Methods for Sample Collection, Storage, and Analysis of Freshwater Phosphorus
Abstract
:1. Background
2. Perspectives
3. Sampling
3.1. Leachate or Soil Solution
3.2. Runoff
3.3. Groundwater
3.4. Rivers and Streams
3.5. Lakes and Ponds
3.6. Wetlands and Estuaries
4. Future Perspectives of Freshwater Sampling Techniques
5. Sample Treatment and Storage
6. Phosphorus Fractionation and Determination
6.1. Dissolved Reactive P (DRP)
6.2. Total Dissolved Reactive P (TDRP)
6.3. Total Dissolved Phosphorus (TDP)
6.4. Total Particulate P (TPP)
6.5. Calculations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Dodds, W.K.; Smith, V.H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 2016, 6, 155–164. [Google Scholar] [CrossRef]
- De Jonge, V.N.; Elliott, M.; Orive, E. Causes, historical development, effects and future challenges of a common environmental problem: Eutrophication. Hydrobiologia 2002, 475, 1–19. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, A.N. Agriculture and Phosphorus Management: The Chesapeake Bay; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Kronvang, B.; Jeppesen, E.; Conley, D.J.; Sondergaard, M.; Larsen, S.E.; Ovesen, N.B.; Carstensen, J. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J. Hydrol. 2005, 304, 274–288. [Google Scholar] [CrossRef]
- Sundareshwar, P.V.; Morris, J.T.; Koepfler, E.K.; Fornwalt, B. Phosphorus limitation of coastal ecosystem processes. Science 2003, 299, 563–565. [Google Scholar] [CrossRef] [PubMed]
- Foy, R.H. The return of the phosphorus paradigm: Agricultural phosphorus and eutrophication. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy: Madison, WI, USA, 2005; pp. 911–939. [Google Scholar]
- Paerl, H.W.; Hall, N.S.; Peierls, B.L.; Rossignol, K.L. Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuar. Coasts 2014, 37, 243–258. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Daniel, T.C.; Edwards, D.R. Phosphorus movement in the landscape. J. Prod. Agric. 1993, 6, 492–500. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Worsfold, P.; McKelvie, I.; Monbet, P. Determination of phosphorus in natural waters: A historical review. Analytica Chimica Acta 2016, 918, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Currie, D.F.; Kalff, J. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 1984, 29, 311–321. [Google Scholar] [CrossRef]
- Dyhrman, S.T.; Chappell, P.D.; Haley, S.T.; Moffett, J.W.; Orchard, E.D.; Waterbury, J.B.; Webb, E.A. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 2006, 439, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmy, S.A. A phosphate alternative. Nature 2006, 439, 25–26. [Google Scholar] [CrossRef] [PubMed]
- Kulaev, I.S.; Vagabo, V.M.; Kulakovskaya, T.V. The chemical structures and properties of condensed inorganic phosphates. In The Biochemistry of Inorganic Phosphates; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Rossin, A.C.; Lester, J.N. An evaluation of some of the methods available for the preservation of condensed phosphates in samples of wastewater. Environ. Tech. Lett. 1980, 1, 9–16. [Google Scholar] [CrossRef]
- Baldwin, D.S. Organic phosphorus in the aquatic environment. Environ. Chem. 2013, 10, 439–454. [Google Scholar] [CrossRef]
- Bridgeman, T.B.; Chaffin, J.D.; Kane, D.D.; Conroy, J.D.; Panek, S.E.; Armenio, P.M. From river to lake: Phosphorus partitioning and algal community compositional changes in Western Lake Erie. J. Gt. Lakes Res. 2012, 38, 90–97. [Google Scholar] [CrossRef]
- Reddy, K.R.; DeLaune, R.D. Biogeochemistry of Wetlands: Science and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Dayton, E.A.; Whitacre, S.; Holloman, C. Comparison of three persulfate digestion methods for total phosphorus analysis and estimation of suspended sediments. Appl. Geochem. 2017, 78, 357–362. [Google Scholar] [CrossRef]
- Cade-Menun, B.J.; Navaratnam, J.A.; Walbridge, M.R. Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environ. Sci. Technol. 2006, 40, 7874–7880. [Google Scholar] [CrossRef]
