Drought Assessment using GRACE Terrestrial Water Storage Deficit in Mongolia from 2002 to 2017
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.1.1. GRACE Data
3.1.2. Meteorological Data
3.2. Methods
3.2.1. GRACE−Based Water Storage Deficit Index
3.2.2. Standardized Drought Indices
3.2.3. Mann−Kendall Test
4. Results and Discussion
4.1. Variation of TWSA and WSD
4.2. Comparison of WSDI with Other Drought Indices
4.3. Drought Events Detected by Drought Indices
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2011, 3, 52–58. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.G.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Delgado−Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Matthew, A.B.; Wallenstein, M.D.; Quero, J.L.; Ochoa, V.; Gozalo, B.; García−Gómez, M.; Soliveres, S.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Hessl, A.E.; Anchukaitis, K.; Jelsema, C.; Cook, B.; Byambasuren, O.; Leland, C.; Nachin, B.; Pederson, N.; Tian, H.; Hayles, L.A. Past and future drought in Mongolia. Sci. Adv. 2018, 4, e1701832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Zhu, X.; Pan, Y.; Zhang, J.; Liu, X. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China. Sci. Total Environ. 2018, 634, 727–738. [Google Scholar] [CrossRef]
- Creutzfeldt, B.; Ferré, T.; Troch, P.; Merz, B.; Wziontek, H.; Güntner, A. Total water storage dynamics in response to climate variability and extremes: Inference from long−term terrestrial gravity measurement. J. Geophys. Res. Atmos. 2012, 117, D08112. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Kimball, J.S.; McDowell, N.G.; Running, S.W. A remotely sensed global terrestrial drought severity index. Bull. Am. Meteorol. Soc. 2013, 94, 83–98. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, J.; Huang, Y.; Zhou, K.; Ding, X.; Fu, J. The review of GRACE data applications in terrestrial hydrology monitoring. Adv. Meteorol. 2014, 2014, 725131. [Google Scholar] [CrossRef]
- Thomas, A.C.; Reager, J.T.; Famiglietti, J.S.; Rodell, M.A. GRACE−based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett. 2014, 41, 1537–1545. [Google Scholar] [CrossRef]
- Ramillien, G.; Famiglietti, J.S.; Wahr, J. Detection of continental hydrology and glaciology signals from GRACE: A review. Surv. Geophys. 2008, 29, 361–374. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, F.; Russell, H. Estimating snow mass and Peak River flows for the Mackenzie River Basin using GRACE satellite observations. Remote Sens. 2017, 9, 256. [Google Scholar] [CrossRef]
- Nie, N.; Zhang, W.; Guo, H.; Ishwaran, N. 2010–2012 drought and flood events in the Amazon Basin inferred by GRACE satellite observations. J. Appl. Remote Sens. 2015, 9, 096023. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, Y.; Li, Z.; Chen, M. Drought monitoring of southwestern China using insufficient GRACE data for the long−term mean reference frame under global change. J. Clim. 2018, 31, 6897–6911. [Google Scholar] [CrossRef]
- Heim, R.R. A review of twentieth−century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef]
- Hao, Z.C.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente−Serrano, S.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Li, X.; He, B.; Quan, X.; Liao, Z.; Bai, X. Use of the standardized precipitation evapotranspiration index (SPEI) to characterize the drying trend in southwest China from 1982 to 2012. Remote Sens. 2015, 7, 10917–10937. [Google Scholar] [CrossRef]
- Yirdaw, S.Z.; Snelgrove, K.R.; Agboma, C.O. GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. J. Hydrol. 2008, 356, 84–92. [Google Scholar] [CrossRef]
- Cao, Y.; Nan, Z.; Cheng, G. GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China. Remote Sens. 2015, 7, 1021–1047. [Google Scholar] [CrossRef]
- Yi, H.; Wen, L. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States. Sci. Rep. 2016, 6, 19909. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Wu, T.; Wang, W.; Li, R.; Wang, T.; Qin, Y.; Wang, W.; Zhu, X. Spatiotemporal changes of reference evapotranspiration in Mongolia during 1980–2006. Adv. Meteorol. 2016, 9586896. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, 4. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, W04531. [Google Scholar] [CrossRef]
- Swenson, S. GRACE Monthly Land Water Mass Grids NETCDF Release 5.0, Version 5.0. PO.DAAC. Available online: https://podaac−ftp.jpl.nasa.gov/dataset/TELLUS_LAND_NC_RL05 (accessed on 15 August 2012).
