Restructuring a Water Distribution Network through the Reactivation of Decommissioned Water Tanks
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Water Distribution Network of Cava de’ Tirreni
2.2. The Hydraulic Model
2.3. The Simplified Method for the Assessment of the Residual Service Life of Decommissioned Water Tanks
2.4. Residual Service Life Assessment
3. Results
3.1. Condition Rating CR and Residual Service Lifetime trl Definition
3.2. The New Pipeline Routes
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jabari, S.J. Drinking water loss management in Palestine: A case study of the Hebron city water distribution network. Int. J. Glob. Environ. Issues 2017, 16, 91–105. [Google Scholar] [CrossRef]
- Creaco, E.; Lanfranchi, E.; Chiesa, C.; Fantozzi, M.; Carrettini, C.A.; Franchini, M. Optimisation of leakage and energy in the Abbiategrasso district. Civ. Eng. Environ. Syst. 2016, 33, 22–34. [Google Scholar] [CrossRef]
- Viccione, G. Water Supply Network Rehabilitation: A Case Study. In Proceedings of the 11th World Congress of EWRA on Water Resources and Environment-Managing Water Resources for a Sustainable Future, Madrid, Spain, 2–6 July 2019. [Google Scholar]
- Galuppini, G.; Creaco, E.; Toffanin, C.; Magni, L. Service pressure regulation in water distribution networks. Control Eng. Pract. 2019, 86, 70–84. [Google Scholar] [CrossRef]
- Berardi, L.; Laucelli, D.; Simone, A.; Perrone, G.C.; Giustolisi, O. Integrated pressure control strategies for sustainable management of water distribution networks. E3S Web Conf. 2019, 85, 06005. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, Ö. Water leakage management by district metered areas at water distribution networks. Environ. Monit. Assess. 2018, 190, 182. [Google Scholar] [CrossRef] [PubMed]
- Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G.; Zollo, R. Real-time control of pressure for leakage reduction in water distribution network: Field experiments. J. Water Resour. Plan. Manag. 2018, 144, 04017096. [Google Scholar] [CrossRef]
- De Marchis, M.; Milici, B. Leakage Estimation in Water Distribution Network: Effect of the Shape and Size Cracks. Water Resour. Manag. 2019, 33, 1167–1183. [Google Scholar] [CrossRef]
- Thornton, J.; Lambert, A. Progress in practical prediction of pressure: Leakage, pressure: Burst frequency and pressure: Consumption relationships. In Proceedings of the IWA Leakage 2005 Conference, Halifax, NS, Canada, 12–14 September 2005; International Water Association: London, UK, 2005; pp. 1–11. [Google Scholar]
- Ferrante, M.; Meniconi, S.; Brunone, B. Local and global leak laws. Water Resour. Manag. 2014, 28, 3761–3782. [Google Scholar] [CrossRef]
- Water Census—Istat. Available online: https://www.istat.it/en/archivio/207505 (accessed on 21 March 2019).
- WATER-Pro Aqua Italian Policy to Get Prices and Governance Right. Available online: http://www.ciriec.ulg.ac.be/wp-content/uploads/2015/12/Vienne-LBardelliworkshop2.pdf (accessed on 21 March 2019).
