Assessing the Freshwater Quality of a Large-Scale Mining Watershed: The Need for Integrated Approaches
Abstract
:1. Introduction
The Importance of Advancing Water Quality Monitoring (WQM) in Andean Mining Regions
2. Materials and Methods
2.1. Case Study
2.2. Ecological Quality Assessment
2.3. Data Processing
3. Results
3.1. Varying Physicochemical Quality in the Main Water Course
3.2. Water Quality Changes Near the Mine
3.3. Water Quality Changes in Relation to Rural and Urban Pressures
4. Discussion
4.1. Water Quality Assessment
4.2. Challenges for Water Quality Monitoring of Mining Watersheds
- The selection of environmental quality references conceived in different contexts than the studied one, including freshwater quality indicators for hallmark mining impacts which were absent.
- The lack of ecological indicators for complex mining impacts, since acid- and metal-tolerant ‘good-quality’ macroinvertebrates were present, and other potential ones (e.g., Acari, Grypopterygidae, ecotoxicological or microbial enzymatic activity) are uncharacterized in the catchment.
4.2.1. Ecological Knowledge Challenges
4.2.2. Data Acquisition and Processing Challenges
4.2.3. Systemic Challenges
4.3. Windows of Opportunity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sampling Site ID | PRATI | Class | WATQI (%) | Class | Peruvian Water Quality Standards: | DO (†6 mg/L) (‡4 mg/L) | Turbidity (†100 NTU) (‡5 NTU) | Total P (†0.15 mg/L) (‡0.1 mg/L) | NH4-N (†N.A. mg/L) (‡1.5) | COD (†30 mg/L) (‡10 mg/L) | pH (†5.5-9.0) (‡6.5-8.5) | Fe (†5 mg/L) (‡0.3 mg/L) | Mn (†0.5 mg/L) (‡0. 4 mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.554 | Acceptable | 87 | Excellent | 0.25 * | ||||||||
2 | 1.015 | Acceptable | 96 | Excellent | 27 | ||||||||
4 | 0.536 | Excellent | 91 | Excellent | 16 | ||||||||
5 | 0.485 | Excellent | 94 | Excellent | 7 | 0.13 | 15 | ||||||
6 | 0.478 | Excellent | 86 | Excellent | 366 * | 0.61 * | |||||||
7 | 0.517 | Excellent | 94 | Excellent | |||||||||
8 | 0.442 | Excellent | 96 | Excellent | |||||||||
9 | 0.394 | Excellent | 96 | Excellent | |||||||||
10 | 0.427 | Excellent | 96 | Excellent | |||||||||
11 | 0.43 | Excellent | 96 | Excellent | |||||||||
12 | 0.435 | Excellent | 96 | Excellent | |||||||||
13 | 0.417 | Excellent | 96 | Excellent | |||||||||
14 | 0.421 | Excellent | 96 | Excellent | |||||||||
15 | 0.398 | Excellent | 93 | Excellent | |||||||||
16 | 0.575 | Excellent | 94 | Excellent | |||||||||
17 | 0.515 | Excellent | 96 | Excellent | |||||||||
18 | 0.517 | Excellent | 96 | Excellent | |||||||||
19 | 0.439 | Excellent | 95 | Excellent | 11 | ||||||||
20 | 0.48 | Excellent | 95 | Excellent | 11 | ||||||||
21 | 0.613 | Excellent | 94 | Excellent | |||||||||
22.1 | 2.272 | Slightly polluted | 64 | Good, pure | |||||||||
22.2 | 1.054 | Acceptable | 86 | Excellent | |||||||||
23 | 0.387 | Excellent | 95 | Excellent | |||||||||
24 | 2.235 | Slightly polluted | 64 | Good, pure | |||||||||
25 | 0.717 | Excellent | 91 | Excellent | 6.3 | 0.39 | |||||||
26 | 0.816 | Excellent | 93 | Excellent | |||||||||
27 | 0.767 | Excellent | 93 | Excellent | |||||||||
28 | 0.851 | Excellent | 94 | Excellent | |||||||||
29 | 0.73 | Excellent | 94 | Excellent | |||||||||
30 | 0.828 | Excellent | 85 | Excellent | 5.7 | ||||||||
31 | 0.56 | Excellent | 94 | Excellent | |||||||||
32 | 0.579 | Excellent | 94 | Excellent | |||||||||
33 | 0.633 | Excellent | 94 | Excellent | |||||||||
34 | 1.354 | Acceptable | 74 | Good | 4.6 * | ||||||||
35 | 0.497 | Excellent | 96 | Excellent | |||||||||
36 | 0.469 | Excellent | 95 | Excellent | |||||||||
37 | 0.731 | Excellent | 94 | Excellent | 27 | ||||||||
38 | 0.74 | Excellent | 94 | Excellent | 37 | 0.12 | |||||||
