Evaluating the Hydrologic Benefits of a Bioswale in Brunswick County, North Carolina (NC), USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descritption
2.1.1. Watershed Characteristics
2.1.2. Bioswale Design
2.2. Hydrologic Data Collection
2.3. Data Analysis
2.4. Analysis for Bioswale Degradation
3. Results and Discussion
3.1. Storm Event Characteristics
3.2. Internal Water Level
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA,, 2014; Available online: https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf (accessed on 1 April 2018).
- Morisawa, M.; LaFlure, E. Hydraulic geometry, stream equilibrium and urbanization. In Adjustments of the Fluvial Systems, Proceedings of the 10th Annual Geomorphology Symposium Series, Binghampton, New York, NY, USA, 21–22 September 1979; Rhodes, D.D., Williams, G.P., Eds.; Kendall/Hunt Publishing Co., Inc.: Dubuque, IA, USA, 1979. [Google Scholar]
- Arnold, C.L.; Boison, P.J.; Patton, P.C. Sawmill Brook: An example of rapid geomorphic change related to urbanization. J. Geol. 1982, 90, 155–166. [Google Scholar] [CrossRef]
- Bannerman, R.T.; Owens, D.W.; Dodds, R.B.; Hornewer, N.J. Sources of pollutants in Wisconsin stormwater. Water Sci. Technol. 1993, 28, 241–259. [Google Scholar] [CrossRef]
- Brabec, E.; Schulte, S.; Richards, P.L. Impervious surfaces and water quality: A review of current literature and its implications for watershed planning. J. Plan. Lit. 2002, 16, 499–514. [Google Scholar] [CrossRef]
- Todeschinie, S. Hydrologic and Environmental Impacts of Imperviousness in an Industrial Catchment of Northern Italy. J. Hydrol. Eng. 2016, 21, 05016013. [Google Scholar] [CrossRef]
- ASCE. Aspects of hydrologic effects of urbanization. J. Hydr. Eng. Div. ASCE 1975, 101, 449–468. [Google Scholar]
- Codner, G.P.; Laurenson, E.M.; Mein, R.G. Hydrologic effects of urbanization: A case study. In Proceedings of the Hydrology and Water Resources Symposium, Canberra, Australia, 1–3 February 1988; pp. 201–205. [Google Scholar]
- Mein, R.G.; Goyen, A.G. Urban Runoff; Civil Engineering Transactions, Institution of Engineers: Canberra, Australia, 1988; pp. 225–238.
- Schueler, T. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs; Metropolitan Washington Council of Governments: Washington, DC, USA, 1987.
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Holman-Dodds, J.K.; Bradley, A.A.; Potter, K.W. Evaluation of hydrologic benefits of infiltration based urban storm water management. J. Am. Water Resour. Assoc. 2003, 39, 205–215. [Google Scholar] [CrossRef]
- Rushton, B.T. Low-impact parking lot design reduces runoff and pollutants loads. J. Water Resour. Plan. Manag. 2001, 127, 172–179. [Google Scholar] [CrossRef]
- Dunnett, N.; Clayden, A. Rain gardens. In Managing Water Sustainably in the Garden and Designed Landscape; Timber: Portland, OR, USA, 2007. [Google Scholar]
- Knight, E.M.P.; Hunt, W.F.; Winston, R.J. Side-by-side evaluation of four level spreader-vegetated filter strips and a swale in eastern North Carolina. J. Soil Water Conserv. 2013, 68, 60–72. [Google Scholar] [CrossRef]
- Hunt, W.F.; Davis, A.P.; Traver, R.G. Meeting hydrologic and water quality goals through targeted bioretention design. J. Environ. Eng. 2012, 138, 698–707. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut. 2005, 167, 123–138. [Google Scholar] [CrossRef]
- University of New Hampshire Stormwater Center (UNHSC). 2005 Data Report; CICEET: Durham, NH, USA, 2006. [Google Scholar]
- Davis, A.P. Field performance of bioretention: Hydrology impacts. J. Hydrol. Eng. 2008, 13, 90–95. [Google Scholar] [CrossRef]
- Hunt, W.; Smith, J.; Jadlocki, S.; Hathaway, J.; Eubanks, P. Pollutant removal and peak flow mitigation by a bioretention cell in Urban Charlotte, N.C. J. Environ. Eng. 2008, 134, 403–408. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Lucke, T.; Nichols, P.W.B. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Sci. Total Environ. 2015, 536, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Winston, R.J.; Powell, J.T.; Hunt, W.F. Retrofitting a grass swale with rock check dams: Hydrologic impacts. Urban Water J. 2018. [Google Scholar] [CrossRef]