- Guerrini, A.; Vigolo, V.; Romano, G.; Testa, F. Levers supporting tariff growth for water services: Evidence from a contingent valuation analysis. J. Environ. Manag. 2018, 207, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Campisano, A.; Gullotta, A.; Modica, C. Using EPA-SWMM to simulate intermittent water distribution systems. Urban Water J. 2018, 15, 925–933. [Google Scholar] [CrossRef]
- Agathokleous, A.; Christodoulou, C.; Christodoulou, S.E. Influence of intermittent water supply operations on the vulnerability of water distribution networks. J. Hydroinform. 2017, 19, 838–852. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Hoseini-Ghafari, S.; Solgi, M.; Loáiciga, H.A. Intermittent urban water supply with protection of consumers’ welfare. J. Pipeline Syst. Eng. Pract. 2016, 7, 04016002. [Google Scholar] [CrossRef]
- Soltanjalili, M.J.; Bozorg Haddad, O.; Mariño, M.A. Operating water distribution networks during water shortage conditions using hedging and intermittent water supply concepts. J. Water Resour. Plan. Manag. 2013, 139, 644–659. [Google Scholar] [CrossRef]
- De Paola, F.; Fontana, N.; Giugni, M.; Marini, G.; Pugliese, F. Optimal solving of the pump scheduling problem by using a harmony search optimization algorithm. J. Hydroinform. 2017, 19, 879–889. [Google Scholar] [CrossRef]
- Chang, F.-J.; Wang, K.-W. A systematical water allocation scheme for drought mitigation. J. Hydrol. 2013, 507, 124–133. [Google Scholar] [CrossRef]
- Putri, A.A.; Aditya, T. 3D modelling and visualization of drinking water supply system using 3D GIS. In Proceedings of the 2017 7th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia, 1–2 August 2017. [Google Scholar]
- Nagarajan, K.; Charhate, S. Application of geographic information system for water distribution networks through quantum GIS plug-in with hydraulic simulation for infrastructure and development planning. In Proceedings of the 38th Asian Conference on Remote Sensing—Space Applications: Touching Human Lives, ACRS 2017, New Delhi, India, 23–27 October 2017. [Google Scholar]
- Elprince, A.M.; Al-Dakheel, Y.Y. Using advanced spatial technology in georeferencing irrigation and drainage networks. Eur. J. Sci. Res. 2010, 48, 6–15. [Google Scholar]
- Creaco, E.; Pezzinga, G. Advances in water distribution networks. Water 2018, 10, 1546. [Google Scholar] [CrossRef]
- Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G.; Zollo, R. Hydraulic and electric regulation of a prototype for real-time control of pressure and hydropower generation in a water distribution network. J. Water Resour. Plan. Manag. 2018, 144, 04018072. [Google Scholar] [CrossRef]
- Pugliese, F.; De Paola, F.; Fontana, N.; Giugni, M.; Marini, G. Performance of vertical-axis pumps as turbines. J. Hydraul. Res. 2018, 56, 482–493. [Google Scholar] [CrossRef]
- Di Nardo, A.; Giudicianni, C.; Greco, R.; Herrera, M.; Santonastaso, G.F. Applications of graph spectral techniques to water distribution network management. Water 2018, 10, 45. [Google Scholar] [CrossRef]
- Gallina, A.; Pasquale, D.G. Integrated solution for a smart water network (Book Chapter). In The Italian Water Industry: Cases of Excellence; Springer: Berlin/Heidelberg, Germany, 2018; pp. 145–155. [Google Scholar]
- Bragalli, C.; Neri, M.; Toth, E. Effectiveness of smart meter-based urban water loss assessment in a real network with synchronous and incomplete readings. Environ. Model. Softw. 2019, 112, 128–142. [Google Scholar] [CrossRef]
- Padulano, R.; Del Giudice, G. A Mixed Strategy Based on Self-Organizing Map for Water Demand Pattern Profiling of Large-Size Smart Water Grid Data. Water Resour. Manag. 2018, 32, 3671–3685. [Google Scholar] [CrossRef]
- Grimaldi, M.; Pellecchia, V.; Fasolino, I. Urban plan and water infrastructures planning: A methodology based on spatial ANP. Sustainability 2017, 9, 771. [Google Scholar] [CrossRef]
- Coutinho-Rodrigues, J.; Simão, A.; Antunes, C.H. A GIS-based multicriteria spatial decision support system for planning urban infrastructures. Decis. Support Syst. 2011, 51, 720–726. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2007, 20, 703–726. [Google Scholar] [CrossRef]
- Piegdoń, I.; Tchórzewska-Cieślak, B.; Szpak, D. The use of geographical information system in the analysis of risk of failure of water supply network. In Environmental Engineering V, Proceedings of the 5th National Congress of Environmental Engineering, Lublin, Poland, 29 May–1 June 2016; CRC Press: Boca Raton, FL, USA, 2017; pp. 7–14. [Google Scholar] [CrossRef]
- Arrighi, C.; Tarani, F.; Vicario, E.; Castelli, F. Flood impacts on a water distribution network. Nat. Hazards Earth Syst. Sci. 2017, 17, 2109–2123. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L.A. EPANET2 Users Manual; Watewr Supply and Waterresources Division, National Risk Management Research Laboratory: Cincinnati, OH, USA, 2000.
