Current Practice and Recommendations for Modelling Global Change Impacts on Water Resource in the Himalayas
Abstract
:1. Introduction
2. Review Process
3. Overview of Reviewed Studies
4. Processes Representation
4.1. Model Type
4.2. Snow and Ice Hydrology
5. Model Setup
5.1. Input Data
5.1.1. Meteorological Data
5.1.2. Landscape Data
5.2. Calibration
6. Global Change Analysis
7. Treatment of Uncertainty
8. Research Gaps and Recommendations
- High-resolution meteorological and snow/ice data are needed to adequately capture variations in high-elevation snow/ice accumulation and low elevation melting that occur simultaneously during the Indian monsoon season, and that will potentially be affected by climate change. Given that the size, remoteness, low population density, and extreme topographical variation of the Himalayan region prevent the establishment of widespread dense ground-based observations, efforts should be directed to strategically design, implement and maintain cost-efficient high elevation monitoring networks in test catchments that enable the validation and improvement of distributed data for meteorological (i.e., remote sensing products, re-analyses and regional climate models) and snow/ice variables (i.e., remote sensing images to derive glacier movement, debris thickness, etc.). While data quality is improved, proposals for the correction of current meteorological products can be found in the literature [4,29,80] as well as novel methods to infer snow/ice mass balance-related processes [168,169]. Where gauged flows are not available, the option to use remotely-sensed river discharges should be explored [181,182].
- To overcome data sharing sensitivities resulting from the existing geo-political situation and move towards desecuritisation of water resources, initiatives such as the Indus Basin Knowledge Platform (http://www.indusbasin.org) and transboundary research projects should be promoted by independent international institutions. Bottom-up strategies, targeted for example at stakeholders and civil society organisations [13], in which scientific collaboration informs and encourages transnational political cooperation, have proved useful in other transboundary basins such as the Danube [180,183], although differences in the underlying political regimes would require such strategies to be tailored to the region. Recent initiatives for the Himalayan region such as a joint monitoring and an assessment programme which promotes transboundary collaborations and highlights the importance of research outcomes to inform action (HIMAP; [184]), are especially promising.
- A combination of grids or sub-basins with elevation bands should be used to incorporate high-resolution data into models allowing the representation of high spatial variability of hydrological inputs and processes in Himalayan catchments, mostly caused by extreme topography. The size of the elevation bands is especially important to analyse climate change impacts as they determine the sensitivity of snow/ice elevation line variations to changes in meteorological inputs, while horizontal resolution is more relevant to the representation of spatial variability in different runoff components and the socio-economic aspects of global change.
- Projected changes in meteorological variables in the Himalayas are highly uncertain and represent conditions which are often very different to historical observations. To ensure that future projections in available water resources are realistic, a shift away from empirical models towards process-based models, or at least conceptual models that represent soil water balance and the resulting diverse flow components in detail, and do not assume continuation of relationships between existing process behaviours and meteorological variables, is needed. However, model selection should always be subject to the identification of the main hydrological processes in the studied system through an initial conceptualization. The abovementioned high-resolution data must satisfy the requirements of these types of models. This will also unlock the potential to improve assessments of global change impacts in the Himalayas by exploring the application of modelling advances to the region.
- For similar reasons, energy balance models are recommended to ensure a robust simulation of future climate change impacts on melt runoff. Enhanced temperature-index melt models are a good alternative to include the key effect of solar radiation in the absence of the high-elevation data characteristic of the Himalayas. Simplified models which do not constrain melt runoff by simulating snowpack and glacier mass balance should be avoided. Due to their relevance in the snowpack and glacier balance in the region, melt models should (where possible) incorporate modelling advances to represent the effects of seasonal behaviour of parameters such as temperature lapse rate which can be estimated with ground [185] or satellite data [186]; snow ageing which can be analysed with remote sensing data [169]; debris thickness effects on albedo through a melting lag factor [82]; meltwater refreezing through additional coefficients [82,187] and using active daily temperature [155]; avalanches by defining a maximum snow water equivalent and a slope threshold [84,128]; and glacier dynamics by adopting basal sliding as the main movement mechanism [84,85].
- High uncertainty in hydro-meteorological observations in the Himalayas is likely to lead to significant equifinality of parameters and, therefore, to multiple behavioural models. Sensitivity of modelling choices in relation to input data, parametrisation and model structure should be characterised to understand the importance of baseline uncertainty with respect to future scenario uncertainty, in order to provide robust findings that inform impact assessment and adaptation planning.
- In line with point 1, input data uncertainty can be addressed with improvements in observational networks (i.e., spatial coverage including high elevations, diversification of monitored variables, and data transmission) to support advances in the spatial detail within gridded meteorological products, such as high-resolution numerical weather models, regional climate models, and fusion of ground meteorological data and remotely-sensed products.
- Parameter uncertainty can be reduced by making use of the diverse available data sources of multiple hydrological stores (e.g., snow water equivalent [128]; glacier depth [31]; soil moisture) and fluxes (e.g., actual evapotranspiration [81]) and their spatial distribution in the model calibration and validation. Furthermore, improved understanding of the relevance of the different flow components in total runoff through capitalization of expert knowledge [165] and more detailed studies (e.g., stable isotope tracing [136,188]) would be beneficial.
- Uncertainty in the future evolution of global change:
- Can be reduced by improving the representation of future Himalayan climate with advances in the downscaling of global climate models and the bias-correction of regional climate models.
- Can be accounted for by considering a wide range of emissions scenarios and socio-economic changes, including land use, water demand and water management [47].
- Can be constrained by initialising permanent snowpacks and glaciers which have long lag times by performing continuous simulations, or with long warm-up periods, to generate realistic future contributions of melt to river discharge.
