The Upwelling Groundwater Flow in the Karst Area of Grassano-Telese Springs (Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
3. Study Area
4. Results
4.1. The Sinkholes of Montepugliano Relief and Telese Plain
4.2. Groundwater Monitoring
4.3. Groundwater Modeling with Modflow Numerical Code
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- White, W.B. Geomorphology and Hydrology of Karst Terrains; Oxford University Press: Oxford, NY, USA, 1988; p. 464. [Google Scholar]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007; p. 562. [Google Scholar]
- Stevanovic, Z.; Kresic, N. Groundwater Hydrology of Springs; Butterworth Heinemann-Elsevier: Oxford, UK, 2009; p. 592. [Google Scholar]
- Fiorillo, F.; Esposito, L.; Testa, G.; Ciarcia, S.; Pagnozzi, M. The Upwelling Water Flux Feeding Springs: Hydrogeological and Hydraulic Features. Water 2018, 10, 501. [Google Scholar] [CrossRef]
- Hubbert, M.K. The theory of groundwater motion. J. Geol. 1940, 48, 785–944. [Google Scholar] [CrossRef]
- Toth, J. A theoretical analyses groundwater flow in small drainage basins. J. Geophys. Res. 1963, 68, 4795–4812. [Google Scholar] [CrossRef]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; John Wiley & Sons: Singapore, 1990; p. 824. [Google Scholar]
- Chiang, W.H.; Kinzelbach, W. Processing MODFLOW. A Simulation System for Modelling Groundwater Flow and Pollution; Springer: Hamburg, Germany, 1998; p. 342. [Google Scholar]
- Chiang, W.H. 3D-Groundwater Modeling with PMWIN: A Simulation System for Modeling Groundwater Flow and Transport Processes, 2nd ed.; Springer: Berlin, Germany, 2005; p. 397. [Google Scholar]
- Fioreze, M.; Mancuso, M.A. MODFLOW and MODPATH for hydrodynamic simulation of porous media in horizontal subsurface flow constructed wetlands: A tool for design criteria. Ecol. Eng. 2019, 130, 45–52. [Google Scholar] [CrossRef]
- Jankovic, I.; Maghrebi, M.; Fiori, A.; Dagan, G. When good statistical models of aquifer heterogeneity go right: The impact of aquifer permeability structures on 3D flow and transport. Adv. Water Resour. 2017, 100, 199–211. [Google Scholar] [CrossRef]
- Gauthier, V. L’Idrografia dell’Agro Telesino. Boll. Soc. Nat. Napoli 1910, 24, 9–17. (In Italian) [Google Scholar]
- Civita, M. Valutazione analitica delle riserve in acque sotterranee alimentanti alcune tra le principali sorgenti del massiccio del Matese (Italia meridionale). Mem. Soc. Nat. Napoli 1969, 78, 133–163. (In Italian) [Google Scholar]
- Celico, P. Schema idrogeologico dell’Appennino carbonatico centro-meridionale. Memorie e Note Istituto di Geologia Applicata 1978, 14, 1–43. (In Italian) [Google Scholar]
- Corniello, A.; De Riso, R. Idrogeologia e idrochimica delle sorgenti dell’Agro Telesino. Geologia applicata e Idrogeologia 1986, 21, 53–84. (In Italian) [Google Scholar]
- Celico, P.; Celico, F.; Cacciuni, A. Experimental hydrogeological cartography of the Monti del Matese and Monte Totila districts (Campania-Molise, Italy). Memorie Descrittive Carta Geologica d’Italia 2008, LXXXI, 115–136. (In Italian) [Google Scholar]