- Swenson, S.; Milly, P.C.D. Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resour. Res. 2006, 42, W03201. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhan, C.; Qiao, Y.; Wang, Y. Monitoring the spatio−temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. Sci. Total Environ. 2017, 595, 218–228. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society Boston, Boston, MA, USA, 1993. [Google Scholar]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the Standardized Precipitation Index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Bae, S.; Lee, S.; Yoo, S.; Kim, T. Analysis of Drought intensity and trends using the modified SPEI in south Korea from 1981 to 2010. Water 2018, 20, 327. [Google Scholar] [CrossRef]
- Vicente−Serrano, S.M.; Begueria, S.; Lopez−Moreno, J.I. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau Washington: Washington, DC, USA, 1965.
- Tian, F.; Herzschuh, U.; Mischke, S.; Schluetz, F. What drives the recent intensified vegetation degradation in Mongolia−Climate change or human activity? Holocene 2014, 24, 1206–1215. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, H.; Shen, H.; Zhou, D.; Zhou, L.; Myneni, R.B.; Fang, J. Satellite−indicated long−term vegetation changes and their drivers on the Mongolian Plateau. Landsc. Ecol. 2015, 30, 1599–1611. [Google Scholar] [CrossRef]
- Ning, S.; Ishidaira, H.; Udmale, P.; Ichikawa, Y. Remote sensing based analysis of recent variations in water resources and vegetation of a semi−arid region. Water 2015, 7, 6039–6055. [Google Scholar] [CrossRef]
Category | Drought Condition | SPI/SPEI | WSDI |
---|---|---|---|
D0 | No drought | −0.5 < S | 0 < W |
D1 | Mild drought | −1.0 < S ≤ −0.5 | −1.0 < W ≤ 0 |
D2 | Moderate drought | −1.5 < S ≤ −1.0 | −2.0 < W ≤ −1.0 |
D3 | Severe drought | −2.0 < S ≤ −1.5 | −3.0 < W ≤ −2.0 |
D4 | Extreme drought | S ≤ −2.0 | W ≤ −3.0 |
Time Period | Duration (month) | Total Severity (mm) | Average Deficit (mm) | Peak Deficit (mm) | WSDI/Category |
---|---|---|---|---|---|
2002/07–2002/09 | 3 | −11.8 | −3.9 | −8.2 | −0.50/D1 |
2003/04–2003/07 | 4 | −19.6 | −4.9 | −6.2 | −0.38 /D1 |
2005/07–2006/03 | 9 | −40.1 | −4.5 | −8.6 | −0.63 /D1 |
2007/02–2009/12 | 38 | −290.8 | −7.7 | −16.6 | −0.98 /D1 |
2010/07–2011/05 | 11 | −59.7 | −5.4 | −9.7 | −0.81 /D1 |
2011/08–2012/07 | 12 | −120.4 | −10.0 | −15.6 | −0.99 /D1 |
2014/12–2015/05 | 6 | −53.4 | −8.9 | −16.2 | −1.18 /D2 |
2016/08–2016/11 | 4 | −32.0 | −8.0 | −10.0 | −0.87 /D1 |
Time Period | Duration(month) | SPEI/Category | SPI/Category | WSDI/Category | Combined Category |
---|---|---|---|---|---|
2002/07–2002/09 | 3 | −1.01/D2 | −0.67/D1 | −0.72/D1 | D1/D2 |
2003/04–2003/07 | 4 | 0.52/D0 | 0.27/D0 | −0.48/D1 | D0/D1 |
2005/07–2006/03 | 9 | −0.82/D1 | −1.03/D1 | −0.68/D1 | D1 |
2007/02–2009/12 | 38 | −1.46/D2 | −0.81/D1 | −1.26/D2 | D1/D2 |
2010/07–2011/05 | 11 | −0.56/D1 | 0.06/D0 | −0.76/D1 | D0/D1 |
2011/08–2012/07 | 12 | −0.97/D1 | −0.64/D1 | −1.09/D2 | D1/D2 |
2014/12–2015/05 | 6 | −0.94/D1 | −0.54/D1 | −1.24/D2 | D1/D2 |
2016/08–2016/11 | 4 | −0.32/D0 | 0.41/D0 | −0.76/D1 | D0/D1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Li, Y.; Cao, Y.; Schillerberg, T. Drought Assessment using GRACE Terrestrial Water Storage Deficit in Mongolia from 2002 to 2017. Water 2019, 11, 1301. https://doi.org/10.3390/w11061301
Yu W, Li Y, Cao Y, Schillerberg T. Drought Assessment using GRACE Terrestrial Water Storage Deficit in Mongolia from 2002 to 2017. Water. 2019; 11(6):1301. https://doi.org/10.3390/w11061301
Chicago/Turabian StyleYu, Wenjun, Yanzhong Li, Yanping Cao, and Tayler Schillerberg. 2019. "Drought Assessment using GRACE Terrestrial Water Storage Deficit in Mongolia from 2002 to 2017" Water 11, no. 6: 1301. https://doi.org/10.3390/w11061301