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, 1–13. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Zhisheng, A.; Kutzbach, J.E.; Prell, W.L.; Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya—Tibetan plateau since Late Miocene times. Nature 2001, 411, 62. [Google Scholar] [CrossRef] [PubMed]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 2010, 115, F03019. [Google Scholar] [CrossRef]
- Sharma, E.; Molden, D.; Wester, P.; Shrestha, R.M. The Hindu Kush Himalayan monitoring and assessment programme: Action to sustain a global asset. Mt. Res. Dev. 2016, 36, 236–239. [Google Scholar] [CrossRef]
- You, Q.L.; Ren, G.Y.; Zhang, Y.Q.; Ren, Y.Y.; Sun, X.B.; Zhan, Y.J.; Shrestha, A.B.; Krishnan, R. An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Adv. Clim. Chang. Res. 2017, 8, 141–147. [Google Scholar] [CrossRef]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. (Eds.) The Hindu Kush Himalaya Assessment; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783319922874. [Google Scholar]
- Alley, K.D.; Hile, R.; Mitra, C. Visualizing hydropower across the himalayas: Mapping in a time of Regulatory Decline. Himal. J. Assoc. Nepal Himal. Stud. 2014, 34, 52–66. [Google Scholar]
- Kumar, D.; Katoch, S.S. Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas. Renew. Sustain. Energy Rev. 2014, 39, 87–101. [Google Scholar] [CrossRef]
- Jamir, O. Understanding India-Pakistan water politics since the signing of the Indus Water Treaty. Water Policy 2016, 18, 1070–1087. [Google Scholar] [CrossRef]
- Jiang, H.; Qiang, M.; Lin, P.; Wen, Q.; Xia, B.; An, N. Framing the brahmaputra river hydropower development: Different concerns in riparian and international media reporting. Water Policy 2017, 19, 496–512. [Google Scholar] [CrossRef]
- Biswas, A.K. Cooperation or conflict in transboundary water management: Case study of South Asia. Hydrol. Sci. J. 2011, 56, 662–670. [Google Scholar] [CrossRef]
- Hill, D.P. Where hawks dwell on water and bankers build power poles: Transboundary waters, environmental security and the frontiers of Neo-liberalism. Strateg. Anal. 2015, 39, 729–743. [Google Scholar] [CrossRef]
- Wine, M.L. Under non-stationarity securitization contributes to uncertainty and tragedy of the commons. J. Hydrol. 2019, 568, 716–721. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Petersen, L.; Ragettli, S.; Pellicciotti, F. The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res. 2014, 50, 2212–2226. [Google Scholar] [CrossRef] [Green Version]
- Bookhagen, B.; Burbank, D.W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett. 2006, 33, L08405. [Google Scholar]
- Sidhu, G.S.; Surya, J.N. Soils of North-Western Himalayan eco-system and their land use, constraints, productivity potentials and future strategies. Agropedology 2014, 24, 1–19. [Google Scholar]
- Armstrong, R.L. The glaciers of the Hindu Kush-Himalayan region: A summary of the science regarding glacier melt/retreat in the Himalayan, Hindu Kush, Karakoram, Pamir, and Tien Shan mountian ranges; ICIMOD: Kathmandu, Nepal, 2010. [Google Scholar]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Guo, W.; Liu, S.; Immerzeel, W.; Shrestha, B. The glaciers of the Hindu Kush Himalayas: Current status and observed changes from the 1980s to 2010. Int. J. Water Resour. Dev. 2015, 31, 161–173. [Google Scholar] [CrossRef]
- Wiltshire, A.J. Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region. Cryosphere 2014, 8, 941–958. [Google Scholar] [CrossRef] [Green Version]
- Nepal, S.; Shrestha, A.B. Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: A review of the literature. Int. J. Water Resour. Dev. 2015, 0627, 1–18. [Google Scholar] [CrossRef]
- Smadja, J.; Aubriot, O.; Puschiasis, O.; Duplant, T.; Grimaldi, J.; Hugonnet, M.; Buchheit, P. Climate change and water resources in the himalayas. J. Alp. Res. 2015, 103, 1–23. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [Green Version]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Dimri, A.P.; Kumar, D.; Choudhary, A.; Maharana, P. Future changes over the Himalayas: Mean temperature. Glob. Planet. Chang. 2018, 162, 235–251. [Google Scholar] [CrossRef]
- Christensen, J.H.; Krishna Kumar, K.; Aldrian, E.; An, S.-I.; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; et al. Climate phenomena and their relevance for future regional climate change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 1217–1308. ISBN 978-1-107-66182-0. [Google Scholar]
- Palazzi, E.; von Hardenberg, J.; Terzago, S.; Provenzale, A. Precipitation in the Karakoram-Himalaya: A CMIP5 view. Clim. Dyn. 2015, 45, 21–45. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kaab, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.F.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shrestha, A.B.; Bierkens, M.F.P.; Bolch, T. Climate change impacts on the upper indus hydrology: Sources, shifts and extremes. PLoS ONE 2016, 11, e0165630. [Google Scholar] [CrossRef] [PubMed]
- Negi, H.S.; Kanda, N.; Shekhar, M.S.; Ganju, A. Recent wintertime climatic variability over the North West Himalayan cryosphere. Curr. Sci. 2018, 114, 760–770. [Google Scholar] [CrossRef]
- Wijngaard, R.R.; Lutz, A.F.; Nepal, S.; Khanal, S.; Pradhananga, S.; Shrestha, A.B.; Immerzeel, W.W. Future changes in hydro-climatic extremes in the upper indus, ganges, and brahmaputra river basins. PLoS ONE 2017, 12, e0190224. [Google Scholar] [CrossRef]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in high Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Jain, S.K.; Mir, R.A. Glacier and glacial lake classification for change detection studies using satellite data: A case study from Baspa basin, western Himalaya. Geocarto Int. 2019, 34, 391–414. [Google Scholar] [CrossRef]
- Mir, R.A.; Jain, S.K.; Lohani, A.K.; Saraf, A.K. Glacier recession and glacial lake outburst flood studies in Zanskar basin, western Himalaya. J. Hydrol. 2018, 564, 376–396. [Google Scholar] [CrossRef]
- Worni, R.; Huggel, C.; Clague, J.J.; Schaub, Y.; Stoffel, M. Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. Geomorphology 2014, 224, 161–176. [Google Scholar] [CrossRef]
- United Nations—Deparment of Economic and Social Affairs—Population Division. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP.241; United Nations: New, York, NY, USA, 2015. [Google Scholar]
- Rasul, G.; Sharma, B. The nexus approach to water–energy–food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef]