39 | 5.337 | Polluted | 44 | Moderate | 2.8 * | 12 | 1.24 * | 7.45 * | 31 * | 0.64 | |||
40 | 6.564 | Polluted | 20 | Heavily polluted | 1.7 * | 2.30 * | 9.21 | 47 * | 0.34 | 0.47 |
References
- UNDP; WEF; CCSI; SDSN. Mapping Mining to the Sustainable Development Goals: An Atlas; United Nations Development Programme (UNDP); World Economic Forum (WEF); Columbia Center on Sustainable Investment (CCSI); Sustainable Development Solutions Network (SDSN): New York, NY, USA, 2016. [Google Scholar]
- Byrne, P.; Wood, P.J.; Reid, I. The Impairment of River Systems by Metal Mine Contamination: A Review Including Remediation Options. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2017–2077. [Google Scholar] [CrossRef]
- Ochieng, G.M.; Seanego, E.S.; Nkwonta, O.I. Impacts of mining on water resources in South Africa: A review. Sci. Res. Essays 2010, 5, 3351–3357. [Google Scholar]
- Palmer, M.A.; Bernhardt, E.S.; Schlesinger, W.H.; Eshleman, K.N.; Foufoula-Georgiou, E.; Hendryx, M.S.; Lemly, A.D.; Likens, G.E.; Loucks, O.L.; Power, M.E.; et al. Mountaintop Mining Consequences. Science 2010, 327, 148–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudd, G.M. The Environmental sustainability of mining in Australia: Key mega-trends and looming constraints. Resour. Policy 2010, 35, 98–115. [Google Scholar] [CrossRef]
- ELAW. Guidebook for Evaluating Mining Project EIAs; Environmental Law Alliance Worldwide: Eugene, OR, USA, 2010. [Google Scholar]
- Chapman, D.V.; Bradley, C.; Gettel, G.M.; Hatvani, I.G.; Hein, T.; Kovács, J.; Liska, I.; Oliver, D.M.; Tanos, P.; Trásy, B.; et al. Developments in water quality monitoring and management in large river catchments using the Danube River as an example. Environ. Sci. Policy 2016, 64, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Metze, T.; Schuitmaker, T.J.; Bitsch, L.; Broerse, J. Breaking barriers for a bio-based economy: Interactive reflection on monitoring water quality. Environ. Sci. Policy 2017, 74, 1–7. [Google Scholar] [CrossRef]
- Elosegi, A.; Gessner, M.O.; Young, R.G. River doctors: Learning from medicine to improve ecosystem management. Sci. Total. Environ. 2017, 595, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Swenson, J.J.; Carter, C.E.; Domec, J.-C.; Delgado, C.I. Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports. PLoS ONE 2011, 6, e18875. [Google Scholar] [CrossRef] [PubMed]
- Bebbington, A.J.; Bury, J.T. Institutional challenges for mining and sustainability in Peru. Proc. Natl. Acad. Sci. USA 2009, 106, 17296–17301. [Google Scholar] [CrossRef] [Green Version]
- Loayza, N.; Rigolini, J. The Local Impact of Mining on Poverty and Inequality: Evidence from the Commodity Boom in Peru. World Dev. 2016, 84, 219–234. [Google Scholar] [CrossRef]
- Britto, B. Actualización de las Ecorregiones Terrestres de Perú propuestas en el Libro Rojo de Plantas Endémicas del Perú. Gayana. Botánica 2017, 74. [Google Scholar] [CrossRef]
- Steel, G. Mining and Tourism: Urban Transformations in the Intermediate Cities of Cajamarca and Cusco, Peru. Lat. Am. Perspect. 2012, 40, 237–249. [Google Scholar] [CrossRef]
- Jeronimo, R.P.; Rap, E.; Vos, J. The politics of Land Use Planning: Gold mining in Cajamarca, Peru. Land Use Policy 2015, 49, 104–117. [Google Scholar] [CrossRef]
- Vela-Almeida, D.; Kuijk, F.; Wyseure, G.; Kosoy, N. Lessons from Yanacocha: Assessing mining impacts on hydrological systems and water distribution in the Cajamarca region, Peru. Water Int. 2016, 41, 426–446. [Google Scholar] [CrossRef]
- EEA. European Environmental Agency Programming Document 2018–2020—Expanding the Knowledge Base for Policy Implementation and Long-Term Transitions; EEA: Copenhagen, Denmark, 2017.