- Eveborn, D.; Gustafsson, J.P.; Hesterberg, D.; Hillier, S. XANES Speciation of P in environmental samples: An assessment of filter media for on-site wastewater treatment. Environ. Sci. Technol. 2009, 43, 6515–6521. [Google Scholar] [CrossRef]
- Worsfold, P.J.; Gimbert, L.J.; Mankasingh, U.; Omaka, O.N.; Hanrahan, G.; Gardolinski, P.C.F.C.; Haygarth, P.M.; Turner, B.L.; Roach, M.J.K.; McKelvie, I.D. Sampling, sample treatment and quality assurance issues for the determination of phosphorus species in natural waters and soils. Talanta 2005, 66, 273–293. [Google Scholar] [CrossRef]
- Behmel, S.; Damour, M.; Ludwiq, R.; Rodriguez, M.J. Water quality monitoring strategies—A review and future perspectives. Sci. Total Environ. 2016, 571, 1312–1329. [Google Scholar] [CrossRef] [PubMed]
- Litaor, M. Review of soil solution samplers. Water Resour. Res. 1988, 24, 727–733. [Google Scholar] [CrossRef]
- Blann, K.L.; Anderson, J.L.; Sands, G.R.; Vondracek, B. Effects of agricultural drainage on aquatic ecosystems: A review. Crit. Rev. Env. Sci. Tec. 2009, 39, 909–1001. [Google Scholar] [CrossRef]
- Lawlor, P.A.; Helmers, M.J.; Baker, J.L.; Melvin, S.W.; Lemke, D.W. Nitrogen application rate effects on nitrate-nitrogen concentrations and losses in subsurface drainage. Trans. ASABE 2008, 51, 83–94. [Google Scholar] [CrossRef]
- Bergstrom, L. Nitrate leaching and drainage from annual and perennial crops in tile-drained plots and lysimeters. J. Environ. Qual. 1987, 16, 11–18. [Google Scholar] [CrossRef]
- Jacobsen, O.H.; Kjær, J. Is drainage water representative for root zone leaching of pesticides–A review. Pest. Manag. Sci. 2007, 613, 417–428. [Google Scholar] [CrossRef]
- Briggs, L.J.; McCall, A.G. An artificial root for inducing capillary movement of soil moisture. Science 1904, 20, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Joffe, J.S. Lysimeter studies: II. The movement and translocation of soil constituents in the soil profile. Soil Sci. 1933, 35, 239–257. [Google Scholar] [CrossRef]
- Kohnke, H.; Dreibelbis, F.R.; Davidson, J.M. A Survey and Discussion of Lysimeters and a Bibliography on Their Construction and Performance; United States Department of Agriculture: Washington, DC, USA, 1940.
- Neary, A.J.; Tomassini, F. Preparation of alundum/ceramic plate tension lysimeters for soil water collection. Can. J. Soil Sci. 1985, 65, 169–177. [Google Scholar] [CrossRef]
- Angle, J.S.; McIntosh, M.S.; Hill, R.L. Tension lysimeters for collecting soil percolate. In Groundwater Residue Sampling Design; Nash, R.G., Leslie, A.R., Eds.; ACS Publications: Washington, DC, USA, 1991; pp. 290–299. [Google Scholar]
- Fares, A.; Deb, S.K.; Fares, S. Review of vadose zone soil solution sampling techniques. Environ. Rev. 2009, 17, 215–234. [Google Scholar] [CrossRef]
- Thompson, M.L.; Scharf, R.L. An improved zero-tension lysimeter to monitor colloid transport in soils. J. Environ. Qual. 1994, 23, 378–383. [Google Scholar] [CrossRef]
- Sui, Y.; Thompson, M.L.; Mize, C.W. Redistribution of biosolids-derived total P applied to a Mollisol. J. Environ. Qual. 1999, 28, 1068–1074. [Google Scholar] [CrossRef]
- Miller, J.H. A comparison of cation sampling in forest soils by tension and tension-free lysimeters. In Proceedings of the 1st Biennial Southern Silvicultural Research Conference, Atlanta, GA, USA, 6–7 November 1980; Barnett, J.P., Ed.; Gen. Tech. Rep. SO-34. USDA Forest Service: New Orleans, LA, USA, 1981. [Google Scholar]
- Giesler, R.; Lundström, U.S.; Grip, H. Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation. Eur. J. Soil Sci. 1996, 47, 395–405. [Google Scholar] [CrossRef]
- Corwin, D.L. Evaluation of a simple lysimeter design modification to minimize sidewall flow. J. Contam. Hydrol. 2000, 42, 35–49. [Google Scholar] [CrossRef]
- Wang, Q.; Cameron, K.; Buchan, G.; Zhao, L.; Zhang, E.H.; Smith, N.; Carrick, S. Comparison of lysimeters and porous ceramic cups for measuring nitrate leaching in different soil types. N. Z. J. Agric. Res. 2012, 55, 333–345. [Google Scholar] [CrossRef]