- Bakker, K. Water security: Research challenges and opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Konar, M.; Sivapalan, M. A dynamic framework for water security. Water Secur. 2017, 1, 12–20. [Google Scholar] [CrossRef]
- Holman, I.P.; Trawick, P. Developing adaptive capacity within groundwater abstraction management systems. J. Environ. Manag. 2011, 92, 1542–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutroulis, A.G.; Papadimitriou, L.V.; Grillakis, M.G.; Tsanis, I.K.; Wyser, K.; Betts, R.A. Freshwater vulnerability under high end climate change. A pan-European assessment. Sci. Total Environ. 2018, 613–614, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Soundharajan, B.S.; Adeloye, A.J.; Remesan, R. Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment. J. Hydrol. 2016, 538, 625–639. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Rao, P.; Areendran, G. Himalayan Glaciers Retreat and Implications for Sectoral Climate Adaptation; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783642386701. [Google Scholar]
- Wine, M.L.; Davison, J.H. Untangling global change impacts on hydrological processes: Resisting climatization. Hydrol. Process. 2019. [Google Scholar] [CrossRef]
- Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; et al. A global water scarcity assessment under shared socio-economic Pathways—Part 1: Water use. Hydrol. Earth Syst. Sci. 2013, 17, 2375–2391. [Google Scholar] [CrossRef]
- Arnell, N.W.; Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim. Chang. 2014, 122, 127–140. [Google Scholar] [CrossRef]
- Momblanch, A.; Papadimitriou, L.; Jain, S.K.; Kulkarni, A.; Ojha, C.S.P.; Adeloye, A.J.; Holman, I.P. Untangling the water-food-energy-environment nexus for global change adaptation in a complex Himalayan water resource system. Sci. Total Environ. 2019, 655, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Goswami, A.; Saraf, A.K. Snowmelt runoff modelling in a Himalayan basin with the aid of satellite data. Int. J. Remote Sens. 2010, 31, 6603–6618. [Google Scholar] [CrossRef]
- Remesan, R.; Holman, I.P. Effect of baseline meteorological data selection on hydrological modelling of climate change scenarios. J. Hydrol. 2015, 528, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Pokhrel, B.K.; Chevallier, P.; Andréassian, V.; Tahir, A.A.; Arnaud, Y.; Neppel, L.; Bajracharya, O.R.; Budhathoki, K.P. Comparison of two snowmelt modelling approaches in the Dudh Koshi basin (eastern Himalayas, Nepal). Hydrol. Sci. J. 2014, 59, 1507–1518. [Google Scholar] [CrossRef]
- Li, H.; Beldring, S.; Xu, C.-Y.; Huss, M.; Melvold, K.; Jain, S.K. Integrating a glacier retreat model into a hydrological model—Case studies of three glacierised catchments in Norway and Himalayan region. J. Hydrol. 2015, 527, 656–667. [Google Scholar] [CrossRef]
- Nepal, S.; Krause, P.; Flügel, W.A.; Fink, M.; Fischer, C. Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model. Hydrol. Process. 2014, 28, 1329–1344. [Google Scholar] [CrossRef]
- Khan, A.J.; Koch, M. Correction and informed regionalization of precipitation data in a high mountainous region (Upper Indus Basin) and its effect on SWAT-modelled discharge. Water 2018, 10, 1557. [Google Scholar] [CrossRef]
- Beven, K. I believe in climate change but how precautionary do we need to be in planning for the future? Hydrol. Process. 2011, 25, 1517–1520. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Efstratiadis, A.; Mamassis, N.; Christofides, A. On the credibility of climate predictions. Hydrol. Sci. J. 2008, 53, 671–684. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Kebede, A.S.; Nicholls, R.J.; Allan, A.; Arto, I.; Cazcarro, I.; Fernandes, J.A.; Hill, C.T.; Hutton, C.W.; Kay, S.; Lázár, A.N.; et al. Applying the global RCP–SSP–SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach. Sci. Total Environ. 2018, 635, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Wilby, R.L.; Dessai, S. Robust adaptation to climate change. Weather 2010, 65, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.P.; Wilby, R.L.; Gutmann, E.D.; Vano, J.A.; Gangopadhyay, S.; Wood, A.W.; Fowler, H.J.; Prudhomme, C.; Arnold, J.R.; Brekke, L.D. Characterizing uncertainty of the hydrologic impacts of climate change. Curr. Clim. Chang. Rep. 2016, 2, 55–64. [Google Scholar] [CrossRef]
- Panday, P.K.; Williams, C.A.; Frey, K.E.; Brown, M.E. Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach. Hydrol. Process. 2014, 28, 5337–5353. [Google Scholar] [CrossRef]
- Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains. Earth Surf. Dyn. 2015, 3, 333–362. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9781119951001. [Google Scholar]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Hock, R. Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr. 2005, 29, 362–391. [Google Scholar] [CrossRef]
- La Frenierre, J.; Mark, B.G.; Frenierre, J.L.; Mark, B.G. A review of methods for estimating the contribution of glacial meltwater to total watershed discharge. Prog. Phys. Geogr. 2013, 38, 173–200. [Google Scholar] [CrossRef]
- Ferguson, R.I. Snowmelt runoff models. Prog. Phydical Geogr. 1999, 23, 205–227. [Google Scholar] [CrossRef]
- Verdhen, A.; Chahar, B.R.; Sharma, O.P. Snowmelt modelling approaches in watershed models: Computation and comparison of efficiencies under varying climatic conditions. Water Resour. Manag. 2014, 28, 3439–3453. [Google Scholar] [CrossRef]
- Abudu, S.; Cui, C.-L.; Saydi, M.; King, J.P. Application of snowmelt runoff model (SRM) in mountainous watersheds: A review. Water Sci. Eng. 2012, 5, 123–136. [Google Scholar]
- Holko, L.; Gorbachova, L.; Kostka, Z. Snow hydrology in central Europe. Geogr. Compass 2011, 5, 200–218. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Fang, G.; Li, Z. Hydrological modeling in glacierized catchments of central Asia—Status and challenges. Hydrol. Earth Syst. Sci 2017, 21, 669–684. [Google Scholar] [CrossRef]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain hydrology of the western United States. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Beniston, M.; Stoffel, M. Assessing the impacts of climatic change on mountain water resources. Sci. Total Environ. 2014, 493, 1129–1137. [Google Scholar] [CrossRef]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. Clim. Chang. 2003, 59, 5–31. [Google Scholar] [CrossRef]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; López-Moreno, J.I.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef]
- Jarvis, A.H.I.; Reuter, A.; Nelson Guevara, E. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 14 April 2018).