- Luell, S.K.; Hunt, W.F.; Winston, R.J. Treating highway bridge deck runoff using bioretention and a swale. In Proceedings of the ASCE 2011 World Environmental and Water Resources Congress, Reston, VA, USA, 22–26 May 2011; pp. 364–374. [Google Scholar]
- Jiang, C.; Li, J.; Li, H.; Li, Y.; Chen, L. Field performance of bioretention systems for runoff quantity regulation and pollutant removal. Water Air Soil Pollut. 2017, 228, 468. [Google Scholar] [CrossRef]
- Barrett, M.E.; Wals, P.M.; Malina, J.F., Jr.; Charbeneau, R.J. Performance of vegetative controls for treating highway runoff. J. Environ. Eng. 1998, 124, 1121–1128. [Google Scholar] [CrossRef]
- Davis, A.P.; Stagge, J.H.; Jamil, E.; Kim, H. Hydraulic performance of grass swales for managing highway runoff. Water Res. 2012, 46, 6775–6786. [Google Scholar] [CrossRef] [PubMed]
- Deletic, A. Modelling of water and sediment transport over grassed areas. J. Hydrol. 2001, 248, 168–182. [Google Scholar] [CrossRef]
- Ackerman, D.; Stein, E. Evaluating the effectiveness of best management practices using dynamic modeling. J. Environ. Eng. 2008, 134, 628–639. [Google Scholar] [CrossRef]
- Barrett, M.E. Comparison of BMP performance using the international BMP database. J. Irrig. Drain. Eng. 2008, 134, 556–561. [Google Scholar] [CrossRef]
- Fassman, E.A.; Liao, M. Monitoring of a series of swales within a stormwater treatment train. In Proceedings of the 32nd Hydrology and Water Resources Symposium, Newcastle, Australia, 30 November–3 December 2009; Engineers Australia: Barton, Australia, 2009; pp. 368–378. [Google Scholar]
- Davis, A.P.; Traver, R.G.; Hunt, W.F.; Lee, R.; Brown, R.A.; Olszewski, J.M. Hydrologic performance of bioretention stormwater control measures. J. Hydrol. Eng. 2012, 17, 604–614. [Google Scholar] [CrossRef]
- Rujner, H.; Leonhardt, G.; Perttu, A.M.; Marsalek, J.; Viklander, M. Advancing green infrastructure design: Field evaluation of grassed urban drainage swales. In Proceedings of the 9th International Conference on Planning and Technologies for Sustainable Management of Water in the City, Lyon, France, 28 June–1 July 2016. [Google Scholar]
- Wu, J.S.; Allan, C.J.; Saunders, W.L.; Evett, J.B. Characterization and pollutant loading estimation for highway runoff. J. Environ. Eng. 1998, 124, 584–592. [Google Scholar] [CrossRef]
- Winston, R.J.; Dorsey, J.D.; Hunt, W.F. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Sci. Total Environ. 2016, 553, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Christianson, R.D.; Barfield, B.J.; Hayes, J.C.; Gasem, K.; Brown, G.O. Modeling effectiveness of bioretention cells for control of stormwater quantity and quality. In Critical Transitions in Water and Environmental Resources Management, Proceedings of the 2004 World Water and Environmental Resources Congress, Salt Lake City, UT, USA, 27 June–1 July 2004; American Society of Civil Engineers: Reston, VA, USA, 2004. [Google Scholar]
- Temple, D.M.; Robinson, K.M.; Ahring, R.M.; Davis, A.G. Stability Design of Grass-lined Open Channels. In Agricultural Handbook, 667; USDA: Washington, DC, USA, 1987. [Google Scholar]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Laboratory study of biological retention for urban stormwater management. Water Environ. Res. 2001, 73, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; McPherson, E.G. Testing a Bioswale to Treat and Reduce Parking lot Runoff; Center for Urban Forest Research, University of California-Davis: Davis, CA, USA, 2009; Available online: https://www.fs.fed.us/psw/topics/urban_forestry/products/psw_cufr761_P47ReportLRes_AC.pdf (accessed on 1 April 2018).
- McLaughlin, J. NYC bioswales pilot project improves stormwater management. Clear Waters 2012, 20–23. [Google Scholar]
- Anderson, B.S.; Phillips, B.M.; Voorhees, J.P.; Siegler, K.; Tjeerdema, R. Bioswales reduce contaminants associated with toxicity in urban storm water. Environ. Toxicol. Chem. 2016, 35, 3124–3134. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). North Carolina Water Quality Assessment Report. 2014. Available online: https://iaspub.epa.gov/waters10/attains_state.control?p_state=NC (accessed on 1 April 2018).