- Boll, J.; Steenhuis, T.S.; Selker, J.S. Fiberglass wicks for sampling of water and solutes in the vadose zone. Soil Sci. Soc. Am. J. 1992, 56, 701–707. [Google Scholar] [CrossRef]
- Jabro, J.D.; Kim, Y.; Evans, R.G.; Iversen, W.M.; Stevens, W.B. Passive capillary sampler for measuring soil water drainage and flux in the vadose zone: Design, performance, and enhancement. Appl. Eng. Agric. 2008, 24, 439–446. [Google Scholar] [CrossRef]
- De Jonge, H.; Rothenberg, G. New device and method for flux-proportional sampling of mobile solutes in soil and groundwater. Environ. Sci. Technol. 2005, 39, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, A.R.; Herbert, S.J.; Hashemi, A.M.; Hu, C.S. Passive pan sampler for vadose zone leachate collection. Soil Sci. Soc. Am. J. 2004, 68, 744–749. [Google Scholar] [CrossRef]
- Jabro, J.D.; Iversen, W.M.; Evans, R.G. Performance evaluation and accuracy of passive capillary samplers (PCAPs) for estimating real-time drainage water fluxes. Appl. Eng. Agric. 2012, 28, 537–542. [Google Scholar] [CrossRef]
- Chou, C.M. Complexity analysis of rainfall and runoff time series based on sample entropy in different temporal scales. Stochastic. Environ. Res. Risk Assess 2014, 28, 1401–1408. [Google Scholar] [CrossRef]
- Gaelen, N.V.; Verschoren, V.; Clymans, W.; Poesen, J.; Govers, G.; Vanderborght, J.; Diels, J. Controls on dissolved organic carbon export through surface runoff from loamy agricultural soils. Geoderma 2014, 226, 387–396. [Google Scholar] [CrossRef]
- Li, Z.W.; Liu, L.; Nie, X.D.; Chang, X.F.; Liu, C.; Xiao, H.B. Modeling soil organic carbon loss in relation to flow velocity and slope on the Loess Plateau of China. Soil Sci. Soc. Am. J. 2016, 80, 1341. [Google Scholar] [CrossRef]
- Jokela, W.; Casler, M. Transport of phosphorus and nitrogen in surface runoff in a corn silage system: Paired watershed methodology and calibration period results. Can. J. Soil Sci. 2011, 91, 479–491. [Google Scholar] [CrossRef]
- Tomer, M.D.; Moorman, T.B.; Kovar, J.L.; Cole, K.J.; Nichols, D.J. Eleven years of runoff and phosphorus losses from two fields with and without manure application, Iowa, USA. Agric. Water Manag. 2016, 168, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Bonta, J.V.; Pierson, F.B. Design, measurement, and sampling with drop-box weirs. Appl. Eng. Agric. 2003, 19, 689–700. [Google Scholar] [CrossRef]
- Poudel, D.D.; Jeong, C.Y. Manual composite sampling in edge-of-field surface runoff for assessing nonpoint source pollution from agricultural lands and residential areas. J. Soil Water Conserv. 2009, 64, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Toor, G.S.; Occhipinti, M.L.; Yang, Y.Y.; Majcherek, T.; Haver, D.; Oki, L. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff. PLoS ONE 2017, 12, e0179151. [Google Scholar] [CrossRef]
- Schleppi, P.; Walder, P.A.; Stähli, M. Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling. J. Hydrol. 2006, 319, 266–281. [Google Scholar] [CrossRef]
- Fučík, P.; Zajíček, A.; Kaplická, M.; Duffková, R.; Peterková, J.; Maxová, J.; Takáčová, Š. Incorporating rainfall runoff events into nitrate-nitrogen and phosphorus load assessments for small tile-drained catchments. Water 2017, 9, 712. [Google Scholar] [CrossRef]
- Ma, J.A.; Kang, J.H.; Kayhanian, M.; Stenstrom, M.K. Sampling issues in urban runoff monitoring programs: Composite versus grab. J. Environ. Eng. 2009, 135, 118–127. [Google Scholar] [CrossRef]
- Rozemeijer, J.C.; van der Velde, Y.; van Geer, F.C.; de Rooij, G.H.; Torfs, P.J.J.F.; Broers, H.P. Improving load estimates for NO3 and P in surface waters by characterizing the concentration response to rainfall events. Environ. Sci. Technol. 2010, 44, 6305–6312. [Google Scholar] [CrossRef] [PubMed]
- Appel, P.L.; Hudak, P.F. Automated sampling of stormwater runoff in an urban watershed, north-central Texas. J. Environ. Sci. Health Part A. 2001, 36, 897–907. [Google Scholar] [CrossRef]
- Harmel, R.D.; King, K.W.; Slade, R.M. Automated storm water sampling on small watersheds. Appl. Eng. Agric. 2003, 19, 667–674. [Google Scholar] [CrossRef]
