A Revised Method of Surface Water Quality Evaluation Based on Background Values and Its Application to Samples Collected in Heilongjiang Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites and Data Collection
2.3. Water Quality Assessment
2.4. Statistical Analysis
2.5. Iterative 2σ-Technique
3. Results and Discussion
3.1. Water Quality Analysis
3.2. Characteristic Analysis of Failed Variables
3.3. Geochemical Background Value
3.4. Evaluation Method Considering Background Values
4. Conclusions
- (1)
- Based on research conducted between 2011 and 2016, the key background pollutants (COD, CODMn, NH3-N) were identified for river source water environment function zones in Heilongjiang Province.
- (2)
- Spatial and temporal variations of background pollutants were analysed, and the obtained relative seasonal averages (RMse,s,p) indicated that concentrations of background pollutants in surface water were higher in the wet season than in the dry season.
- (3)
- A three-step discriminant method was first proposed to identify the background area for determining pollutant background values.
- (4)
- Based on the iterative 2σ-technique, descriptive statistics and the range of water quality background values in the wet and dry seasons were calculated for the 22 source water reserves in 2017. In contrast to the evaluation results obtained by considering background values, those that ignored background values could not objectively reflect the effect of human activities on water quality.
Author Contributions
Funding
Conflicts of Interest
References
- Campos, M.L.; Pierangeli, M.A.P.; Guilherme, L.R.G.; Curi, N. Baseline concentration of heavy metals in Brazilian Latosols. Commun. Soil Sci. Plant. Anal. 2003, 34, 547–557. [Google Scholar] [CrossRef]
- Darnley, A.G.; Björklund, A.; Bolviken, B.; Gustavsson, N.; Koval, P.V.; Plant, J.A.; Steenfelt, A.; Tauchid, M.; Xie, X. A Global Geochemical Database for Environmental and Resource Management. Recommendations for International Geochemical Mapping; Final Report of IGCP Project 259; UNESCO Publishing: Paris, France, 1995. [Google Scholar]
- Matschulla, J.; Höfle, S.; da Silva, J.; Mello, J.; Melo, G.; Pleßow, A.; Reimann, C. A soil geochemical background for northeastern Brazil. Geochem. Explor. Environ. Anal. 2012, 12, 197–209. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Duczmal-Czernikiewicz, A.; Dołegowska, S. Geochemical background of potentially toxic trace elements in reclaimed soils of the abandoned pyrite–uranium mine (south-central Poland). Int. J. Environ. Sci. Technol. 2016, 13, 2649–2662. [Google Scholar] [CrossRef]
- Hawkes, H.E.; Webb, J.E. Geochemistry in Mineral. Exploration; Harper: New York, NY, USA, 1962. [Google Scholar]
- Reimann, C.; de Caritat, P. Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Sci. Total Environ. 2005, 337, 91–107. [Google Scholar] [CrossRef]
- Armiento, G.; Cremisini, C.; Nardi, E.; Pacifico, R. High geochemical background of potentially harmful elements in soils and sediments: Implications for the remediation of contaminated sites. Chem. Ecol. 2011, 27, 131–141. [Google Scholar] [CrossRef]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Ky Phung, N. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- Karim, Z.; Qureshi, B.A.; Mumtaz, M. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol. Indic. 2015, 48, 358–364. [Google Scholar] [CrossRef]
- Petra, S.; Ulf, N.; Nicole, G. Determination of the geogenic metal background in surface water: Benchmarking methodology for the rivers of Saxony-Anhalt, Germany. Water 2017, 9, 75–92. [Google Scholar]
- Fisher, S.G. Organic matter processing by a stream-segment ecosystem: Fort River. Massachusetts, U.S.A. Int. Rev. Hydrobiol. 2015, 62, 701–727. [Google Scholar] [CrossRef]
- Hedges, J.I.; Turin, H.; Ertel, J.R. Sources and distributions of sedimentary organic matter in the Columbia River drainage basin, Washington and Oregon. Limnol. Oceanogr. 1984, 29, 35–46. [Google Scholar] [CrossRef]
- Xu, H.; Guo, L. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters. Water Res. 2017, 117, 115–126. [Google Scholar] [CrossRef]
- Sinclair, A.J. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 1974, 3, 129–149. [Google Scholar] [CrossRef]
- Nakic, Z.; Posavec, K.; Bacani, A. A visual basic spreadsheet macro for geochemical background analysis. Groundwater 2007, 45, 642–647. [Google Scholar] [CrossRef]
- CCME. Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality Index 1.0, Technical Report. In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 1999. [Google Scholar]
- CCME. Behavioural Study and Sensitivity Analysis. Statistics Canada, Ottawa. Available online: http://www.statcan.gc.ca/pub/16-001-m/16-001-m2007003-eng.htm (accessed on 29 July 2011).
