3.1. Finite Difference Modelling
3.1.1. Costal Aquifer Model of the Northeastern Nile Delta
3.1.2. Model Boundary Conditions and Hydraulic Parameters
3.2. Finite Element Model
El-Salam Canal Model
4. Results and Discussion
4.1. Calibration of Groundwater Flow Model
4.2. Impact of Sea Level Rise on Groundwater Level at Project Area
4.3. Verification of Slope Stability Model Using Experimental Model
4.4. Effect of Sea Level Rise on Factor of Safety of Canal Slope
4.5. Effect of Earthquake Intensity on Factor of Safety of Canal Slope
4.6. Effect of Combination Scenario on Factor of Safety of Canal Slope
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berilgen, M. Investigation of Stability of Slopes Under Drawdown Conditions. Comput. Geotech. 2007, 34, 81–91. [Google Scholar] [CrossRef]
- Salem, T.; Hassan, K.; Mashhour, M.; Abu-Elella, A. Assessment of Slope Stability Using FEM. In Proceedings of the 7th International Conference on Civil and Architecture Engineering, ICCAE-7, Military Technical College, Cairo, Egypt, 21–23 November 2008; pp. 258–272. [Google Scholar]
- Jebelli, J.; Meguid, M. Soil Stability Analysis in Irrigation Canals: A Case Study. J. Egypt. Geotech. Soc. 2013, 18, 4153–4168. [Google Scholar]
- Harvey, N. Rates and Impacts of Global Sea-Level Change. In New Frontiers in Environmental Research; Glazer, M.P., Ed.; Nova Science Publishers: New York, NY, USA, 2006; Chapter 1. [Google Scholar]
- Church, J.; White, N.; Aarup, T.; Wilson, W.; Woodworth, P.; Domingues, C.; Hunter, J.; Lambeck, K. Understanding Global Sea Levels: Past, Present and Future. Sustain. Sci. 2008, 3, 1–167. [Google Scholar] [CrossRef]
- IPCC. Climate Change 1995: The Science of Climate Change Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J., Meira Filho, L., Callander, B., Harris, N., Kattenberg, A., Maskell, K., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1996; p. 572. [Google Scholar]
- IPCC. Climate Change 2001: Impacts, Adaptations, and Vulnerability Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Mc Carthy, J., Canziani, O., Leary, N., Dokken, D., White, K., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- IPCC. An Assessment of the Intergovernmental Panel on Climate Change. In Proceedings of the Adopted Section by Section at IPCC Plenary XXVII, Valencia, Spain, 12–17 November 2007; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Legeais, J.F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S.; et al. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef] [Green Version]
- Leaven, M. Hydrogeological Study of the Nile Delta and Adjacent Desert Areas, Egypt, with Emphasis on Hydrochemistry and Isotope Hydrology. Master’s Thesis, Free University, Amsterdam, The Netherlands, 1991. Also published by RIGW/IWACO as Technical note TN 77.01300-91-01. [Google Scholar]
- Ball, J. Contribution to the Geology of Egypt; Egyptian Survey and Mines Department: Cairo, Egypt, 1939; pp. 1–308.
- RIGW. Hydrogeological Map of Nile Delta, Scale 1:500,000, 1st ed.; RIGW: El Kanater El Khairia, Nile Delta, Egypt, 1992. [Google Scholar]
- Said, R. The Nile River: Geology, Hydrology, and Utilization; Pergamon Press: New York, NY, USA, 1993; p. 320. [Google Scholar]
- Serag El Din, H. Geological, Hydrochemical and Hydrological Studies on the Nile Delta Quaternary Aquifer. Ph.D. Thesis, Faculty of Science, Mansoura University, Mansoura, Egypt, 1989. [Google Scholar]
- Sherif, M.; Al-Rashed, M. Vertical and Horizontal Simulation of Seawater Intrusion in the Nile Delta Aquifer. In Proceedings of the 1st International Conference and Workshop on Saltwater Intrusion and Coastal Aquifers, Monitoring, Modelling, and Management, Essaouira, Morocco, 23–25 April 2001. [Google Scholar]
- Sherif, M.M.; Sefelnasr, A.; Javadi, A. Incorporating the Concept of Equivalent Freshwater Head in Successive Horizontal Simulations of Seawater Intrusion in the Nile Delta Aquifer, Egypt. J. Hydrol. 2012, 186–198. [Google Scholar] [CrossRef]