- Davie, T. Fundamentals of Hydrology, 2nd ed.; Routledge: Abingdon-on-Thames, UK, 2008; Volume 298, ISBN 0203933664. [Google Scholar]
- Futter, M.N.; Whitehead, P.G.; Sarkar, S.; Rodda, H.; Crossman, J. Rainfall runoff modelling of the upper ganga and brahmaputra basins using PERSiST. Environ. Sci. Process. Impacts 2015, 17, 1070–1081. [Google Scholar] [CrossRef]
- Neupane, R.P.; White, J.D.; Alexander, S.E. Projected hydrologic changes in monsoon-dominated himalaya Mountain basins with changing climate and deforestation. J. Hydrol. 2015, 525, 216–230. [Google Scholar] [CrossRef]
- Nepal, S.; Flugle, W.-A.; Krause, P.; Fink, M.; Fischer, C. Assessment of spatial transferability of process-based hydrological model parameters in two neighboring catchments in the himalayan region. Hydrol. Process. 2017, 2812–2826. [Google Scholar] [CrossRef]
- Wulf, H.; Bookhagen, B.; Scherler, D. Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Adv. Water Resour. 2016, 88, 152–169. [Google Scholar] [CrossRef] [Green Version]
- Ragettli, S.; Immerzeel, W.W.; Pellicciotti, F. Contrasting climate change impact on the hydrology of the Andes and the Himalayas. Proc. Natl. Acad. Sci. USA 2016, 113, 9222–9227. [Google Scholar] [CrossRef] [PubMed]
- Ragettli, S.; Pellicciotti, F.; Immerzeel, W.W.; Miles, E.S.; Petersen, L.; Heynen, M.; Shea, J.M.; Stumm, D.; Joshi, S.; Shrestha, A. Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Adv. Water Resour. 2015, 78, 94–111. [Google Scholar] [CrossRef]
- Konz, M.; Finger, D.; Bürgi, C.; Normand, S.; Immerzeel, W.W.; Merz, J.; Giriraj, A.; Burlando, P. Calibration of a distributed hydrological model for simulations of remote glacierized Himalayan catchments using MODIS snow cover data. In Proceedings of the Global Change: Facing Risks and Threats to Water Resources, Fez, Morocco, 25–29 October 2010; pp. 465–473. [Google Scholar]
- Soncini, A.; Bocchiola, D.; Confortola, G.; Minora, U.; Vuillermoz, E.; Salerno, F.; Viviano, G.; Shrestha, D.; Senese, A.; Smiraglia, C.; et al. Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin. Sci. Total Environ. 2016, 565, 1084–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Immerzeel, W.W.; Pellicciotti, F.; Bierkens, M.F.P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 2013, 6, 742–745. [Google Scholar] [CrossRef]
- Ahmad, Z.; Ashraf, A.; Zaheer, M.; Bashir, H. Hydrological response to environnment change in himalayan watersheds: Assessment from integrated modelling approach. J. Mt. Sci. 2015, 12, 972–982. [Google Scholar] [CrossRef]
- Ali, S.; Dan, L.; Fu, C.B.; Khan, F. Twenty first century climatic and hydrological changes over upper indus basin of himalayan region of pakistan. Environ. Res. Lett. 2015, 10, 1–20. [Google Scholar] [CrossRef]
- Azmat, M.; Laio, F.; Poggi, D. Estimation of water resources availability and mini-hydro productivity in high-altitude scarcely-gauged watershed. Water Resour. Manag. 2015, 29, 5037–5054. [Google Scholar] [CrossRef]
- Jain, S.K.; Goswami, A.; Saraf, A.K. Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff. Water Resour. Manag. 2010, 24, 1763–1777. [Google Scholar] [CrossRef]
- Babel, M.S.; Bhusal, S.P.; Wahid, S.M.; Agarwal, A. Climate change and water resources in the bagmati river basin, Nepal. Theor. Appl. Climatol. 2014, 115, 639–654. [Google Scholar] [CrossRef]
- Bharati, L.; Gurung, P.; Jayakody, P.; Smakhtin, V.; Bhattarai, U. The projected impact of climate change on water availability and development in the Koshi. Mt. Res. Dev. 2014, 34, 118–130. [Google Scholar] [CrossRef]
- Soncini, A.; Bocchiola, D.; Confortola, G.; Bianchi, A.; Rosso, R.; Mayer, C.; Lambrecht, A.; Palazzi, E.; Smiraglia, C.; Diolaiuti, G. Future hydrological regimes in the upper indus basin: A case study from a high-altitude glacierized catchment. J. Hydrometeorol. 2015, 16, 306–326. [Google Scholar] [CrossRef]
- Pellicciotti, F.; Buergi, C.; Immerzeel, W.W.; Konz, M.; Shrestha, A.B. Challenges and uncertainties in hydrological modeling of remote Hindu Kush—Karakoram—Himalayan (HKH) basins: Suggestions for calibration strategies. Mt. Res. Dev. 2012, 32, 39–50. [Google Scholar] [CrossRef]
- Shrestha, M.; Koike, T.; Hirabayashi, Y.; Xue, Y.; Wang, L.; Rasul, G.; Ahmad, B. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region. J. Geophys. Res. Atmos. 2015, 120, 4889–4919. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, S.; Kumar, R.; Singh, A.; Bhardwaj, A.; Sam, L.; Randhawa, S.S.; Gupta, A. Development of a glacio-hydrological model for discharge and mass balance reconstruction. Water Resour. Manag. 2016, 30, 3475–3492. [Google Scholar] [CrossRef]
- Nepal, S.; Chen, J.; Penton, D.J.; Neumann, L.E.; Zheng, H.; Wahid, S. Spatial GR4J conceptualization of the Tamor glaciated alpine catchment in Eastern Nepal: Evaluation of GR4JSG against streamflow and MODIS snow extent. Hydrol. Process. 2017, 31, 51–68. [Google Scholar] [CrossRef]