- De Rosemond, S.; Duro, D.C.; Dubé, M. Comparative analysis of regional water quality in Canada using the Water Quality Index. Environ. Monit. Assess. 2009, 156, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Hurley, T.; Sadiq, R.; Mazumder, A. Adaptation and evaluation of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for use as an effective tool to characterize drinking source water quality. Water Res. 2012, 46, 3544–3552. [Google Scholar] [CrossRef]
- Khan, A.A.; Paterson, R.; Khan, H. Modification and application of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for the communication of drinking water quality data in Newfoundland and Labrador. Water Qual. Res. J. Can. 2004, 39, 285–293. [Google Scholar] [CrossRef]
- Lumb, A.; Halliwell, D.; Sharma, T. Application of the CCME Water Quality Index to monitor water quality: A case of the Mackenzie River Basin, Canada. Environ. Monit. Assess. 2006, 113, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, G.; Wan, R.; Zhang, Y.; Wang, R.R.; Zhang, Y.H.; Dai, X.; Chen, Y.W. Spatiotemporal variability in the water quality of Poyang Lake and its associated responses to hydrological conditions. Water 2016, 8, 296. [Google Scholar] [CrossRef]
- Gong, M.; Wang, Z.; Yuan, Z. Distribution characteristics of DO and COD in the waters near Qinshan Nuclear Power Station. Donghai Mar. Sci. 1991, 9, 27–33. [Google Scholar]
- Valente, J.P.S.; Padilha, P.M.; Silva, A.M.M. Dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as pollution parameters in the Lavapés/Botucatu—SP brook. Ecletica Quim. 1997, 22, 752. [Google Scholar]
- Changhoon, L.; Hyunsang, S.; Kang, K.H. Chemical and spectroscopic characterization of peat moss and its different humic fractions (humin, humic acid and fulvic acid). J. Soil Groundw. Environ. 2004, 9, 42–51. [Google Scholar]
- Peiris, R.H.; Budman, H.; Moresoli, C.; Legge, R.L. Identification of humic acid-like and fulvic acid-like natural organic matter in river water using fluorescence spectroscopy. Water Sci. Technol. 2011, 63, 2427–2433. [Google Scholar] [CrossRef]
- Xu, F.; Liu, Z.; Yuan, S.; Zhang, X.; Sun, Z.; Xu, F.; Jiang, Z.; Li, A.; Yin, X. Environmental background values of trace elements in sediments from the Jiaozhou Bay catchment, Qingdao, China. Mar. Pollut. Bull. 2017, 121, 367–371. [Google Scholar] [CrossRef]
- Wang, S.; Luo, K.; Ni, R.; Tian, Y.; Gao, X. Assessment of elemental background values and their relation with lifespan indicators: A comparative study of Jining in Shandong Province and Guanzhong area in Shaanxi Province, northern China. Sci. Total Environ. 2017, 595, 315–324. [Google Scholar] [CrossRef]
- Fernandes, A.R.; Santos, E.S.; Braz, A.M.D.S.; Birani, S.M.; Alleoni, L.R. Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon, Brazil. J. Geochem. Explor. 2018, 190, 453–463. [Google Scholar] [CrossRef]
- Gazzaz, N.M.; Yusoff, M.K.; Ramli, M.F.; Juahir, H.; Aris, A.Z. Artificial neural network modeling of the water quality index using land use areas as predictors. Water Environ. Res. 2015, 87, 99–112. [Google Scholar] [CrossRef]
- Haidary, A.; Amiri, B.J.; Adamowski, J.; Fohrer, N.; Nakane, K. Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resour. Manag. 2013, 27, 2217–2229. [Google Scholar] [CrossRef]
- Maloney, K.O.; Weller, D.E. Anthropogenic disturbance and streams: Land use and land-use change affect stream ecosystems via multiple pathways. Freshw. Biol. 2011, 56, 611–626. [Google Scholar] [CrossRef]