- Fiorillo, F.; Pagnozzi, M. Recharge process of Matese karst massif (southern Italy). Environ. Earth Sci. 2015, 74, 7557–7570. [Google Scholar] [CrossRef]
- Robustini, P.; Corrado, S.; Di Bucci, D.; Calabro‘, R.A.; Tornaghi, M. Comparison between contractional deformation styles in the Matese Mountain: Implications for shortening rates in the Apennines. Boll. Soc. Geol. Ital. 2003, 122, 295–306. [Google Scholar]
- De Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E. New constrains on the pyroclastic eruptive hystory of the Campanian volcanic Plain (Italy). Mineral. Petrol. 2001, 73, 47–65. [Google Scholar] [CrossRef]
- Basso, A.; Bruno, E.; Parise, M.; Pepe, M. Morphometric analysis of sinkholes in a karst coastal area of the southern Apulia (Italy). Environ. Earth Sci. 2013, 70, 2545–2559. [Google Scholar] [CrossRef]
- Šegina, E.; Benac, Č.; Rubinić, J.; Knez, M. Morphometric analyses of dolines: The problem of delineation and calculation of basic parameters. Acta Carsol. 2018, 47, 23–33. [Google Scholar] [CrossRef]
- Bondesan, A.; Meneghel, M.; Sauro, U. Morphometric analysis of dolines. Int. J. Speleol. 1992, 21, 1–55. [Google Scholar] [CrossRef] [Green Version]
- Rossi, D. Sulle acque minerali di Telese e sullo Stabilimento dei Bagni quivi costruito. Ann. Civ. Regno delle due Sicilie 1857, 61. (In Italian) [Google Scholar]
- Ricciardi, L. Telese: Ricordi e speranze; Tipografia Nazzareno Borrelli: Benevento, Italy, 1927. [Google Scholar]
- Del Prete, S.; De Riso, R.; Santo, A. Primo contributo sui sinkholes di origine naturale in Campania. In Proceedings of the Atti Conv. “Stato dell’arte sullo studio dei fenomeni di sinkholes e ruolo delle amministrazioni statali locali nel governo del territorio”, Rome, Italy, 20–21 May 2004; APAT: Rome, Italy; pp. 361–376. [Google Scholar]
- Del Prete, S.; Di Crescenzo, G.; Santo, A. I sinkhole dell’appennino campano: Stato delle conoscenze. In Proceedings of the Atti 2° Workshop Internazionale sui sinkhole, I sinkhole. Gli sprofondamenti catastrofici nell’ambiente naturale ed in quello antropizzato, Rome, Italy, 3–4 December 2009; ISPRA-Servizio Geologico d’Italia: Rome, Italy; pp. 283–298. [Google Scholar]
- Porfido, S.; Esposito, E.; Vittori, E.; Tranfaglia, G.; Micheti, A.M.; Blumetti, M.; Ferreli, L.; Guerrieri, L.; Serva, L. Areal distribution of round effects induced by strong earthquakes in southern Apennines (Italy). Surv. Geophys. 2002, 23, 529–562. [Google Scholar] [CrossRef]
- Calcaterra, D.; Esposito, A.; Fuschini, V.; Galluccio, F.; Giulivo, I.; Nardò, S.; Russo, F.; Terranova, C. L’utilizzo della tecnica Psinsar™ per l’individuazione ed il monitoraggio di sinkholes in aree urbanizzate della Campania: I casi di Telese Terme (BN) e Sarno (SA). In 2° Workshop “I sinkholes. Gli sprofondamenti catastrofici nell’ambiente naturale ed in quello antropizzato”; ISPRA-Servizio Geologico d’Italia: Rome, Italy; pp. 931–948.