- Buytaert, W.; Breuer, L. Water resources in South America: Sources and supply, pollutants and perspectives. Underst. Freshw. Qual. Probl. Chang. World 2013, 361, 106–113. [Google Scholar]
- UNDP. Regional Human Development Report for Latin America and the Caribbean; Multidimensional Progress; Well-Being beyond Income; UNDP: New York, NY, USA, 2016. [Google Scholar]
- Sylvester, S.P.; Heitkamp, F.; Sylvester, M.D.P.V.; Jungkunst, H.F.; Sipman, H.J.M.; Toivonen, J.M.; Inca, C.A.G.; Ospina, J.C.; Kessler, M. Relict high-Andean ecosystems challenge our concepts of naturalness and human impact. Sci. Rep. 2017, 7, 3334. [Google Scholar] [CrossRef]
- Ríos-Touma, B.; Acosta, R.; Prat, N. The Andean Biotic Index (ABI): Revised tolerance to pollution values for macroinvertebrate families and index performance evaluation. Rev. Biol. Trop. 2014, 62, 249–273. [Google Scholar] [CrossRef]
- Lechner, A.M.; McIntyre, N.; Witt, K.; Raymond, C.M.; Arnold, S.; Scott, M.; Rifkin, W. Challenges of integrated modelling in mining regions to address social, environmental and economic impacts. Environ. Model. Softw. 2017, 93, 268–281. [Google Scholar] [CrossRef]
- O’Neill, C.A. Variable Justice: Environmental Standards, Contaminated Fish, and “Acceptable” Risk to Native Peoples. Stanf. Environ. Law J. 2000, 19, 3–120. [Google Scholar]
- Li, L.; Zheng, B.; Liu, L. Biomonitoring and Bioindicators Used for River Ecosystems: Definitions, Approaches and Trends. Procedia Environ. Sci. 2010, 2, 1510–1524. [Google Scholar] [CrossRef] [Green Version]
- Smucker, N.J.; Drerup, S.A.; Vis, M.L. Roles of benthic algae in the structure, function, and assessment of stream ecosystems affected by acid mine drainage. J. Phycol. 2014, 50, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Poulton, B.C.; Allert, A.L.; Besser, J.M.; Schmitt, C.J.; Brumbaugh, W.G.; Fairchild, J.F. A macroinvertebrate assessment of Ozark streams located in lead-zinc mining areas of the Viburnum Trend in southeastern Missouri, USA. Environ. Monit. Assess. 2010, 163, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D.S.; Brändle, J.M.; Seliger, C.; Zeiringer, B.; Ferreira, T.; Schmutz, S. Advancing towards functional environmental flows for temperate floodplain rivers. Sci. Total Environ. 2018, 633, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- INRENA. Inventario de Fuentes de Aguas Superficiales de la Cuenca del Mashcón; INRENA: Cajamarca, Perú, 2007. [Google Scholar]
- Tovar, C.; Seijmonsbergen, A.C.; Duivenvoorden, J.F. Monitoring land use and land cover change in mountain regions: An example in the Jalca grasslands of the Peruvian Andes. Landsc. Urban Plan. 2013, 112, 40–49. [Google Scholar] [CrossRef]
- MYSRL. Gestión del Agua en Yanacocha: Cuidados, Controles y Generación de Activos Ambientales; MYSRL: Lima, Peru, 2011. [Google Scholar]
- Aragón, F.M.; Rud, J.P. Natural Resources and Local Communities: Evidence from a Peruvian Gold Mine. Am. Econ. J. Econ. Policy 2013, 5, 1–25. [Google Scholar] [CrossRef]
- MYSRL. Reporte de Sostenibilidad 2015; MYSRL: Lima, Peru, 2015. [Google Scholar]
- Quagraine, E.K.; Adokoh, C.K. Assessment of dry season surface, ground, and treated water quality in the Cape Coast municipality of Ghana. Environ. Monit. Assess. 2009, 160, 521–539. [Google Scholar] [CrossRef] [PubMed]
- MINAM. Aprueban Estandares de Calidad Ambiental (ECA) Para Agua y Establecen Disposiciones Complementarias; MINAM: Magdalena del Mar, Peru, 2017; pp. 6–9. [Google Scholar]
- Srebotnjak, T.; Carr, G.; De Sherbinin, A.; Rickwood, C.; De Sherbinin, A. A global Water Quality Index and hot-deck imputation of missing data. Ecol. Indic. 2012, 17, 108–119. [Google Scholar] [CrossRef]