- Mabrouk, B.; Abd-Elhamid, H.; Badr, B.; Ralf, L. Adaptation to the Impact of Sea Level Rise in the Northeastern Nile Delta, Egypt. In Geophysical Research Abstracts; EGU2013-4042; EGU General Assembly: Munich, Germany, 2013. [Google Scholar]
- Abd-Elaty, I.; Abd-Elhamid, H.; Fahmy, M.; Abdelaal, G. Study Climate Changes and its Impact on Ground water System in Nile Delta Aquifer. Egypt. Int. J. Eng. Sci. Technol. 2014, 17, 2061–2079. [Google Scholar]
- Abd-Elaty, I.; Sallam, G.A.; Strafacec, S.; Scozzari, A. Effects of climate change on the design of subsurface drainage systems in coastal aquifers in arid/semi-arid regions: Case study of the Nile delta. Sci. Total Environ. J. 2019, 672, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Kramer, S.; Lindwall, N. Dimensionality and Directionality Effects in Newmark Sliding Block Analyses. J. Geotech. Geoenviron. Eng. 2004, 130, 303–315. [Google Scholar] [CrossRef]
- Maula, B.H.; Zhang, L. Assessment of Embankment Factor Safety Using Two Commercially Available Programs in Slope Stability Analysis. Procedia Eng. 2011, 14, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Nadi, B.; Askari, F.; Farzaneh, O. Seismic Performance of Slopes in Pseudo-Static Designs with Different Safety Factors. Int. J. Sci. Technol. Trans. Civil Eng. 2014, 38, 465–483. [Google Scholar]
- Hossain, M.; Haque, M.; Qasim, S.; Hoyos, L. Seismic Stability of Bioreactor Landfill with Decomposition—A Numerical Modeling. In Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece, Balkans, 25–28 June 2007. Paper No. 1266. [Google Scholar]
- Huang, S.; Lv, Y.; Peng, Y.; Zhang, L.; Xiu, L. Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope. PLoS ONE 2015, 10, e0142268. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elhamid, H.; Abd-Elaty, I.; Sherif, M. Evaluation of potential impact of Grand Ethiopian Renaissance Dam on Seawater Intrusion in the Nile Delta Aquifer. Int. J. Environ. Sci. Technol. 2019, 16, 2321–2332. [Google Scholar] [CrossRef]
- EGSA (Egyptian General Survey and Mining). Topographical Maps Cover Nile Delta; EGSA: Cairo, Egypt, 1997. [Google Scholar]
- MWRI. Adaptation to Climate Change in the Nile Delta through Integrated Coastal Zone Management; Ministry of Water Resources and Irrigation: Cairo, Egypt, 2013.
- Emam, T.; Hydraulics, D. Operational Management System for El-Salam Canal. Inception Repor. 2000. Available online: file:///C:/Users/MARTIN~1/AppData/Local/Temp/Inception_Report.pdf (accessed on 10 November 2018).
- Donia, N. Development of El-Salam Canal Automation System. J. Water Resour. Prot. 2012, 4, 597–604. [Google Scholar] [CrossRef]
- MWRI. National Water Resources Plan for Egypt 2017. 2005. Available online: http://extwprlegs1.fao.org/docs/pdf/egy147082.pdf (accessed on 10 November 2018).
- Hafez, A. Investigation of El-Salam Canal Project in Northern Sinai, Egypt Phase-I: Environmental Baseline, Soil and Water Quality Studies. In Proceedings of the Ninth International Water Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt, 17–20 March 2005. [Google Scholar]
- Mohamed, A. Irrigation Water Quality Evaluation In El-Salam Canal Project. Int. J. Eng. Appl. Sci. 2012, 3, 1. [Google Scholar]
- McDonald, M.; Harbaugh, A. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; USGS TWRI 93 Chapter 6-A1; U.S. Geological Survey: Reston, VA, USA, 1988. [CrossRef]
- Griffiths, D.; Lane, P. Slope Stability Analysis by Finite Elements, Phase 2, Version 8.005. In Geotechnique; Rocscience Inc.: Ontario, ON, Canada, 2011; Volume 49, pp. 387–403. [Google Scholar]
- Bishop, A. The Strength of Soils as Engineering Materials. In Sixth Rankine Lecture, Geotechnique; Rocscience Inc.: Ontario, ON, Canada, 1966; Volume 16, No. 2; pp. 89–130. [Google Scholar]