- Tharp, T.M. The engineering geology and hydrogeology of karst terraines. In Proceedings of the 6th Multidisciplinary Conference on Sinkholes and the Engineering and the Environmental Impacts of Karst, Springfield, MO, USA, 6–9 April 1997; pp. 29–36. [Google Scholar]
- Nisio, S.; Graciotti, R.; Vita, L. I fenomeni di sinkholes in Italia: Terminologia, meccanismi genetici e problematiche aperte. In Atti Con. Stato dell’arte sullo studio dei fenomeni di sinkholes e ruolo delle amministrazioni statali e locali nel governo del territorio; APAT: Rome, Italy, 2004; pp. 557–571. [Google Scholar]
- Waltham, T.; Bell, F.; Culshaw, M. Sinkholes and Subsidence: Karst and Cavernous Rock in Engineering and Construction; Springer: Berlin/Heidelberg, Germany, 2005; p. 382. [Google Scholar]
- De Waele, J.; Gutiérrez, F.; Parise, M.; Plan, L. Geomorphology and natural hazards in karst areas: A review. Geomorphology 2011, 134, 1–8. [Google Scholar] [CrossRef]
- Fiorillo, F.; Esposito, L.; Pagnozzi, M.; Ciarcia, S.; Testa, G. Karst springs of Apennines typified by upwelling flux “Sorgenti carsiche dell’Appennino interessate da flusso ascendente”. Acque Sotterranee—Italian J. Groundwater 2018, 7, 21–30. [Google Scholar]
- Lancia, M.; Saroli, M.; Petitta, M. A double scale methodology to investigate flow in karst fractured media via numerical analysis: The Cassino plain case study (Central Apennine, Italy). Geofluids 2018. [Google Scholar] [CrossRef]
- Civita, M. Idrogeologia applicate e ambientale; Casa Editrice Ambrosiana: Milano, Italy, 2009; p. 794. [Google Scholar]
- Palmer, A.N. Sulfuric acid caves: Morphology and evolution. Treatise on Geomorphology. Karst Geomorphol. 2013, 6, 241–257. [Google Scholar]
- Palmer, A.N. Sulfuric acid vs. epigenic carbonic acid in cave origin and morphology. In Proceedings of the Deep Karst: Origins, Resources, and Management of Hypogene Karst, Carlsbad, NM, USA, 11–14 April 2016; pp. 7–15. [Google Scholar]
- Frumkin, A.; Zaidner, Y.; Na’aman, I.; Tsatskin, A.; Porat, N.; Vulfson, L. Sagging and collapse sinkholes over hypogenic hydrothermal karst in carbonate terrain. Geomorphology 2015, 229, 45–57. [Google Scholar] [CrossRef]
- Galdenzi, S.; Cocchioni, M.; Morichetti, L.; Amici, V.; Scuri, S. Sulfidic ground-water chemistry in the Frasassi caves, Italy. J. Cave Karst Stud. 2008, 70, 94–107. [Google Scholar]
- Harabaglia, P.; Mongelli, G.; Paternoster, M. A Geochemical Survey of the Telese Hypothermal Springs, Southern Italy: Sulfate Anomalies Induced by Crustal Deformation. Environ. Geosci. 2002, 9, 89–101. [Google Scholar] [CrossRef]
- Fiorillo, F.; Petitta, M.; Preziosi, E.; Rusi, S.; Esposito, L.; Tallini, M. Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environ. Earth Sci. 2015, 74, 153–172. [Google Scholar] [CrossRef]