- Prati, L.; Pavanello, R.; Pesarin, F. Assessment of surface water quality by a single index of pollution. Water Res. 1971, 5, 741–751. [Google Scholar] [CrossRef]
- Roldán-Pérez, G. Los macroinvertebrados como bioindicadores de la calidad del agua: Cuatro décadas de desarrollo en Colombia y Latinoamerica. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2016, 40, 254. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
- Bruno, D.; Belmar, O.; Sánchez-Fernández, D.; Guareschi, S.; Millán, A.; Velasco, J. Responses of Mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecol. Indic. 2014, 45, 456–464. [Google Scholar] [CrossRef]
- Riseng, A.C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D.; Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D. Impacts of agricultural land use on biological integrity: A causal analysis. Ecol. Appl. 2016, 21, 3128–3146. [Google Scholar] [CrossRef]
- Gray, N.; Delaney, E. Measuring community response of bentic macroinvertebrates in an erosional river impacted by acid mine drainage by use of a simple model. Ecol. Indic. 2010, 10, 668–675. [Google Scholar] [CrossRef]
- Grufides “Las Aguas de la Minería Responsable en Cajamarca”—Caserío San José. Available online: https://www.youtube.com/watch?v=lFvvyAZBReg (accessed on 20 September 2018).
- Younger, P.L.; Wolkersdorfer, C. Minig Impacts on the fresh water environment: Technician and managerial guidelines for catchment scale management. Mine Water Environ. 2004, 23, 2–80. [Google Scholar]
- Jones, J.I.; Murphy, J.F.; Collins, A.L.; Spencer, K.L.; Rainbow, P.S.; Arnold, A.; Pretty, J.L.; Moorhouse, A.M.L.; Aguilera, V.; Edwards, P.; et al. The Impact of Metal-Rich Sediments Derived from Mining on Freshwater Stream Life. In Reviews of Environmental Contamination and Toxicology; de Voogt, P., Ed.; Springer International Publishing: Cham, Germany, 2020; Volume 248, pp. 111–189. ISBN 978-3-030-14706-8. [Google Scholar]
- Cooper, D.J.; Wolf, E.C.; Colson, C.; Vering, W.; Granda, A.; Meyer, M. Alpine Peatlands of the Andes, Cajamarca, Peru. Arct. Antarct. Alp. Res. 2010, 42, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, A.; De Bisthoven, L.J.; Soares, A. Macroinvertebrate response to acid mine drainage: Community metrics and on-line behavioural toxicity bioassay. Environ. Pollut. 2004, 130, 263–274. [Google Scholar] [CrossRef]
- Wright, I.A.; Ryan, M.M. Impact of mining and industrial pollution on stream macroinvertebrates: Importance of taxonomic resolution, water geochemistry and EPT indices for impact detection. Hydrobiologia 2016, 772, 103–115. [Google Scholar] [CrossRef]
- Ruse, L.P.; Herrmann, S.J. Plecoptera and Trichoptera species distribution related distribution related to environmental characteristics of the metal-polluted Arkansas River, Colorado. West. North Am. Nat. 2000, 60, 57–65. [Google Scholar]
- Goldschmidt, T. Water mites (Acari, Hydrachnidia): Powerful but widely neglected bioindicators—A review. Neotrop. Biodivers. 2016, 2, 12–25. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Greathouse, E.A.; Pringle, C.M. Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream. Can. J. Fish. Aquat. Sci. 2006, 63, 134–152. [Google Scholar] [CrossRef]
- Young, K.R.; Leon, B. Tree-line changes along the Andes: Implications of spatial patterns and dynamics. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Villamarín, C.; Rieradevall, M.; Paul, M.J.; Barbour, M.T.; Prat, N. A tool to assess the ecological condition of tropical high Andean streams in Ecuador and Peru: The IMEERA index. Ecol. Indic. 2013, 29, 79–92. [Google Scholar] [CrossRef]