- Gorecki, T.; Namiesnik, J. Passive sampling. Trends Anal. Chem. 2002, 21, 276–291. [Google Scholar] [CrossRef]
- Vrana, B.; Allan, I.J.; Greenwood, R.; Mills, G.A.; Dominiak, E.; Svensson, K.; Knutsson, J.; Morrison, G. Passive sampling techniques for monitoring pollutants in water. Trends Anal. Chem. 2005, 24, 845–868. [Google Scholar] [CrossRef]
- Knutsson, J.; Rauch, S.; Morrison, G.M. Performance of a passive sampler for the determination of time averaged concentrations of nitrate and phosphate in water. Environ. Sci. Proces. Impacts 2013, 15, 955–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, Y.; Klein, M.; Zhang, T.C.; Stansbury, J.; Moussavi, M.; Richter-Egger, D.L.; Zeng, J. Feasibility of developing a passive sampler for sampling heavy metals in BMPs for stormwater runoff management. Environ. Technol. 2019, 40, 1517–1524. [Google Scholar] [CrossRef]
- Rozemeijer, J.; van der Velde, Y.; de Jonge, H.; van Geer, F.; Broers, H.P.; Bierkens, M. Application and evaluation of a new passive sampler for measuring average solute concentrations in a catchment scale water quality monitoring study. Environ. Sci. Technol. 2010, 44, 1353–1359. [Google Scholar] [CrossRef]
- Aguilar-Martinez, R.; Palacios-Corvillo, M.A.; Greenwood, R.; Mills, G.A.; Vrana, B.; Gómez-Gómez, M.M. Calibration and use of the Chemcatcher® passive sampler for monitoring organotin compounds in water. Anal. Chim. Acta 2008, 618, 157–167. [Google Scholar] [CrossRef]
- Vrana, B.; Mills, G.A.; Leonards, P.E.G.; Kotterman, M.; Weideborg, M.; Hajslova, J.; Kocourek, V.; Tomaniova, M.; Pulkrabova, J.; Suchanova, M.; et al. Field performance of the Chemcatcher passive sampler for monitoring hydrophobic organic pollutants in surface water. J. Environ. Monit. 2010, 12, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, R.; Mills, G.A.; Vrana, B.; Allan, I.J.; Aguilar-Martinez, R.; Morrison, G. Monitoring of priority pollutants in water using Chemcatcher® passive sampling devices. In Passive Sampling Techniques in Environmental Monitoring; Greenwood, R., Mills, G., Vrana, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 199–229. [Google Scholar]
- Davison, W.; Zhang, H. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 1994, 367, 546–548. [Google Scholar] [CrossRef] [Green Version]
- Trowsdale, S.A.; Arnold, G.C. Monitoring efficiency of urban stormwater treatment devices: Discrete-sampling vs. diffusive gradient in a thin film technique. Water Prac. Technol. 2007, 2. [Google Scholar] [CrossRef]
- Munksgaard, N.C.; Lottermoser, B.G. Mobility and potential bioavailability of traffic-derived trace metals in a ‘wet–dry’ tropical region, Northern Australia. Environ. Earth. Sci. 2010, 60, 1447–1458. [Google Scholar] [CrossRef]
- Dabrin, A.; Ghestem, J.P.; Uher, E.; Gonzalez, J.L.; Allan, I.J.; Schintu, M.; Montero, N.; Balaam, J.; Peinerud, E.; Miege, C.; et al. Metal measurement in aquatic environments by passive sampling methods: Lessons learning from an in situ intercomparison exercise. Environ. Pollut. 2016, 208, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Namieśnik, J.; Zabiegała, B.; Kot-Wasik, A.; Partyka, M.; Wasik, A. Passive sampling and/or extraction techniques in environmental analysis: A review. Anal. Bioanal. Chem. 2005, 381, 279–301. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Li, K.; Wu, C.; Wang, L.; Sun, H. Passive sampling for monitoring polar organic pollutants in water by three typical samplers. Trends Anal. Chem. 2018, 17, 23–33. [Google Scholar] [CrossRef]
- Sundaram, B.; Feitz, A.; de Caritat, P.; Plazinska, A.; Brodie, R.S.; Coram, J.; Ransley, T. Groundwater sampling and analysis–a field guide. Geosci. Aust. Rec. 2009, 27, 104. [Google Scholar]
- Britt, S.L.; Parker, B.L.; Cherry, J.A. A downhole passive sampling system to avoid bias and error from groundwater sample handling. Environ. Sci. Technol. 2010, 44, 4917–4923. [Google Scholar] [CrossRef]