- Király, L. Karstification and groundwater flow. In Evolution of Karst: From Prekarst to Cessation; Gabrovšek, F., Ed.; ZRC Publishing: Ljubljana, Slovenia, 2002; pp. 155–190. [Google Scholar]
- Palmer, A.N.; Audra, P. Patterns of caves. In Encyclopedia of Cave and Karst Science Fitzroy Dear-Born; Gunn, J., Ed.; Taylor and Francis Group: London, UK, 2004; pp. 573–574. [Google Scholar]
Id | Name | Max Diameter (m) | PS (m) | Area (m2) | PCC (m) | IC = PCC/PS | Deepest Point (m a.s.l.) | Highest Point (m a.s.l.) | Depth (m) |
---|---|---|---|---|---|---|---|---|---|
1 | Telese Lake | 291.5 | 832.0 | 51,878.9 | 915.3 | 1.10 | - | 54.1 | 26.0 |
2 | - | 27.0 | 77.5 | 459.5 | 84.7 | 1.09 | - | 56.7 | <5 |
3 | - | 54.5 | 153.3 | 1799.0 | 171.2 | 1.12 | - | 56.8 | - |
9 | Via Udine sinkhole | 25.1 | 75.5 | 447.6 | 79.7 | 1.06 | 47.2 | 53.2 | 6.0 |
10 | Tre Colori Lake | 52.0 | 138.6 | 1282.0 | 163.2 | 1.18 | - | 54.2 | <5 |
Id | Name | Max Diameter (m) | PS (m) | Area (m2) | PCC (m) | IC = PCC/PS | Deepest Point (m a.s.l.) | Highest Point (m a.s.l.) | Depth (m) |
---|---|---|---|---|---|---|---|---|---|
12 | - | 204.4 | 580.7 | 24,700.8 | 641.9 | 1.11 | 88.2 | 150.6 | 62.4 |
13 | - | 98.3 | 283.7 | 6270.2 | 308.7 | 1.09 | 139.0 | 157.4 | 18.4 |
14 | - | 258.4 | 672.3 | 29,278.8 | 811.5 | 1.21 | 134.3 | 157.4 | 23.1 |
15 | - | 99.1 | 282.9 | 6132.4 | 311.2 | 1.10 | 97.3 | 140.5 | 43.3 |
16 | - | 179.1 | 499.6 | 17,768.1 | 562.5 | 1.13 | 138.9 | 159.9 | 21.0 |
17 | - | 114.7 | 345.2 | 9181.3 | 362.5 | 1.05 | 142.2 | 171.5 | 29.3 |
18 | - | 153.5 | 443.3 | 14,976.4 | 482.0 | 1.09 | 147.6 | 182.1 | 34.5 |
19 | - | 126.6 | 349.1 | 8477.6 | 397.6 | 1.14 | 91.4 | 117.5 | 26.1 |
20 | - | - | - | - | - | - | 85.0 | 125.0 | 40.0 |
21 | Doline Acqua | 121.8 | 358.2 | 9711.3 | 382.4 | 1.07 | 106.4 | 164.9 | 58.5 |
22 | Dolina Mele | 145.0 | 434.6 | 11,387.6 | 458.5 | 1.05 | 110.7 | 155.2 | 44.4 |
23 | Dolina Mele | 98.5 | 300.1 | 6130.0 | 319.6 | 1.06 | 114.1 | 167.1 | 53.0 |
24 | Dolina Grande | 290.2 | 888.9 | 56,417.0 | 931.0 | 1.05 | 101.3 | 188.4 | 87.1 |
25 | - | 79.1 | 221.3 | 3779.4 | 248.5 | 1.12 | 135.9 | 175.4 | 39.6 |
26 | Dolina Falco | 141.2 | 418.4 | 12,383.6 | 443.9 | 1.06 | 120.3 | 177.2 | 56.9 |
27 | - | 92.3 | 269.2 | 5656.3 | 290.9 | 1.08 | 95.3 | 128.3 | 33.0 |
28 | - | - | - | - | - | - | 130.0 | 134.0 | 4.0 |
29 | Dolina Caprifico | 194.4 | 578.8 | 26,247.6 | 610.6 | 1.05 | 129.7 | 206.8 | 77.1 |
30 | Dolina Rosette | 122.6 | 352.3 | 8881.7 | 384.9 | 1.09 | 142.0 | 196.8 | 54.8 |
31 | - | 23.6 | 66.4 | 322.9 | 74.0 | 1.11 | 172.4 | 181.1 | 8.7 |
32 | Dolina Profonda | 239.3 | 737.9 | 33,001.7 | 761.8 | 1.03 | 78.1 | 177.0 | 98.9 |
33 | 55.2 | 164.6 | 2098.9 | 176.1 | 1.07 | 83.2 | 112.4 | 29.2 |