- Van Sprang, P.; Verdonck, F.; Van Assche, F.; Regoli, L.; De Schamphelaere, K. Environmental risk assessment of zinc in European freshwaters: A critical appraisal. Sci. Total Environ. 2009, 407, 5373–5391. [Google Scholar] [CrossRef] [PubMed]
- Tarras-Wahlberg, N. Environmental management of small-scale and artisanal mining: The Portovelo-Zaruma goldmining area, southern Ecuador. J. Environ. Manag. 2002, 65, 165–179. [Google Scholar] [CrossRef]
- Ghosh, S.; Mohanty, S.; Akcil, A.; Sukla, L.B.; Das, A. A greener approach for resource recycling: Manganese bioleaching. Chemosphere 2016, 154, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Stella, P.; Aguinaga, G. International Cyanide Management Code Gold Mining Pperation Verification Audit: Yanacocha Mine, Peru (Summary Report); Golder Associates Inc.: Lakewood, CO, USA, 2008. [Google Scholar]
- Orian, E. The Transfer of Environmental Technology as a Tool for Empowering Communities in Conflict; The case of Participatory Water Monitoring in Cajamarca, Peru; University of Manchester: Manchester, UK, 2008. [Google Scholar]
- Pareja, C.; Honey-Rosés, J.; Kunz, N.C.; Fraser, J.; Xavier, A. What Participation? Distinguishing Water Monitoring Programs in Mining Regions Based on Community Participation. Water 2018, 10, 1325. [Google Scholar] [CrossRef]
- Carlier, A.; León, A. Tercer Encuentro Nacional de Comités de Monitoreo y Vigilancia Ambiental Participativos en Minería; CIRD: Lima, Peru, 2017. [Google Scholar]
- Harrison, I.; Abell, R.; Darwall, W.; Thieme, M.L.; Tickner, D.; Timboe, I. The freshwater biodiversity crisis. Science 2018, 362, 1369. [Google Scholar] [CrossRef]
- Bernet, T.; Hervé, D.; Lehmann, B.; Walker, T. Improving Land Use by Slope Farmers in the Andes: An Economic Assessment of Small-Scale Sprinkler Irrigation for Milk Production. Mt. Res. Dev. 2002, 22, 375–382. [Google Scholar] [CrossRef]
- ANA. Clasificación de los Cuerpos de Agua Continentales Superficiales; ANA: Lima, Peru, 2018. [Google Scholar]
- Pottgießer, T.; Sommerhäuser, M. Beschreibung und Bewertung der Deutschen Fließgewässertypen; Bewertung und Anhang; UBE: Essen, Germany, 2008. [Google Scholar]
- Nguyen, T.H.T.; Everaert, G.; Boets, P.; Forio, M.A.E.; Bennetsen, E.; Volk, M.; Hoang, T.H.T.; Goethals, P.L.M. Modelling Tools to Analyze and Assess the Ecological Impact of Hydropower Dams. Water 2018, 10, 259. [Google Scholar] [CrossRef]
- Ho, L.T.; Alvarado, A.; Larriva, J.; Pompeu, C.; Goethals, P. An integrated mechanistic modeling of a facultative pond: Parameter estimation and uncertainty analysis. Water Res. 2019, 151, 170–182. [Google Scholar] [CrossRef]
- Mercado-Garcia, D.; Wyseure, G.; Goethals, P. Freshwater Ecosystem Services in Mining Regions: Modelling Options for Policy Development Support. Water 2018, 10, 531. [Google Scholar] [CrossRef]
- Dudka, S.; Adriano, D.C. Environmental Impacts of Metal Ore Mining and Processing: A Review. J. Environ. Qual. 1997, 26, 590. [Google Scholar] [CrossRef]
- Fonseca, A.; McAllister, M.L.; Fitzpatrick, P. Sustainability reporting among mining corporations: A constructive critique of the GRI approach. J. Clean. Prod. 2014, 84, 70–83. [Google Scholar] [CrossRef]
- Azapagic, A. Developing a framework for sustainable development indicators for the mining and minerals industry. J. Clean. Prod. 2004, 12, 639–662. [Google Scholar] [CrossRef]
- Vannevel, R. The Pentatope Model: A holistic approach for analysing and reviewing environmental complexity. Sustain. Water Qual. Ecol. 2014, 1–2, 10–23. [Google Scholar] [CrossRef]