- Martin, H.; Patterson, B.M.; Davis, G.B.; Grathwohl, P. Field trial of contaminant groundwater monitoring: Comparing time-integrating ceramic dosimeters and conventional water sampling. Environ. Sci. Technol. 2003, 37, 1360–1364. [Google Scholar] [CrossRef]
- Bopp, S.K.; McLachlan, M.S.; Schirmer, K. Passive sampler for combined chemical and toxicological long-term monitoring of groundwater: The ceramic toximeter. Environ. Sci. Technol. 2007, 41, 6868–6876. [Google Scholar] [CrossRef] [PubMed]
- Page, D.; Miotliński, K.; Gonzalez, D.; Barry, K.; Dillon, P.; Gallen, C. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques. J. Contam. Hydrol. 2014, 158, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Bopp, S.; Weiß, H.; Schirmer, K. Time-integrated monitoring of polycyclic aromatic hydrocarbons (PAHs) in groundwater using the Ceramic Dosimeter passive sampling device. J. Chromatogr. A 2005, 1072, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Besmer, M.D.; Hammes, F.; Sigrist, J.A.; Ort, C. Evaluating monitoring strategies to detect precipitation-induced microbial contamination events in karstic springs used for drinking water. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.T.; Adams, G.; Sharum, M.; Steelman, K.L. Passive sampling of bioavailable organic chemicals in Perry County, Missouri cave streams. Environ. Sci. Technol. 2010, 44, 8835–8841. [Google Scholar] [CrossRef] [PubMed]
- Meus, P.; Moureaux, P.; Gailliez, S.; Flament, J.; Delloye, F.; Nix, P. In situ monitoring of karst springs in Wallonia (southern Belgium). Environ. Earth Sci. 2013, 71, 533–541. [Google Scholar] [CrossRef]
- Meays, C.; Broersma, K.; Nordin, R.; Mazumder, A.; Samadpour, M. Diurnal variability in concentrations and sources of E. coli in three streams. Can. J. Microbiol. 2006, 52, 1130–1135. [Google Scholar] [CrossRef]
- Deng, A.; Ye, C.; Liu, W. Spatial and seasonal patterns of nutrients and heavy metals in twenty-seven rivers draining into the South China Sea. Water 2018, 10, 50. [Google Scholar] [CrossRef]
- Karamouz, M.; Kerachian, R.; Akhbari, M.; Maksimovic, C. Design of river water quality monitoring networks: A case study. Environ. Model. Assess. 2009, 14, 705–714. [Google Scholar] [CrossRef]
- Telci, I.T.; Nam, K.; Guan, J.; Aral, M.M. Optimal water quality monitoring network design for river systems. J. Environ. Manag. 2009, 90, 2987–2998. [Google Scholar] [CrossRef]
- Alvarez-Vázquez, L.J.; Martínez, A.; Vázquez-Méndez, M.E.; Vilar, M.A. Optimal location of sampling points for river pollution control. Math. Comput. Simul. 2006, 71, 149–160. [Google Scholar] [CrossRef]
- Do, H.T.; Lo, S.L.; Chiueh, P.T.; Thi, L.A.P. Design of sampling locations for mountainous river monitoring. Environ. Model. Softw. 2012, 27, 62–70. [Google Scholar] [CrossRef]
- Varekar, V.; Karmakar, S.; Jha, R.; Ghosh, N.C. Design of sampling locations for river water quality monitoring considering seasonal variation of point and diffuse pollution loads. Environ. Monit. Assess. 2015, 187, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Harmel, R.D.; Slade, R.M.; Haney, R.L. Impact of sampling techniques on measured stormwater quality data for small streams. J. Environ. Qual. 2010, 39, 1734–1742. [Google Scholar] [CrossRef] [PubMed]
- Roig, B.; Delpla, I.; Baurès, E.; Jung, A.V.; Thomas, O. Analytical issues in monitoring drinking-water contamination related to short-term, heavy rainfall events. Trends Anal. Chem. 2011, 30, 1243–1251. [Google Scholar] [CrossRef]
- Aguilar-Martínez, R.; Gómez-Gómez, M.M.; Greenwood, R.; Mills, G.A.; Vrana, B.; Palacios-Corvillo, M.A. Application of Chemcatcher® passive sampler for monitoring levels of mercury in contaminated river water. Talanta 2009, 77, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Vrana, B.; Klucarova, V.; Benicka, E.; Abou-Mrad, N.; Amdany, R.; Horakova, S.; Draxler, A.; Humer, F.; Gans, O. Passive sampling: An effective method for monitoring seasonal and spatial variability of dissolved hydrophobic organic contaminants and metals in the Danube river. Environ. Pollut. 2014, 184, 101–112. [Google Scholar] [CrossRef]