- Mijin, S.; Fouad, J.; Raghavan, S.; Jeong, J. Evaluating the impact of low impact development (LID) practices on water quantity and quality under different development designs using SWAT. Water 2017, 9, 193. [Google Scholar]
- Walsh, G.W.; Wepener, V. The influence of land use on water quality and diatom community structures in urban and agriculturally stressed rivers. Water SA 2012, 35, 579–594. [Google Scholar] [CrossRef]
- Fei, L.; Huang, J.; Zeng, G.; Yuan, X.Z.; Li, X.; Liang, J.; Wang, X.; Tang, X.; Bai, B. Spatial risk assessment and sources identification of heavy metals in surface sediments from Dongting Lake, Middle China. J. Geochem. Explor. 2013, 132, 75–83. [Google Scholar]
- Preziosi, E.; Giuliano, G.; Vivona, R. Natural background levels and threshold values derivation for naturally As, V and F rich groundwater bodies: A methodological case study in Central Italy. Environ. Earth Sci. 2010, 61, 885–897. [Google Scholar] [CrossRef]
- Muangthong, S.; Shrestha, S. Assessment of surface water quality using multivariate statistical techniques: Case study of the Nampong River and Songkhram River, Thailand. Environ. Monit. Assess. 2015, 187, 548. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Gökot, B.; Bekleyen, A.; Sen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Delpla, I.; Baurès, E.; Jung, A.V.; Thomas, O. Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas. Sci. Total Environ. 2011, 409, 1683–1688. [Google Scholar] [CrossRef]
- Marttila, H.; Klove, B. Managing runoff, water quality and erosion in peatland forestry by peak runoff control. Ecol. Eng. 2010, 36, 900–911. [Google Scholar] [CrossRef]
- Piirainen, S.; Domisch, T.; Moilanen, M.; Arola, M. Long-term effects of ash fertilization on runoff water quality from drained peatland forests. For. Ecol. Manag. 2013, 287, 53–66. [Google Scholar] [CrossRef]
Code | Reserve | Area (km2) | Proportion of Land Use Area (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Farmland | Woodland | Grassland | Water | Town | Country Side | Industrial Construction Land | Unused Land | |||
A1 | Nanweng | 2262.3 | 98.4 | 1 | 0.2 | 0.4 | ||||
A2 | Nengjiang | 14,990.6 | 6.2 | 65.4 | 5 | 0.4 | 0.1 | 0.1 | 22.8 | |
A3 | Nanbei | 2516.5 | 29.1 | 65.3 | 5.3 | 0 | 0.2 | 0.1 | ||
A4 | Wuyuer | 227.32 | 42 | 33.1 | 7.2 | 0.6 | 17.1 | |||
A5 | Tongken | 81.99 | 14.9 | 80.3 | 0.6 | 0 | 4.2 | |||
A6 | Tangwang | 5122.5 | 1.5 | 91.8 | 4.8 | 0.3 | 0.5 | 0.6 | 0.1 | 0.4 |
A7 | Wuytong | 1703.3 | 6.3 | 84.3 | 0.5 | 0.4 | 0.1 | 8.4 | ||
A8 | Heli | 145.5 | 3.4 | 76.2 | 19.8 | 0.3 | 0.2 | 0.1 | ||
A9 | Yichun | 218.7 | 0.5 | 92.6 | 0.2 | 0.3 | 0.2 | 6.2 | ||
A10 | Hulan | 470.7 | 5.6 | 91.8 | 0.9 | 0.2 | 0.7 | 0.8 | ||
A11 | Bielahong | 3710.8 | 70 | 3.7 | 7.3 | 0.2 | 0.4 | 18.4 | ||
A12 | Anbang | 143.1 | 1.9 | 97.3 | 0.5 | 0.3 | ||||
A13 | Woken | 1303.1 | 32.3 | 55.7 | 2.9 | 0.7 | 8.4 | |||
A14 | Naoli | 1328.7 | 46.9 | 42.7 | 4.6 | 0.9 | 4.9 | |||
A15 | Qihulin | 134.4 | 1.9 | 96.4 | 1.3 | 0.1 | 0.3 | |||
A16 | Ashi | 1161.3 | 14.6 | 79.7 | 0.4 | 2.7 | 0.2 | 1 | 0.2 | 1.2 |
A17 | Mayi | 701.5 | 24.7 | 72 | 1.6 | 0.1 | 1.5 | 0.1 | ||
A18 | Mangmiu | 1628.3 | 12.9 | 82 | 4 | 0.1 | 0.9 | 0.1 | ||
A19 | Lalin | 927.6 | 6 | 91.3 | 0.8 | 1.3 | 0.5 | 0.1 | ||
A20 | Hailang | 1587.6 | 1.4 | 97.2 | 1.1 | 0.2 | 0.1 | |||