- Sharma, V.; Mishra, V.D.; Joshi, P.K. Snow cover variation and streamflow simulation in a snow-fed river basin of the Northwest Himalaya. J. Mt. Sci. 2012, 9, 853–868. [Google Scholar] [CrossRef]
- Siderius, C.; Biemans, H.; Wiltshire, A.; Rao, S.; Franssen, W.H.P.; Kumar, P.; Gosain, A.K.; van Vliet, M.T.H.; Collins, D.N. Snowmelt contributions to discharge of the Ganges. Sci. Total Environ. 2013, 468–469, S93–S101. [Google Scholar] [CrossRef]
- Li, H.; Beldring, S.; Xu, C.-Y.; Jain, S. Modelling runoff and its components in Himalayan basins. In Proceedings of the Hydrology in a Changing World: Environmental and Human Dimensions, Montpellier, France, 7 October 2014; IAHS Publications: Oxfordshire, UK, 2014; pp. 158–164. [Google Scholar]
- Lundberg, A.; Ala-Aho, P.; Eklo, O.; Klöve, B.; Kværner, J.; Stumpp, C. Snow and frost: Implications for spatiotemporal infiltration patterns—A review. Hydrol. Process. 2016, 30, 1230–1250. [Google Scholar] [CrossRef]
- Meeks, J.; Moeck, C.; Brunner, P.; Hunkeler, D. Infiltration under snow cover: Modeling approaches and predictive uncertainty. J. Hydrol. 2017, 546, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment. Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Liu, Z.; Todini, E. Towards a Comprehensive Physically-Based Rainfall-Runoff Model. Hydrol. Earth Syst. Sci. 2002, 6, 859–881. [Google Scholar] [CrossRef]
- Bergström, S. The HBV model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Publications, LLC: Highlands Ranch, CO, USA, 1995. [Google Scholar]
- Martinec, J. snowmelt -runoff model for stream flow forecasts. Nord. Hydrol. 1975, 6, 145–154. [Google Scholar] [CrossRef]
- Singh, P.; Jain, S.K. Snow and glacier melt in the satluj river at bhakra dam in the western Himalayan region. Hydrol. Sci. J. 2002, 47, 93–106. [Google Scholar] [CrossRef]
- Brown, M.E.; Racoviteanu, A.E.; Tarboton, D.G.; Gupta, A. Sen; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M.S.; Bajracharya, S.; et al. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas. J. Hydrol. 2014, 519, 1859–1869. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; van Beek, L.P.H.; Konz, M.; Shrestha, A.B.; Bierkens, M.F.P. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Chang. 2012, 110, 721–736. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Khan, A. A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate. J. Hydrol. 2015, 527, 119–132. [Google Scholar] [CrossRef]
- Senzeba, K.T.; Bhadra, A.; Bandyopadhyay, A. Snowmelt runoff modelling in data scarce Nuranang catchment of eastern Himalayan region. Remote Sens. Appl. Soc. Environ. 2015, 1, 20–35. [Google Scholar] [CrossRef]
- Adnan, M.; Nabi, G.; Saleem Poomee, M.; Ashraf, A. Snowmelt runoff prediction under changing climate in the Himalayan cryosphere: A case of Gilgit River Basin. Geosci. Front. 2017, 8, 941–949. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Jia, S. Assessment of impacts of climate change on the water resources of the transboundary jhelum river basin of Pakistan and India. Water 2016, 8, 246. [Google Scholar] [CrossRef]
- Narula, K.K.; Gosain, A.K. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Sci. Total Environ. 2013, 468–469, S102–S116. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.A.; Pradhanang, S.M. Estimation of flow regime for a spatially varied Himalayan watershed using improved multi-site calibration of the Soil and Water Assessment Tool (SWAT) model. Environ. Earth Sci. 2017, 76, 787. [Google Scholar] [CrossRef]
- Prasch, M.; Mauser, W.; Weber, M. Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. Cryosphere 2013, 7, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Panday, P.K.; Thibeault, J.; Frey, K.E. Changing temperature and precipitation extremes in the Hindu Kush-Himalayan region: An analysis of CMIP3 and CMIP5 simulations and projections. Int. J. Climatol. 2015, 35, 3058–3077. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L.; Arnold, J.G.; Van Liew, C.W.; Moriasi, D.N. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Hegdahl, T.J.; Tallaksen, L.M.; Engeland, K.; Burkhart, J.F.; Xu, C.-Y. Discharge sensitivity to snowmelt parameterization: A case study for Upper Beas basin in Himachal Pradesh, India. Hydrol. Res. 2016, 47, 683–700. [Google Scholar] [CrossRef]
- Naha, S.; Thakur, P.K.; Aggarwal, S.P. Hydrological modelling and data assimilation of satellite snow cover area using a land surface model, VIC. In Proceedings of the ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech, 12–19 July 2016; Volume XLI-B8, pp. 353–360. [Google Scholar]
- Remesan, R.; Begam, S.; Holman, I.P. Effect of baseline snowpack assumptions in the HySIM model in predicting future hydrological behaviour of a Himalayan catchment. Hydrol. Res. 2018, 50, 691–708. [Google Scholar] [CrossRef]
- Kuczera, G.; Mroczkowski, M. Assessment of hydrologic parameter uncertainty and the worth of multiresponse data. Water Resour. Res. 1998, 34, 1481–1489. [Google Scholar] [CrossRef]