- Triska, F.J.; Kennedy, V.C.; Avanzino, R.J.; Zellweger, G.W.; Bencala, K.E. Retention and transport of nutrients in a third-order stream in northwestern California: Hyporheic Processes. Ecology 1989, 70, 1893–1905. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Gooddy, D.C.; Jarvie, H.P. Understanding hosphorus mobility and bioavailability in the hyporheic zone of a chalk stream. Water Air Soil Pollut. 2010, 218, 213–226. [Google Scholar] [CrossRef]
- Vervier, P.; Bonvallet-Garay, S.; Sauvage, S.; Valett, H.M.; Sanchez-Perez, J.M. Influence of the hyporheic zone on the phosphorus dynamics of a large gravel-bed river, Garonne River, France. Hydrol. Process. 2009, 23, 1801–1812. [Google Scholar] [CrossRef] [Green Version]
- White, D.S. Perspectives on defining and delineating hyporheic zones. J. N. Am. Benthol. Soc. 1993, 12, 61–69. [Google Scholar] [CrossRef]
- Palmer, M.A.; Strayer, D.S. Chapter 15. Meiofauna. In Methods in Stream Ecology; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press: New York, NY, USA, 1996; pp. 315–337. [Google Scholar]
- Wagner, F.; Zimmermann-Timm, H.; Schonborn, W. The bottom sampler—a new technique for sampling bed sediments in streams and lakes. Hydrobiologia 2003, 505, 73–76. [Google Scholar] [CrossRef]
- Toran, L.; Hughes, B.; Nyquist, J.; Ryan, R. Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone. Groundwater 2013, 51, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Namba, T.; Tanida, K.; Takemon, Y. Evaluation of a pump method for unbiased sampling of stream hyporheos. Hydrobiologia 2014, 730, 29–43. [Google Scholar] [CrossRef]
- Hunt, G.W.; Stanley, E.H. An evaluation of alternative procedures using the Bou-Rouch method for sampling hyporheic invertebrates. Can. J. Fish Aquat. Sci. 2000, 57, 1545–1550. [Google Scholar] [CrossRef]
- Briggs, M.A.; Lautz, L.K.; Hare, D.K. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams. Freshw. Sci. 2013, 32, 622–641. [Google Scholar] [CrossRef]
- Biddulph, M. Hyporheic Zone: In Situ Sampling. In Geomorphological Techniques; British Society for Geomorphology: London, UK, 5859; Available online: https://pdfs.semanticscholar.org/8fdb/5859b1a08634dfc50c1a479eaef897882eb7.pdf (accessed on 6 September 2019).
- Martin, G.R.; Smoot, J.L.; White, K.D. A comparison of surface-grab and cross sectionally integrated stream-water-quality sampling methods. Water Environ. Res. 1992, 64, 866–876. [Google Scholar] [CrossRef]
- Golnick, P.C.; Chaffin, J.D.; Bridgeman, T.B.; Zellner, B.C.; Simons, V.E. A comparison of water sampling and analytical methods in western Lake Erie. J. Great Lakes. Res. 2016, 42, 965–971. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, Y.; Mannaerts, C.M. Evaluating organochlorine pesticide residues in the aquatic environment of the Lake Naivasha River basin using passive sampling techniques. Environ. Monit. Assess. 2018, 190, 349. [Google Scholar] [CrossRef] [Green Version]
- Keddy, P.A. Wetland Ecology: Principles and Conservation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0521519403. [Google Scholar]
- Brooks, K.N.; Ffolliott, P.F.; Gregersen, H.M.; DeBano, L.F. Hydrology and the Management of Watersheds, 3rd ed.; Iowa State University Press: Iowa, IW, USA, 2003. [Google Scholar]
- Carleton, J.N.; Grizzard, T.J.; Godrej, A.N.; Post, H.E. Factors affecting the performance of stormwater treatment wetlands. Water Res. 2001, 35, 1552–1562. [Google Scholar] [CrossRef]
- Minesota Pollution Control Agency (MPCA). Water chemistry assessment protocol for wetland monitoring sites. Available online: www.pca.state.mn.us (accessed on 23 January 2019).
- Dunn, R.J.; Teasdale, P.R.; Warnken, J.; Schleich, R.R. Evaluation of the diffusive gradient in a thin film technique for monitoring trace metal concentrations in estuarine waters. Environ. Sci. Technol. 2003, 37, 2794–2800. [Google Scholar] [CrossRef] [PubMed]
- Swanson, R.B. Methods for Monitoring Physical, Chemical, and Biological Characteristics at Selected Wetlands in the Platte River Basin, Nebraska; US Geological Survey: Reston, VA, USA, 1995.