Spring Name | Type and Location | pH | T (°C) | E.C. (μS/cm) | Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | NH4+ (mg/L) | Cl− (mg/L) | HCO3− (mg/L) | SO42− (mg/L) | NO3− (mg/L) | CO2 (mg/L) | H2S (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jacobelli1 | A 1 | 6.0 | 16.9 | 1670 | - | - | - | - | - | - | - | - | - | - | - |
S. Stefano2a | A 4 | 6.3 | 20.5 | 1838 | 59.8 | 8.4 | 253.3 | 59.48 | 0.45 | 78.9 | 1393.0 | 12.98 | 3.0 | - | 3.3 |
S. Stefano2c | A 4 | 6.2 | 18.5 | 1669 | 57.4 | 9.4 | 356 | 52.7 | <0.02 | 79.3 | 1324.0 | 31.5 | 1.0 | 638.0 | 10.6 |
S. Stefano4 | A 4 | 6.5 | 20.0 | 2028 | 119.8 | 21.1 | 390.8 | 57.1 | - | 158.1 | 1526.1 | 25.0 | - | 786 | 15.3 |
Pera2a | A 2 | 6.3 | 20.7 | 2440 | 115.3 | 14.6 | 410.0 | 86.0 | - | 105.6 | 1617.0 | 24.5 | - | - | 2.8 |
Goccioloni2b | A 2 | 6.3 | 19.5 | 2187 | 91.0 | 16.0 | 628 | 82.0 | <0.02 | 121.0 | 2049.0 | 18.0 | 3.0 | 1268.0 | 9.8 |
Diana2a | A 2 | 6.3 | 21.3 | 2650 | 122.0 | 19.0 | 359.0 | 151.0 | - | 172.0 | 1891.0 | 41.0 | - | - | 11.0 |
Diana2c | A 2 | 6.0 | 20.1 | 2518 | 126.0 | 18.4 | 473.0 | 79.5 | <0.02 | 181.0 | 1886.0 | 61.4 | 1.0 | 672.0 | 12.7 |
Bouvette2b | A 2 | 6.3 | 19.3 | 2264 | 85.0 | 14.6 | 539.0 | 71.0 | 0.2 | 131.0 | 1833.0 | 27.3 | 2.0 | 988.0 | 8.9 |
Bouvette4 | A 2 | 6.4 | 21.0 | 2381 | 110.4 | 16.0 | 358.7 | 118.0 | - | 192.8 | 1637.2 | 28.3 | - | 716.0 | 18.3 |
Lucia3 | A 2 | 6.2 | 20.1 | 2567 | 100.7 | 15.0 | 423.6 | 68.4 | - | 152.1 | 1617.6 | 35.8 | 0.3 | - | - |
Tre Colori1 | A 4 | 6.0 | 16.2 | 1830 | - | - | - | - | - | - | - | - | - | - | - |
Cerro4 | B 2 | 6.3 | 14.0 | 1340 | 16.1 | 3.5 | 272.5 | 63.4 | - | 56.0 | 976.3 | 26.4 | - | 400.0 | 2.0 |
Grassano1 | B 3 | 6.4 | 11.9 | 1110 | - | - | - | - | - | - | - | - | - | - | - |
Grassano2a | B 3 | 7.0 | - | 761 | 15.2 | 2.2 | 181.7 | 28.2 | - | 28.6 | 701.3 | 8.5 | 1.7 | - | - |
Grassano4 | B 3 | 6.5 | 11.0 | 818 | 7.6 | 2.2 | 160.3 | 23.1 | - | 30.1 | 568.1 | 6.2 | - | 116.0 | 0.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorillo, F.; Leone, G.; Pagnozzi, M.; Catani, V.; Testa, G.; Esposito, L. The Upwelling Groundwater Flow in the Karst Area of Grassano-Telese Springs (Southern Italy). Water 2019, 11, 872. https://doi.org/10.3390/w11050872
Fiorillo F, Leone G, Pagnozzi M, Catani V, Testa G, Esposito L. The Upwelling Groundwater Flow in the Karst Area of Grassano-Telese Springs (Southern Italy). Water. 2019; 11(5):872. https://doi.org/10.3390/w11050872
Chicago/Turabian StyleFiorillo, Francesco, Guido Leone, Mauro Pagnozzi, Vittorio Catani, Giovanni Testa, and Libera Esposito. 2019. "The Upwelling Groundwater Flow in the Karst Area of Grassano-Telese Springs (Southern Italy)" Water 11, no. 5: 872. https://doi.org/10.3390/w11050872
APA StyleFiorillo, F., Leone, G., Pagnozzi, M., Catani, V., Testa, G., & Esposito, L. (2019). The Upwelling Groundwater Flow in the Karst Area of Grassano-Telese Springs (Southern Italy). Water, 11(5), 872. https://doi.org/10.3390/w11050872