- Ludwig, R.; May, I.; Turcotte, R.; Vescovi, L.; Braun, M.; Cyr, J.-F.; Fortin, L.-G.; Chaumont, D.; Biner, S.; Chartier, I.; et al. The role of hydrological model complexity and uncertainty in climate change impact assessment. Adv. Geosci. 2009, 21, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Peh, K.S.-H.; Thapa, I.; Basnyat, M.; Balmford, A.; Bhattarai, G.P.; Bradbury, R.B.; Brown, C.; Butchart, S.H.M.; Dhakal, M.; Gurung, H.; et al. Synergies between biodiversity conservation and ecosystem service provision: Lessons on integrated ecosystem service valuation from a Himalayan protected area, Nepal. Ecosyst. Serv. 2016, 22, 359–369. [Google Scholar] [CrossRef] [Green Version]
- ul Hasson, S. Future water availability from hindukush-karakoram-himalaya upper indus basin under conflicting climate change scenarios. Climate 2016, 4, 40. [Google Scholar] [CrossRef]
- Mukhopadhyay, B. Detection of dual effects of degradation of perennial snow and ice covers on the hydrologic regime of a Himalayan river basin by stream water availability modeling. J. Hydrol. 2012, 412–413, 14–33. [Google Scholar] [CrossRef]
- Li, L.; Gochis, D.J.; Sobolowski, S.; Mesquita, M.D.S. Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model. J. Geophys. Res. 2017, 122, 4786–4807. [Google Scholar] [CrossRef]
- Surfleet, C.G.; Tullos, D.; Chang, H.; Jung, I.-W. Selection of hydrologic modeling approaches for climate change assessment: A comparison of model scale and structures. J. Hydrol. 2012, 464–465, 233–248. [Google Scholar] [CrossRef]
- Stigter, E.E.; Wanders, N.; Saloranta, T.M.; Shea, J.M.; Bierkens, M.F.P.; Immerzeel, W.W. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment. Cryosphere 2017, 11, 1647–1664. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.; Hsu, N.C.; Lau, W.K.-M.; Yasunari, T.J. Satellite observations of desert dust-induced Himalayan snow darkening. Geophys. Res. Lett. 2013, 40, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Neupane, R.P.; Yao, J.; White, J.D. Estimating the effects of climate change on the intensification of monsoonal-driven stream discharge in a Himalayan watershed. Hydrol. Process. 2014, 28, 6236–6250. [Google Scholar] [CrossRef]
- Nepal, S. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. J. Hydro-Environ. Res. 2016, 10, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Haritashya, U.K. Effectiveness of four water-bearing zones of the glacierized basin in meltwater runoff modelling. In Remote Sensing and Hydrology; IAHS Publications: Oxfordshire, UK, 2012; p. 2012. [Google Scholar]
- Arora, M.; Kumar, R.; Kumar, N.; Malhotra, J. Hydrological modeling and streamflow characterization of Gangotri Glacier. In Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment; Raju, N.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 909–915. ISBN 978-3-319-18662-7. [Google Scholar]
- Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D’Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C. Prediction of future hydrological regimes in poorly gauged high altitude basins: The case study of the upper Indus, Pakistan. Hydrol. Earth Syst. Sci. 2011, 15, 2059–2075. [Google Scholar] [CrossRef]
- Thayyen, R.J.; Gergan, J.T.; Dobhal, D.P. Role of glaciers and snow cover on headwater river hydrology in monsoon regime—Micro-scale study of Din Gad catchment, Garhwal Himalaya, India. Curr. Sci. 2007, 92, 376–382. [Google Scholar]
- Ahluwalia, R.S.; Rai, S.P.; Jain, S.K.; Kumar, B.; Dobhal, D.P. Assessment of snowmelt runoff modelling and isotope analysis: A case study from the wester Himalaya, India. Ann. Glaciol. 2013, 54, 299–304. [Google Scholar] [CrossRef]
- Singh, P.; Jain, S.K. Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields. Hydrol. Sci. J. 2003, 48, 257–276. [Google Scholar] [CrossRef]
- Dahri, Z.H.; Ahmad, B.; Leach, J.H.; Ahmad, S. Satellite-based snowcover distribution and associated snowmelt runoff modeling in Swat River Basin of Pakistan. Proc. Pak. Acad. Sci. 2011, 48, 19–32. [Google Scholar]
- Sharma, V.; Mishra, V.D.; Joshi, P.K. Implications of climate change on streamflow of a snow-fed river system of the Northwest Himalaya. J. Mt. Sci. 2013, 10, 574–587. [Google Scholar] [CrossRef] [Green Version]
- Senzeba, K.T.; Rajkumari, S.; Bhadra, A.; Bandyopadhyay, A. Response of streamflow to projected climate change scenarios in an eastern Himalayan catchment of India. J. Earth Syst. Sci. 2016, 125, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Tripathi, N.K. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J. Hydrol. 2014, 511, 49–60. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Ahmad, R.A.R.; Tower, G.; Plummer, J.; Aripin, N. Transparency and clarity of water accounting reporting. J. Asia-Pac. Cent. Environ. Account. 2010, 16, 1–4. [Google Scholar]
- Singh, P.; Singh, V.P. Snow and Glacier Hydrology; Klower Academic Publishers: Aarhus, Denmark, 2001; ISBN 0-7923-6767-7. [Google Scholar]