- Jordan, T.E.; Whigham, D.F.; Hofmockel, K.H.; Pittek, M.A. Nutrient and sediment removal by a restored wetland receiving agricultural runoff. J. Environ. Qual. 2003, 32, 1534–1547. [Google Scholar] [CrossRef] [PubMed]
- Kynkäänniemi, P.; Ulén, B.; Torstensson, G.; Tonderski, K.S. Phosphorus retention in a newly constructed wetland receiving agricultural tile drainage water. J. Environ. Qual. 2013, 42, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, A.M.; Beaton, A.D.; Mowlem, M.C. Trends in microfluidic systems for in situ chemical analysis of natural waters. Sens. Actuators B Chem. 2015, 221, 1398–1405. [Google Scholar] [CrossRef] [Green Version]
- Clinton-Bailey, G.S.; Grand, M.M.; Beaton, A.D.; Nightingale, A.M.; Owsianka, D.R.; Slavik, G.J.; Connelly, D.P.; Cardwell, C.L.; Mowlem, M.C. A lab-on-chip analyzer for in situ measurement of soluble reactive phosphate: Improved phosphate blue assay and application to fluvial monitoring. Environ. Sci. Technol. 2017, 51, 9989–9995. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.J.; Kurz, M.J.; Heffernan, J.B.; Martin, J.B.; Douglass, R.L.; Foster, C.R.; Thomas, R.G. Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecol. Monogr. 2013, 83, 155–176. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, M.C.H.; Bowden, W.B.; Shanley, J.B.; Vermilyea, A.; Wemple, B.; Schroth, A.W. Using in situ UV-visible spectrophotometer sensors to quantify riverine phosphorus partitioning and concentration at a high frequency. Limnol. Oceanogr. Methods 2018. [Google Scholar] [CrossRef]
- Tonderski, K.; Andersson, L.; Lindström, G.; St Cyr, R.; Schönberg, R.; Taubald, H. Assessing the use of δ18O in phosphate as a tracer for catchment phosphorus sources. Sci. Total Environ. 2017, 607, 1–10. [Google Scholar] [CrossRef]
- McLaughlin, K.; Cade-Menun, B.J.; Paytan, A. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources. Estuar. Coast. Shelf. Sci. 2006, 70, 499–506. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, J.; Zhang, R.; Liu, Y.; Wang, J. The oxygen isotopic composition of phosphate as an effective tracer for phosphate sources in Hongfeng Lake. Acta Geochim. 2017, 36, 619–625. [Google Scholar] [CrossRef]
- Granger, S.J.; Heaton, T.H.E.; Pfahler, V.; Blackwell, M.S.A.; Yuan, H.; Collins, A.L. The oxygen isotopic composition of phosphate in river water and its potential sources in the Upper River Taw catchment, UK. Sci. Total Environ. 2017, 574, 680–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsbury, K.E.; Paytan, A.; Ostrom, N.E.; Kendall, C.; Young, M.B.; McLaughlin, K.; Rollog, M.E.; Watson, S. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie. Environ. Sci. Technol. 2009, 43, 3108–3114. [Google Scholar] [CrossRef] [PubMed]
- Gooddy, D.C.; Lapworth, D.J.; Bennett, S.A.; Heaton, T.H.E.; Williams, P.J.; Surridge, B.W.J. A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. Water Res. 2016, 88, 623–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, W.; Williams, M.R.; Young, M.B.; King, K.W.; Fischer, E. Assessing Intra-Event Phosphorus Dynamics in drainage water using phosphate stable oxygen isotopes. Trans. ASABE 2018, 61, 1379–1392. [Google Scholar] [CrossRef]
- Klingaman, E.D.; Nelson, D.W. Evaluation of methods for preserving the levels of soluble inorganic phosphorus and nitrogen in unfiltered water samples. J. Environ. Qual. 1976, 51, 42–46. [Google Scholar] [CrossRef]
- Maher, W.; Woo, L. Procedures for the storage and digestion of natural waters for the determination of fiterable reactive phosphorus, total fiterable phosphorus and total phosphorus. Anal. Chim. Acta 1998, 375, 5–47. [Google Scholar] [CrossRef]
- Gardolinski, P.C.F.C.; Hanrahan, G.; Achterberg, E.P.; Gledhill, M.; Tappin, A.D.; House, W.A.; Worsfold, P.J. Comparison of sample storage protocols for the determination of nutrients in natural waters. Water Res. 2001, 35, 3670–3678. [Google Scholar] [CrossRef]
- Hall, G.E.M.; Bonham-Carter, G.F.; Horowitz, A.J.; Lum, K.; Lemieux, C.; Quemarais, B.; Garbarino, J.R. The effect of using different 0.45 µm filter membranes on dissolved element concentrations in natural waters. Appl. Geochem. 1996, 11, 243–249. [Google Scholar] [CrossRef]
- Horowitz, A.J.; Elrick, K.A.; Colberg, M.R. The effect of membrane filtration artifacts on dissolved trace element concentrations. Water Resour. 1992, 26, 753–763. [Google Scholar] [CrossRef]
- Neal, C.; Harrow, M.; Williams, R.J. Dissolved carbon dioxide and oxygen in the river Thames: Spring-Summer 1997. Sci. Total Environ. 1998, 210, 205–217. [Google Scholar] [CrossRef]
- Hooda, P.S.; Moynagh, M.; Svoboda, I.F.; Edwards, A.C.; Anderson, H.A.; Sym, G. Phosphorus loss in drainflow from intensively managed grassland soils. J. Environ. Qual. 1999, 28, 1235–1242. [Google Scholar] [CrossRef]