- Rossman, L.A. Computer Models/EPANET. In Water Distribution Systems Handbook; Chapter 12; Mays, L., Ed.; McGraw-Hill Companies, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Cimorelli, L.; Morlando, F.; Cozzolino, L.; D’Aniello, A.; Pianese, D. Comparison among Resilience and Entropy Index in the Optimal Rehabilitation of Water Distribution Networks under Limited-Budgets. Water Resour. Manag. 2018, 32, 3997–4011. [Google Scholar] [CrossRef]
- Ballio, G. Modelli, strutture e formati di dati geografici. In Strumenti per la Gestione del Territorio; MondoGIS: Milano, Italy, 2002; pp. 38–47. [Google Scholar]
- Shi, L.; Xu, P.; Wang, C.; Guan, T.; Zhang, Y.; Xu, H. A Review of Applying Spatial Modelling and GIS in Residential Water Use. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 062106. [Google Scholar] [CrossRef]
- Q-EPANET Plugin for Q-GIS. Available online: https://bia.unibz.it/handle/10863/4867 (accessed on 14 January 2019).
- Baghdadi, N.; Mallet, C.; Zribi, M. QGIS and Applications in Water and Risks; Wiley: Hoboken, NJ, USA, 2018; Volume 4, pp. 1–287. ISBN 978-1-786-30271-7. [Google Scholar]
- Bhadauria, S.S.; Gupta, D.M.C. In situ performance testing of deteriorating water tanks for durability assessment. J. Perform. Constr. Facil. 2007, 21, 234–239. [Google Scholar] [CrossRef]
- Alfatlawi, T.J.M.; Alsultani, R.A.A. Characterization of chloride penetration in hydraulic concrete structures exposed to different heads of seawater: Using hydraulic pressure tank. Eng. Sci. Technol. Int. J. 2019, 22, 939–946. [Google Scholar] [CrossRef]
- Zhutovsky, S.; Douglas Hooton, R. Experimental study on physical sulfate salt attack. Mater. Struct. 2017, 50, 54. [Google Scholar] [CrossRef]
- Fonna, S.; Ridha, M.; Huzni, S.; Walid, W.A.; Mulya, T.T.D.; Ariffin, A.K. Corrosion Risk of RC Buildings after Ten Years the 2004 Tsunami in Banda Aceh—Indonesia. Procedia Eng. 2017, 171, 965–976. [Google Scholar] [CrossRef]
- Hammoum, H.; Bouzelha, K.; Touat, M.; Pantet, A. An EIS for the analysis of vulnerability of water storage tanks to natural hazards. J. Decis. Syst. 2016, 25, 357–370. [Google Scholar] [CrossRef]
- American Society of Civil Engineers. Failure to Act: The Economic Impact of Current Investment Trends in Water and Wastewater Treatment Infrastructure; American Society of Civil Engineers: Reston, VA, USA, 2011. [Google Scholar]
- Aliche, A.; Hammoum, H.; Bouzelha, K.; Hannachi, N.E. Development and validation of predictive model to describe the growth of concrete water tank vulnerability with time. Period. Polytech. Civ. Eng. 2017, 61, 244–255. [Google Scholar] [CrossRef]
- Selvakumar, A.; Tafuri, A.N. Rehabilitation of aging water infrastructure systems: Key challenges and issues. J. Infrastruct. Syst. 2012, 18, 202–209. [Google Scholar] [CrossRef]
- Bertolini, L. Materiali da costruzione. In Degrado, Prevenzione, Diagnosi, Restauro; Studi, C., Ed.; CittàStudi: Milan, Italy, 2010; pp. 340–363. [Google Scholar]
- Pan, T.; Wang, L. Finite element analysis of chemical transport and reinforcement corrosion-induced cracking in variably saturated heterogeneous concrete. J. Eng. Mech. 2011, 137, 334–345. [Google Scholar] [CrossRef]
- Balafas, I.; Burgoyne, C.J. Modeling the structural effects of rust in concrete cover. J. Eng. Mech. 2011, 137, 175–185. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X. Simplified methodology for the evaluation of the residual strength of corroded reinforced concrete beams. J. Perform. Constr. Facil. 2010, 24, 108–119. [Google Scholar] [CrossRef]