- Ragettli, S.; Pellicciotti, F.; Bordoy, R.; Immerzeel, W.W. Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resour. Res. 2013, 49, 6048–6066. [Google Scholar] [CrossRef]
- Weertman, J. On the Sliding of Glaciers. J. Glaciol. 1957, 3, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Oerlemans, J.J. Glaciers and Climate Change; CRC Press: Lisse, The Netherlands, 2001; ISBN 9026518137. [Google Scholar]
- Kulkarni, A.V.; Bahuguna, I.M.; Rathore, B.P.; Singh, S.K.; Randhawa, S.S.; Sood, R.K.; Dhar, S. Glacial retreat in Himalayas using Indian remote sensing satellite data. Curr. Sci. 2007, 92, 69–74. [Google Scholar]
- Chaujar, R.K. Climate change and its impact on the Himalayan glaciers—A case study on the Chorabari glacier, Garhwal Himalaya, India. Curr. Sci. 2009, 96, 703–708. [Google Scholar]
- Immerzeel, W.W.; Wanders, N.; Lutz, A.F.; Shea, J.M.; Bierkens, M.F.P. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. 2015, 19, 4673–4687. [Google Scholar] [CrossRef] [Green Version]
- Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, S. Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004, 286, 249–270. [Google Scholar] [CrossRef]
- Best, M.J.; Pryor, M.; Clark, D.B.; Rooney, G.G.; Essery, R.L.H.; Ménard, C.B.; Edwards, J.M.; Hendry, M.A.; Porson, A.; Gedney, N.; et al. The Joint UK Land Environment Simulator (JULES), model description-Part 1: Energy and water fluxes. Geosci. Model Dev. 2011, 4, 677–699. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 415–429. [Google Scholar] [CrossRef]
- Yang, T.; Wang, X.; Yu, Z.; Krysanova, V.; Chen, X.; Schwartz, F.W.; Sudicky, E.A. Climate change and probabilistic scenario of streamflow extremes in an alpine region. J. Geophys. Res. Atmos. 2014, 119, 8535–8551. [Google Scholar] [CrossRef]
- Legates, D.R.; Willmott, C.J. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol. 1990, 10, 111–127. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.; Babel, M.S. Potential impacts of climate change on water resources in British columbia communities. Water 2016, 8, 23. [Google Scholar] [CrossRef]
- Li, H.; Xu, C.Y.; Beldring, S.; Tallaksen, L.M.; Jain, S.K. Water Resources under climate change in Himalayan Basins. Water Resour. Manag. 2015, 30, 843–859. [Google Scholar] [CrossRef]
- Soncini, A.; Bocchiola, D.; Confortola, G.; Nana, E.; Bianchi, A.; Rosso, R.; Diolaiuti, G.; Smiraglia, C.; von Hardenberg, J. Hydrology of the Upper Indus Basin under potential climate change scenarios. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer International Publishing: New, York, NY, USA, 2015; Volume 1, pp. 43–49. ISBN 9783319093000. [Google Scholar]
- Palazzoli, I.; Maskey, S.; Uhlenbrook, S.; Nana, E.; Bocchiola, D. Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal. Agric. Syst. 2015, 133, 143–157. [Google Scholar] [CrossRef]
- Ahmadi, A.; Karamouz, M.; Moridi, A.; Han, D. Integrated planning of land use and water allocation on a watershed scale considering social and water quality issues. J. Water Resour. Plan. Manag. 2012, 138, 671–681. [Google Scholar] [CrossRef]
- Konz, M.; Uhlenbrook, S.; Braun, L.N.; Shrestha, A.; Demuth, S. Implementation of a process-based catchment model in a poorly gauged, highly glacierized Himalayan headwater. Hydrol. Earth Syst. Sci. 2007, 11, 1323–1339. [Google Scholar] [CrossRef] [Green Version]
- Manandhar, S.; Pandey, V.P.; Ishidaira, H.; Kazama, F. Perturbation study of climate change impacts in a snow-fed river basin. Hydrol. Process. 2013, 27, 3461–3474. [Google Scholar] [CrossRef]
- Willems, P.; Mora, D.; Vansteenkiste, T.; Taye, M.T.; Van Steenbergen, N. Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes—Part 2: Intercomparison of models and calibration approaches. J. Hydrol. 2014, 510, 591–609. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Fovet, O.; Ruiz, L.; Euser, T.; Gharari, S.; Nijzink, R.; Freer, J.; Savenije, H.H.G.; Gascuel-Odoux, C. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resour. Res. 2014, 50, 7445–7469. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Gharari, S.; Hrachowitz, M.; Fenicia, F.; Gao, H.; Savenije, H.H.G. Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrol. Earth Syst. Sci 2015, 18, 4839–4859. [Google Scholar] [CrossRef]
- Gantayat, P.; Kulkarni, A.V.; Srinivasan, J. Estimation of ice thickness using surface velocities and slope: Case study at Gangotri Glacier, India. J. Glaciol. 2014, 60, 277–282. [Google Scholar] [CrossRef]
- Snapir, B.; Momblanch, A.; Jain, S.K.; Waine, T.W.; Holman, I.P. A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a Himalayan river basin. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 222–230. [Google Scholar] [CrossRef]
- Wijngaard, R.R.; Biemans, H.; Friedrich Lutz, A.; Bhakta Shrestha, A.; Wester, P.; Willem Immerzeel, W. Climate change vs. socio-economic development: Understanding the future South Asian water gap. Hydrol. Earth Syst. Sci. 2018, 22, 6297–6321. [Google Scholar] [CrossRef]