- United States Census Bureau. Resident Population Estimates for the 100 Fastest Growing, U.S. Counties with 10,000 or More Population in 2010: April 1, 2010 to July 1, 2016; Census Bureau Population Division: Washington, DC, USA, 2017. Available online: https://factfinder.census.gov (accessed on 1 April 2018).
- North Carolina Department of Transportation (NCDOT). Standard Specifications—16 Erosion Control and Roadside Development; North Carolina Department of Transportation: Raleigh, NC, USA, 2012. Available online: https://connect.ncdot.gov/resources/Specifications/Pages/2012StandSpecsMan.aspx?Order=SM-16-1610 (accessed on 1 April 2018).
- North Carolina Department of Transportation (NCDOT). Division 10 Materials; North Carolina Department of Transportation: Raleigh, NC, USA, 2016. Available online: https://connect.ncdot.gov/resources/specifications/2006%20specifications%20books/10.%20materials.pdf (accessed on 1 April 2018).
- Brown, R.A.; Hunt, W.F. Underdrain configuration to enhance bioretention exfiltration to reduce pollutant loads. J. Environ. Eng. 2011, 137, 1082–1091. [Google Scholar] [CrossRef]
- Purvis, R.A.; Winston, R.J.; Hunt, W.F.; Lipscomb, B.; Narayanaswamy, K.; McDaniel, A.; Lauffer, M.S.; Libes, S. Evaluating the water quality benefits of a bioswale in Brunswick County, North Carolina (NC), USA. Water 2018, 10, 134. [Google Scholar] [CrossRef]
- North Carolina Department of Environmental Quality (NCDEQ). NCDEQ Stormwater Design Manual: B-Stormwater Calculations; North Carolina Department of Environmental Quality: Raleigh, NC, USA, 2017. Available online: https://files.nc.gov/ncdeq/Energy%20Mineral%20and%20Land%20Resources/Stormwater/BMP%20Manual/B%20%20Stormwater%20Calculations.pdf (accessed on 1 April 2018).
- Onset Computer Corporation. HoBoware Pro. Version 3.7.9; Onset Computer Corporation: Bourne, MA, USA, 2016. [Google Scholar]
- North Carolina State Climate Office. 1971–2000 Climate Normals. 2016. Available online: http://climate.ncsu.edu/cronos/normals.php (accessed on 1 April 2018).
- National Cooperative Highway Research Program (NCHRP). NCHRP Report 565—Evaluation of Best Management Practices for Highway Runoff Control; Transportation Research Board: Washington, DC, USA, 2006; Available online: http://nap.edu/23211 (accessed on 1 April 2018).
Characteristic | Value |
---|---|
Hydraulic conductivity (Ksat) | 2540 mm h−1 |
Moisture content | 30–50% |
Passing 2.0 mm sieve | 95–100% |
Passing 1.0 mm sieve | >80% |
Sand—fine | <5% |
Sand—medium | 10–15% |
Sand—coarse | 15–25% |
Sand—very coarse | 40–45% |
Gravel | 10–20% |
Clay/silt | <2% |
Characteristic | Value |
---|---|
Rip-rap channel length | 6 m |
Rip-rap channel slope | 3% |
Plunge pool length | 4.7 m |
Plunge pool depth | 0.15 m |
Underdrain length | 18.3 m |
Underdrain diameter | 0.2 m |
Media depth | 0.45–0.9 m |
Total length | 42 m |
Surface geometry | Triangular |
Surface side slopes | 4:1 |
Media void storage | 22.7 m3 |
Surface storage | 14.2 m3 |
Event Type | Number of Events | Median (mm) | Mean (mm) | Range (mm) |
---|---|---|---|---|
Inflow a | 39 | 5.6 | 17.8 | 0.76–146 |
Completely infiltrated | 36 | 5.6 | 12.7 | 1.0–86.1 |
Underdrain-only flow | 1 | 4.8 | 4.8 | 4.8 |