- Mitra, G.; Jain, K.K.; Bhattacharjee, B. Condition assessment of corrosion-distressed reinforced concrete buildings using Fuzzy logic. J. Perform. Constr. Facil. 2010, 24, 562–570. [Google Scholar] [CrossRef]
- Cheung, M.M.S.; Zhao, J.; Chan, Y.B. Service life prediction of RC bridge structures exposed to chloride environments. J. Bridge Eng. 2009, 14, 164–178. [Google Scholar] [CrossRef]
- Liang, M.; Lin, L.; Liang, C. Service life prediction of existing reinforced concrete bridges exposed to chloride environment. J. Infrastruct. Syst. 2002, 8, 76–85. [Google Scholar] [CrossRef]
- Song, H.; Kim, H.; Saraswathy, V.; Kim, T.A. Micro-mechanics based corrosion model for predicting the service life of reinforced concrete structures. Int. J. Electrochem. Sci. 2007, 2, 341–354. [Google Scholar]
- Masada, T.; Sargand, S.M.; Tarawneh, B.; Mitchell, G.F.; Gruver, D. Inspection and risk assessment of concrete culverts under Ohio’s bridge. J. Perform. Constr. Facil. 2007, 21, 225–233. [Google Scholar] [CrossRef]
- Roelfstra, G.; Hajdin, R.; Adey, B.; Bruhwiler, E. Condition evolution in bridge management systems and corrosion – induced deterioration. J. Bridge Eng. 2004, 9, 268–277. [Google Scholar] [CrossRef]
- Palazzo, B.; Castaldo, P.; Mariniello, A. Effects of the axial force eccentricity on the time-variant structural reliability of aging r.c. cross-sections subjected to chloride-induced corrosion. Eng. Struct. 2016, 130, 261–274. [Google Scholar] [CrossRef]
- Tuutti, K. Corrosion of Steel in Concrete; Swedish Cement and Concrete Research Institute: Stockholm, Sweden, 1982. [Google Scholar]
- Ingenito, L. Analisi Della Rete Idrica di Cava de’ Tirreni e Proposte di Intervento Tramite l’interazione tra QGis ed EPANET. Master’s Thesis, University of Salerno, Fisciano, Italy, 2018. [Google Scholar]
- Viccione, G.; Amato, R.; Martucciello, M. Hydropower Potential from the AUSINO Drinking Water System. In Proceedings of the 3rd EWaS International Conference—Insights on the Water-Energy-Food Nexus, Lefkada Island, Greece, 27–30 June 2018; doi: 10. [Google Scholar]
- Verma, S.K.; Bhadauria, S.S.; Akhtar, S. Estimating Residual Service Life of Deteriorated Reinforced Concrete Structures. Am. J. Civ. Eng. Archit. 2013, 1, 92–96. [Google Scholar] [CrossRef]
- Pedeferri, P. La Corrosione Delle Armature nel Calcestruzzo; AICAP: Milano, Italy, 2007. [Google Scholar]
- Schiessl, P. Corrosion of Steel in Concrete, Report of the Technical Committee 60-CSC; Chapman and Hall: London, UK; New York, NY, USA, 1988. [Google Scholar]
- Salvoldi, B.G.; Beushausen, H.; Alexander, M.G. Oxygen permeability of concrete and its relation to carbonation. Constr. Build. Mater. 2015, 85, 30–37. [Google Scholar] [CrossRef]
- Czarnecki, L.; Woyciechowski, P. Modelling of concrete carbonation; is it a process unlimited in time and restricted in space? Tech. Sci. 2015, 63, 43–54. [Google Scholar] [CrossRef]
- Von Greve-Dierfeld, S.; Gehlen, C. Performance based durability design, carbonation part 1—Benchmarking of European present design rules. Struct. Concr. 2015, 17, 309–328. [Google Scholar] [CrossRef]
- NTC 2018 Aggiornamento delle «Norme Tecniche per le Costruzioni. Gazzetta Ufficiale Serie Generale n. 42 del 20-02-2018 – Suppl. Ordinario n. 8. Available online: https://www.gazzettaufficiale.it/eli/gu/2018/02/20/42/so/8/sg/pdf (accessed on 21 March 2019).