- Azhoni, A.; Holman, I.; Jude, S. Adapting water management to climate change: Institutional involvement, inter-institutional networks and barriers in India. Glob. Environ. Chang. 2017, 44, 144–157. [Google Scholar] [CrossRef]
- Connors, J.; Krzywinski, M.; Schein, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [Green Version]
- Fayad, A.; Gascoin, S.; Faour, G.; López-Moreno, J.I.; Drapeau, L.; Le Page, M.; Escadafal, R. Snow hydrology in Mediterranean mountain regions: A review. J. Hydrol. 2017, 551, 374–396. [Google Scholar] [CrossRef]
- Pellicciotti, F.; Ragettli, S.; Carenzo, M.; McPhee, J. Changes of glaciers in the Andes of Chile and priorities for future work. Sci. Total Environ. 2014, 493, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Pellicciotti, F.; Carenzo, M.; Bordoy, R.; Stoffel, M. Changes in glaciers in the Swiss Alps and impact on basin hydrology: Current state of the art and future research. Sci. Total Environ. 2014, 493, 1152–1170. [Google Scholar] [CrossRef]
- Bisht, R.C. International Encyclopaedia Of Himalayas (5 Vols. Set); Mittal Publications: New Delhi, India, 2008; ISBN 8183242650. [Google Scholar]
- Prasai, S.; Surie, M.D. Water and climate data in the ganges basin: Assessing access to information regimes and implications for cooperation on transboundary rivers. Water Altern. 2015, 8, 20–35. [Google Scholar]
- Elalem, S.; Pal, I. Mapping the vulnerability hotspots over Hindu-Kush Himalaya region to flooding disasters. Weather Clim. Extrem. 2015, 8, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Barua, A.; Vij, S.; Zulfiqur Rahman, M. Powering or sharing water in the Brahmaputra River basin. Int. J. Water Resour. Dev. 2018, 34, 829–843. [Google Scholar] [CrossRef]
- Cherfas, J.; Langan, S.; Leb, C.; Newton, J.; Nicol, A.; Shrestha, A. Third indus basin knowledge forum (IBKF) ‘managing systems under stress: Science for solutions in the Indus Basin. In Proceedings of the International Institute for Applied Systems Analysis, Laxenburg, Austria, 31 May–2 June 2018. [Google Scholar]
- Bjerklie, D.M.; Birkett, C.M.; Jones, J.W.; Carabajal, C.; Rover, J.A.; Fulton, J.W.; Garambois, P.-A. Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska. J. Hydrol. 2018, 561, 1000–1018. [Google Scholar] [CrossRef] [Green Version]
- Gleason, C.J.; Smith, L.C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proc. Natl. Acad. Sci. USA 2014, 111, 4788–4791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrus, M. Legitimacy Narratives in Polycentric Water Law and Governance. Int. Organ. Law Rev. 2014, 11, 83–113. [Google Scholar] [CrossRef]
- Molden, D.; Sharma, E.; Shrestha, A.B.; Chettri, N.; Pradhan, N.S.; Kotru, R. Advancing regional and transboundary cooperation in the conflict-prone Hindu Kush–himalaya. Mt. Res. Dev. 2017, 37, 502–508. [Google Scholar] [CrossRef]
- Thayyen, R.J.; Dimri, A.P. Slope Environmental Lapse Rate (SELR) of temperature in the monsoon regime of the western himalaya. Front. Environ. Sci. 2018, 6, 42. [Google Scholar] [CrossRef]
- Jain, S.K.; Goswami, A.; Saraf, A.K. Determination of land surface temperature and its lapse rate in the Satluj River basin using NOAA data. Int. J. Remote Sens. 2008, 29, 3091–3103. [Google Scholar] [CrossRef]
- Ali, A.F.; de Xiao, C.; Zhang, X.P.; Adnan, M.; Iqbal, M.; Khan, G. Projection of future streamflow of the Hunza River Basin, Karakoram Range (Pakistan) using HBV hydrological model. J. Mt. Sci. 2018, 15, 2218–2235. [Google Scholar] [CrossRef]
- Maurya, A.S.; Rai, S.P.; Joshi, N.; Dutt, K.S.; Rai, N. Snowmelt runoff and groundwater discharge in Himalayan rivers: A case study of the Satluj River, NW India. Environ. Earth Sci. 2018, 77, 694. [Google Scholar] [CrossRef]
Modelling Purpose | Climate Change Impacts | Understanding Basin Behaviour | Assessing Model Performance | Land-Use Change Impacts |
---|---|---|---|---|
Climate Change Impacts | 23 | 0 | 0 | 1 |
Understanding Basin Behaviour | 5 | 15 | 0 | 0 |
Assessing Model Performance | 4 | 6 | 10 | 0 |
Land-Use Change Impacts | 0 | 0 | 0 | 1 |
Water Quality Impacts | 1 | 0 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momblanch, A.; Holman, I.P.; Jain, S.K. Current Practice and Recommendations for Modelling Global Change Impacts on Water Resource in the Himalayas. Water 2019, 11, 1303. https://doi.org/10.3390/w11061303
Momblanch A, Holman IP, Jain SK. Current Practice and Recommendations for Modelling Global Change Impacts on Water Resource in the Himalayas. Water. 2019; 11(6):1303. https://doi.org/10.3390/w11061303
Chicago/Turabian StyleMomblanch, Andrea, Ian P. Holman, and Sanjay K. Jain. 2019. "Current Practice and Recommendations for Modelling Global Change Impacts on Water Resource in the Himalayas" Water 11, no. 6: 1303. https://doi.org/10.3390/w11061303
APA StyleMomblanch, A., Holman, I. P., & Jain, S. K. (2019). Current Practice and Recommendations for Modelling Global Change Impacts on Water Resource in the Himalayas. Water, 11(6), 1303. https://doi.org/10.3390/w11061303