- Palma Gonzales, C.; Arana Maestre, J. Bentos (Macroinvertebrados). In Métodos de Colecta, Identificación y Análisis de Comunidades Biológicas: Plancton, Perifiton, Bentos (Macroinvertebrados) y Necton (Peces) en Aguas Continentales del Perú; Ministerio del Ambiente del Peru, Ed.; Universidad Nacional Mayor de San Marcos, Museo de Historia Natural: Lima, Peru, 2014; p. 75. ISBN 9786124174155. [Google Scholar]
- Comiskey, J.A.; Dallmeier, F.; Alonso, A. Conservation and development approaches to integrated inventory and monitoring for adaptive management. North Am. Sci. Symp. Towar. Unified Framew. Invent. Monit. For. Ecosyst. Resour. 1999, 256–260. [Google Scholar]
- Larson, L.R.; Poudyal, N.C. Developing sustainable tourism through adaptive resource management: A case study of Machu Picchu, Peru. J. Sustain. Tour. 2012, 20, 917–938. [Google Scholar] [CrossRef]
- UNEP-Inquiry. The Financial System We Need: Aligning the Financial System with Sustainable Development; UNEP: Geneva, Switzerland, 2015. [Google Scholar]
Subsystem | m.a.s.l. | Biophysical Characteristics | Anthropogenic Pressures on Rivers |
---|---|---|---|
Mine | 3270–3570 | More rainfall and UV radiation. Mainly herbaceous vegetation. Lower oxygen partial pressure. | Mining camp. Few houses and farms. Artificial headwaters recharge. Concrete channelling and bridges. |
Midstream | 2800–2960 | Combination of shrubs, trees and herbaceous vegetation. Pristine hydromorphology with pool–riffle sequences. | Extensive agriculture. Greenhouses. Dirt road network. Scattered rural community infrastructures. Water capture plant for the city. |
Porcon | 2780–2870 | Planted trees. Less riverbank vegetation. Less rainfall. Higher oxygen partial pressure. | Concrete floors, bridges and roads. Few farmlands. Riverbank stone extraction and granite factories. |
City | 2660–2780 | Biophysical characteristics resemble the Porcón group, but the valley is much broader. | Most urbanized area. Anthropized riverbanks and open littering. Discharge of untreated wastewater. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercado-Garcia, D.; Beeckman, E.; Van Butsel, J.; Arroyo, N.D.; Sanchez Peña, M.; Van Buggendhoudt, C.; De Saeyer, N.; Forio, M.A.E.; De Schamphelaere, K.A.C.; Wyseure, G.; et al. Assessing the Freshwater Quality of a Large-Scale Mining Watershed: The Need for Integrated Approaches. Water 2019, 11, 1797. https://doi.org/10.3390/w11091797
Mercado-Garcia D, Beeckman E, Van Butsel J, Arroyo ND, Sanchez Peña M, Van Buggendhoudt C, De Saeyer N, Forio MAE, De Schamphelaere KAC, Wyseure G, et al. Assessing the Freshwater Quality of a Large-Scale Mining Watershed: The Need for Integrated Approaches. Water. 2019; 11(9):1797. https://doi.org/10.3390/w11091797
Chicago/Turabian StyleMercado-Garcia, Daniel, Eveline Beeckman, Jana Van Butsel, Nilton Deza Arroyo, Marco Sanchez Peña, Cécile Van Buggendhoudt, Nancy De Saeyer, Marie Anne Eurie Forio, Karel A. C. De Schamphelaere, Guido Wyseure, and et al. 2019. "Assessing the Freshwater Quality of a Large-Scale Mining Watershed: The Need for Integrated Approaches" Water 11, no. 9: 1797. https://doi.org/10.3390/w11091797
APA StyleMercado-Garcia, D., Beeckman, E., Van Butsel, J., Arroyo, N. D., Sanchez Peña, M., Van Buggendhoudt, C., De Saeyer, N., Forio, M. A. E., De Schamphelaere, K. A. C., Wyseure, G., & Goethals, P. (2019). Assessing the Freshwater Quality of a Large-Scale Mining Watershed: The Need for Integrated Approaches. Water, 11(9), 1797. https://doi.org/10.3390/w11091797