- Peters, M.; Timmerhaus, K.; West, R.E. Plant Design and Economics for Chemical Engineers; McGraw-Hill: New York, NY, USA, 2003; p. 501. [Google Scholar]
- Italy: Electricity Prices for Households 2010–2018 | Statistic. Available online: https://www.statista.com/statistics/418092/electricity-prices-for-households-in-italy/ (accessed on 21 March 2019).
Tank Name | Classification | Construction Material | Construction Techniques | Volume (m3) | State |
---|---|---|---|---|---|
1st S. Anna | Divider | r.c. | partly underground | 1000 | in operation |
2nd S. Anna | Pumping station | r.c. | partly underground | 80 | in operation |
Monte Castello Alto | Divider | masonry | Overground | 430 | in operation |
Monte Castello Basso | Divider | masonry | overground | 3500 | in operation |
Santi Quaranta | WDN | r.c. | underground | 800 | in operation |
Pietrasanta | WDN | masonry | underground | 10,000 | in operation |
Crocelle | Transmission | r.c. | partly underground | 500 | decommissioned |
Casa Riceri | Divider | masonry | overground | 1000 | in operation |
Contrapone | WDN | masonry | overground | 50 | in operation |
Corpo di Cava | Pumping station | masonry | overground | 80 | in operation |
Borrello | Pumping station | r.c. | partly underground | 500 | in operation |
San Cesareo | Pumping station | r.c. | partly underground | 500 | decommissioned |
Condition Rating (CR) | Failure Extent | Description (in Terms of cl 1 and dccd 2) | Action Required |
---|---|---|---|
0 | safe | cl < 0.2, dccd > 0, age ≤ 10 | excellent condition |
1 | good | cl < 0.2, dccd > 0, age > 10 | no maintenance required |
2 | low risk but satisfactorily | cl < 0.2, dccd ≤ 0 or cl = 0.2, dccd ≥ 0 | corrosion initiated, regular inspections required |
3 | fair | 0.25 > cl > 0.2, dccd > 0 | frequent inspections required |
4 | moderate risk | 0.25 > cl > 0.25, dccd ≤ 0 | no immediate maintenance, it may be delayed |
5 | poor | 0.3 > cl ≥ 0.25, dccd > 0 | maintenance is required to increase the service life |
6 | high risk | 0.3 > cl ≥ 0.25, dccd < 0 | maintenance is mandatory for continuous use, likely to repair |
7 | serious | 0.4 > cl ≥ 0.3, dccd > 0 | structure must be closed for maintenance |
8 | critical | 0.4 > cl ≥ 0.3, dccd ≤ 0 | poor condition not likely to be repaired |
9 | failure | cl ≥ 0.4 | structures replacement |
Authors | K |
---|---|
Pedeferri [65] | 2.82 |
Shiessl [66] | 1.06 |
Salvoldi et al. [67] | 1.50 |
Czarnecki and Woyciechowski [68] | 2.50 |
Parameter | Crocelle-Corpo di Cava | Pietrasanta-San Cesareo | Pietrasanta-Casa Riceri |
---|---|---|---|
Q (m3/s) | 0.007 | 0.010 | 0.0375 |
L (m) | 710 | 1560 | 2380 |
D (mm) | 80 | 125 | 200 |
ΔH (m) | 24.3 | 27.5 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viccione, G.; Ingenito, L.; Evangelista, S.; Cuozzo, C. Restructuring a Water Distribution Network through the Reactivation of Decommissioned Water Tanks. Water 2019, 11, 1740. https://doi.org/10.3390/w11091740
Viccione G, Ingenito L, Evangelista S, Cuozzo C. Restructuring a Water Distribution Network through the Reactivation of Decommissioned Water Tanks. Water. 2019; 11(9):1740. https://doi.org/10.3390/w11091740
Chicago/Turabian StyleViccione, Giacomo, Laura Ingenito, Stefania Evangelista, and Carmine Cuozzo. 2019. "Restructuring a Water Distribution Network through the Reactivation of Decommissioned Water Tanks" Water 11, no. 9: 1740. https://doi.org/10.3390/w11091740
APA StyleViccione, G., Ingenito, L., Evangelista, S., & Cuozzo, C. (2019). Restructuring a Water Distribution Network through the Reactivation of Decommissioned Water Tanks. Water, 11(9), 1740. https://doi.org/10.3390/w11091740