- Das, B. Advanced Soil Mechanics; Hemisphere Pub. Corp.: Washington, DC, USA; McGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Mohamed, A.A.; El-Hadidy, M.; Deif, A.; Abou Elenean, K. Seismic hazard studies in Egypt. NRIAG J. Astron. Geophys. 2012, 1, 119–140. [Google Scholar] [CrossRef] [Green Version]
- Ambraseys, N.N.; Melvilie, C.P.; Adam, R.D. The Seismicity of Egypt, Arabia and the Red Sea a Historical Review; Cambridge University Press: Cambridge, UK, 1994; pp. 1–137. [Google Scholar]
- Badawy, H.S.; Mourad, S.A. Observations from the 12 October 1992 Dahshour Earthquake in Egypt. Natl. Hazards 1994, 10, 261–274. [Google Scholar] [CrossRef]
- Khater, M. Reconnaissance report on the Cairo, Egypt earthquake of October 12, 1992. NCEER Bull. 1993. [Google Scholar]
- Badawy, A.; Korrat, I. Update earthquake risk assessment in Cairo, Egypt. J. Seismol. 2017, 21, 571–589. [Google Scholar] [CrossRef]
- Al-Ashaal, A.; Abdel-Motaleb, A.; Haggag, H. Stabilizing Embankment Made of and Founded Over Weak Soil Using Piles: A Case History. Soil Mech. Found. J. Egypt. Geotech. Soc. 1998, 9, 10073–10094. [Google Scholar]
- Badawy, A.; Korrat, I.; El-hadidy, M.; Gaber, H. Probabilistic earthquake hazard analysis for Cairo, Egypt. J. Seismol. 2016, 20, 449–461. [Google Scholar] [CrossRef]
- Morsy, W.S. Environmental Management to Groundwater Resources for Nile Delta Region. Ph.D. Thesis, Faculty of Engineering, Cairo University, Cairo, Egypt, 2009. [Google Scholar]
- Al-Quamhawy, S. Rehabilitation of Irrigation and Drainage Networks in Sharkia Irrigation Directorate. Master’s Thesis, Faculty of Engineering, Zagazig University, Ash Sharqia Governorate, Egypt, 2016. [Google Scholar]
Stage | Scenario | Description | Factor of Safety | Maximum Total Displacement (m) | Total Displacement at Toe (m) |
---|---|---|---|---|---|
Base case | - | Current situation | 1.086 | 0.038 | 0.026 |
SLR | 1 | SLR 26.70 cm | 1.083 | 0.040 | 0.030 |
2 | SLR 51.30 cm | 1.072 | 0.040 | 0.024 | |
Earthquake Intensity | 3 | ah 0.1 g | 0.436 | 0.160 | 0.160 |
4 | ah 0.2 g | 0.204 | 1.040 | 0.605 | |
SLR & Earthquake | 5 | SLR 26.70 cm, ah 0.1 g | 0.420 | 0.170 | 0.162 |
6 | SLR 51.30 cm, ah 0.1 g | 0.405 | 0.150 | 0.142 | |
7 | SLR 26.70 cm, ah 0.2 g | 0.200 | 0.400 | 0.160 | |
8 | SLR 51.30 cm, ah 0.2 g | 0.196 | 0.400 | 0.140 |
Stage | Scenario | Description | Factor of Safety | Maximum Shear Strain | Shear Strain at Toe |
---|---|---|---|---|---|
Base case | - | Current situation | 1.086 | 0.16 | 0.008 |
SLR | 1 | SLR 26.70 cm | 1.083 | 0.16 | 0.008 |
2 | SLR 51.30 cm | 1.072 | 0.17 | 0.009 | |
Earthquake Intensity | 3 | ah 0.1 g | 0.436 | 0.29 | 0.015 |
4 | ah 0.2 g | 0.204 | 0.95 | 0.050 | |
SLR & Earthquake | 5 | SLR 26.70 cm, ah 0.1 g | 0.420 | 0.30 | 0.015 |
6 | SLR 51.30 cm, ah 0.1 g | 0.405 | 0.30 | 0.015 | |
7 | SLR 26.70 cm, ah 0.2 g | 0.200 | 0.40 | 0.040 | |
8 | SLR 51.30 cm, ah 0.2 g | 0.196 | 0.40 | 0.040 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elaty, I.; Eldeeb, H.; Vranayova, Z.; Zelenakova, M. Stability of Irrigation Canal Slopes Considering the Sea Level Rise and Dynamic Changes: Case Study El-Salam Canal, Egypt. Water 2019, 11, 1046. https://doi.org/10.3390/w11051046
Abd-Elaty I, Eldeeb H, Vranayova Z, Zelenakova M. Stability of Irrigation Canal Slopes Considering the Sea Level Rise and Dynamic Changes: Case Study El-Salam Canal, Egypt. Water. 2019; 11(5):1046. https://doi.org/10.3390/w11051046
Chicago/Turabian StyleAbd-Elaty, Ismail, Hazem Eldeeb, Zuzana Vranayova, and Martina Zelenakova. 2019. "Stability of Irrigation Canal Slopes Considering the Sea Level Rise and Dynamic Changes: Case Study El-Salam Canal, Egypt" Water 11, no. 5: 1046. https://doi.org/10.3390/w11051046
APA StyleAbd-Elaty, I., Eldeeb, H., Vranayova, Z., & Zelenakova, M. (2019). Stability of Irrigation Canal Slopes Considering the Sea Level Rise and Dynamic Changes: Case Study El-Salam Canal, Egypt. Water, 11(5), 1046. https://doi.org/10.3390/w11051046