Overflow | 2 | 114 | 114 | 82.6–146 |
Event Type | Inlet Peak Flow Rate (L s−1) | Total Inlet Volume (L) | Overflow Peak Flow Rate (L s−1) | Total Overflow Volume (L) | Underdrain Peak Flow Rate (L s−1) | Total Underdrain Volume (L) | Overflow Peak Flow Rate Reduction (%) | Underdrain Peak Flow Rate Reduction (%) |
---|---|---|---|---|---|---|---|---|
All inflow events (n = 39) | 4.05 | 59,211 | 1.2 | 1642 | 0.91 | 1246 | 89 | 91 |
Completely infiltrated (n = 36) | 3.79 | 46,100 | 0 | 0 | 0 | 0 | 100 | 100 |
Underdrain-only flow (n = 1) | 3.00 | 6570 | 0 | 0 | 0.02 | 821 | NA | 99 |
Overflow (n = 2) | 11.6 | 460,574 | 21.9 | 32,055 | 16.5 | 23,899 | NR | NR |
Event Type | Outflow Volume | Inflow Volume Exfiltrated (%) | |
---|---|---|---|
Overflow (%) | Underdrain (%) | ||
All inflow events (n = 39) | 18 | 82 | 99 |
Completely infiltrated (n = 36) | 0 | 0 | 100 |
Underdrain-only flow (n = 1) | 0 | 100 | 99 |
Overflow (n = 2) | 58 | 42 | 85 |
Event | Peak 5 min Intensity (mm/h) | Rainfall Depth (mm) | Rainfall Duration (h) | Antecedent Dry Period (ADP) (days) | % Over of Outflow | % Under of Outflow | % Exfiltrated | Overflow Peak Flow Rate Reduction (%) | Underdrain Peak Flow Rate Reduction (%) | Combined Peak Flow Rate Reduction (%) |
---|---|---|---|---|---|---|---|---|---|---|
60 | 120.4 | 146 | 34.1 | 0.84 | 57 | 43 | 85 | −47 | −20 | −35 |
29 | 112.8 | 13.2 | 0.67 | 0.9 | NA | NA | 100 | 100 | 100 | NA |
31 | 97.5 | 21.1 | 1.7 | 0.89 | NA | NA | 100 | 100 | 100 | NA |
6 | 93.0 | 82.6 | 19.3 | 3.76 | 58 | 42 | 86 | −141 | −69 | −112 |
35 | 73.2 | 27.4 | 9.0 | 6.79 | NA | NA | 100 | 100 | 100 | NA |
67 | 73.2 | 86.1 | 18.8 | 5.19 | NA | NA | 100 | 100 | 100 | NA |
Event | Rainfall Depth (mm) | Peak 5 min Intensity (mm/h) | Rainfall Duration (h) | ADP (days) | % Over of Outflow | % Under of Outflow | % Exfiltrated | Overflow Peak Flow Rate Reduction (%) | Underdrain Peak Flow Rate Reduction (%) | Combined Peak Flow Rate Reduction (%) |
---|---|---|---|---|---|---|---|---|---|---|
60 | 146 | 120.4 | 34.1 | 0.84 | 57 | 43 | 85 | −47 | −20 | −35 |
67 | 86.1 | 73.2 | 18.8 | 5.19 | NA | NA | 100 | 100 | 100 | NA |
6 | 82.6 | 93.0 | 19.3 | 3.76 | 58 | 42 | 86 | −141 | −69 | −112 |
19 | 62.7 | 54.9 | 15.6 | 4.56 | NA | NA | 100 | 100 | 100 | NA |
37 | 48.3 | 68.6 | 25.5 | 0.54 | NA | NA | 100 | 100 | 100 | NA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purvis, R.A.; Winston, R.J.; Hunt, W.F.; Lipscomb, B.; Narayanaswamy, K.; McDaniel, A.; Lauffer, M.S.; Libes, S. Evaluating the Hydrologic Benefits of a Bioswale in Brunswick County, North Carolina (NC), USA. Water 2019, 11, 1291. https://doi.org/10.3390/w11061291
Purvis RA, Winston RJ, Hunt WF, Lipscomb B, Narayanaswamy K, McDaniel A, Lauffer MS, Libes S. Evaluating the Hydrologic Benefits of a Bioswale in Brunswick County, North Carolina (NC), USA. Water. 2019; 11(6):1291. https://doi.org/10.3390/w11061291
Chicago/Turabian StylePurvis, Rebecca A., Ryan J. Winston, William F. Hunt, Brian Lipscomb, Karthik Narayanaswamy, Andrew McDaniel, Matthew S. Lauffer, and Susan Libes. 2019. "Evaluating the Hydrologic Benefits of a Bioswale in Brunswick County, North Carolina (NC), USA" Water 11, no. 6: 1291. https://doi.org/10.3390/w11061291