A21 | Xiaosuifen | 556.1 | 3.1 | 91.6 | 4.5 | 0.2 | 0.6 | |||
A22 | Muling | 463.6 | 4.1 | 88.5 | 5.9 | 1.3 | 0.2 |
Years | Variables | Failed Variables | F1 (%) | F2 (%) | F3 (%) | CCME WQI Values |
---|---|---|---|---|---|---|
2011 | 17 | 6 | 33.33 | 10.56 | 7.83 | 79.31 |
2012 | 17 | 5 | 27.78 | 11.08 | 14.90 | 80.71 |
2013 | 17 | 6 | 33.33 | 11.49 | 14.52 | 77.98 |
2014 | 17 | 5 | 27.78 | 11.41 | 15.21 | 80.57 |
2015 | 17 | 7 | 38.89 | 9.55 | 12.75 | 75.74 |
2016 | 17 | 7 | 38.89 | 11.14 | 13.83 | 75.32 |
Variable | Grouping of Variables | Total Number of Monitoring Data Entries (N) | Asymptotic Saliency (p) |
---|---|---|---|
COD | 2011–2016 | 988 | 0.083 |
CODMn | 988 | 0.093 | |
NH3-N | 984 | 0.008 | |
COD | A1–A22 | 988 | 0.00 |
CODMn | 988 | 0.00 | |
NH3-N | 984 | 0.00 |
Study Area | Single Index Recognition | Limiting Factor | Synthetic Index | Complete Background Area | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 4 | 3 | 5 | Single Index Recognition | 6 | 7 | 8 | Limiting Factor | Score | Synthetic Index | |||
A1 | Nanweng | I | I | I | I | I | 1 | 1 | √ | |||||
A2 | Nengjiang | I | II | I | I | II | 0.81 | 0.81 | √ | |||||
A3 | Nanbei | I | II | II | II | I | 0.75 | |||||||
A4 | Wuyuer | I | III | II | III | I | Poor background properties | 0.62 | ||||||
A5 | Tongken | I | II | I | II | I | 0.78 | |||||||
A6 | Tangwang | II | I | II | I | II | × | × | Veto power | 0.83 | 0.83 | |||
A7 | Wuytong | I | II | II | I | I | 0.83 | 0.83 | √ | |||||
A8 | Heli | I | I | I | I | I | 0.96 | 0.96 | √ | |||||
A9 | Yichun | I | I | I | I | I | 0.94 | 0.94 | √ | |||||
A10 | Hulan | I | I | II | I | I | 0.78 | √ | ||||||
A11 | Bielahong | I | III | II | III | I | Poor background properties | × | Veto power | 0.21 | ||||
A12 | Anbang | I | I | II | I | I | 0.87 | 0.87 | √ | |||||
A13 | Woken | I | III | II | III | I | Poor background properties | × | Veto power | 0.6 | ||||
A14 | Naoli | II | III | II | III | I | Poor background properties | 0.49 | ||||||
A15 | Qihulin | I | I | II | I | I | 0.91 | 0.91 | √ | |||||
A16 | Ashi | III | II | III | II | III | Poor background properties | × | × | Veto power | 0.53 | |||
A17 | Mayi | II | II | II | II | I | 0.54 | |||||||
A18 | Mangmiu | II | II | II | II | I | 0.72 | |||||||
A19 | Lalin | II | I | II | I | I | × | Veto power | 0.81 | 0.81 | ||||
A20 | Hailang | I | I | II | I | I | 0.92 | 0.92 | √ | |||||
A21 | Xiaosuifen | II | I | II | I | I | 0.86 | 0.86 | √ | |||||
A22 | Muling | I | I | I | I | I | × | Veto power | 0.89 | 0.89 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, M.; Du, X.; Peng, W.; Zhang, S.; Yan, L. A Revised Method of Surface Water Quality Evaluation Based on Background Values and Its Application to Samples Collected in Heilongjiang Province, China. Water 2019, 11, 1057. https://doi.org/10.3390/w11051057
Duan M, Du X, Peng W, Zhang S, Yan L. A Revised Method of Surface Water Quality Evaluation Based on Background Values and Its Application to Samples Collected in Heilongjiang Province, China. Water. 2019; 11(5):1057. https://doi.org/10.3390/w11051057
Chicago/Turabian StyleDuan, Maoqing, Xia Du, Wenqi Peng, Shijie Zhang, and Linqing Yan. 2019. "A Revised Method of Surface Water Quality Evaluation Based on Background Values and Its Application to Samples Collected in Heilongjiang Province, China" Water 11, no. 5: 1057. https://doi.org/10.3390/w11051057