- Hahn, C.; Prasuhn, V.; Stamm, C.; Schulin, R. Phosphorus losses in runoff from manured grassland of different soil P status at two rainfall intensities. Agric. Ecosyst. Environ. 2012, 153, 65–74. [Google Scholar] [CrossRef]
- Lin, P.; Chen, M.; Guo, L. Speciation and transformation of phosphorus and its mixing behavior in the Bay of St. Louis estuary in the northern Gulf of Mexico. Geochim. Cosmochim. Acta 2012, 87, 283–298. [Google Scholar] [CrossRef]
- McKelvie, I.D.; Hart, B.T.; Cardwell, T.J.; Cattrall, R.W. Speciation of dissolved phosphorus in environmental samples by gel filtration and flow-injection analysis. Talanta 1993, 40, 1981–1993. [Google Scholar] [CrossRef]
- House, W.A.; Denison, F.H. Phosphorus dynamics in a lowland river. Water Res. 1998, 32, 1819–1830. [Google Scholar] [CrossRef]
- Audrey, D.L.; Tchobanoglous, G.; Asano, T. Characterization of the size distribution of contaminants in wastewater: Treatment and reuse implications. J. Water Pollut. Control. Fed. 1985, 57, 805–816. [Google Scholar]
- Nieuwenhuijzen, A.F.V.; Mels, A.R. Characterisation of particulate matter in municipal wastewater. In Chemical Water and Wastewater Treatment VII; Hahn, H., Hoffman, E., Odegaard, H., Eds.; IWA Publishing: London, UK, 2002. [Google Scholar]
- Jarvie, H.P.; Neal, C.; Rowland, A.P.; Neal, M.; Morris, P.N.; Lead, J.R.; Lawlor, A.J.; Woods, C.; Vincent, C.; Guyatt, H.; et al. Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland–lowland land-use continuum, under low-flow conditions. Sci. Total Environ. 2012, 434, 171–185. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2003. [Google Scholar]
- Van Vedhoven, P.P.; Mannaerts, G.P. Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 1987, 161, 45–48. [Google Scholar] [CrossRef]
- Nagul, E.A.; Kolev, S.D.; McKelvie, I.D.; Worsfold, P.J. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. Anal. Chim. Acta 2015, 890, 60–82. [Google Scholar] [CrossRef] [Green Version]
- Rahutomo, S.; Kovar, J.L.; Thompson, M.L. Malachite green method for determining phosphorus concentration in diverse matrices. Commun. Soil Sci. Plant Anal. 2019. [Google Scholar] [CrossRef]
- Haygarth, P.M.; Sharpley, A.N. Terminology for phosphorus transfer. J. Environ. Qual. 2000, 29, 10–15. [Google Scholar] [CrossRef]
- Pote, D.H.; Booneville, A.R.; Daniel, T.C. Dissolved phosphorus in water samples. In Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters, 2nd ed.; Kovar, J.L., Pierzynski, G.M., Eds.; North Carolina State University: Raleigh, NC, USA, 2009; pp. 110–112. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Methods of Chemical Analysis of Water and Wastes; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1978.
- Koroleff, J. Determination of total phosphorus by alkaline persulphate oxidation. In Methods of Seawater Analysis; Grasshoff, K., Ehrhardt, M., Kremling, K., Eds.; Verlag Chemie: Wienheim, Germany, 1983; pp. 136–138. [Google Scholar]
- Patton, C.J.; Kryskalla, J.R. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory: Evaluation of alkaline persulfate digestion as an alternate to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water. USGS Water Res. Invest. Rep. 2003, 3, 33. [Google Scholar]
- Huang, X.L.; Zhang, J.Z. Neutral persulfate digestion at sub-boiling temperature in an oven for total dissolved phosphorus determination in natural waters. Talanta 2009, 78, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Rowland, A.P.; Haygarth, P.M. Determination of total dissolved phosphorus in soil solutions. J. Environ. Qual. 1997, 26, 410–415. [Google Scholar] [CrossRef]
- Huang, X.L.; Zhang, J.Z. Rate of phosphoantimonylmolybdenum blue complex formation in acidic persulfate digested sample matrix for total dissolved phosphorus determination: Importance of post-digestion pH adjustment. Talanta 2008, 77, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Z. Current wet persulfate digestion method considerably underestimates total phosphorus content in natural waters. Environ. Sci. Technol. 2012, 46, 13033–13034. [Google Scholar] [CrossRef] [PubMed]
- Aspila, K.I.; Agemian, H.; Chau, A.S.Y. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 1976, 101, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Loh, A.N.; Bauer, J.E. Distribution, partitioning and fluxes of dissolved and particulate organic C, N and P in the eastern North Pacific and Southern Oceans. Deep Sea Res. 2000, I47, 2287–2316. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R.; O’Neill, L.; Kolowith, L.C.; Pellechia, P.; Thunell, R. Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol. Oceanogr. 2004, 49, 1593–1604. [Google Scholar] [CrossRef] [Green Version]
- Worsfold, P.J.; Monbet, P.; Tappin, A.D.; Fitzsimons, M.F.; Stiles, D.A.; McKelvie, I.D. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A review. Analytica Chimica Acta 2008, 624, 37–58. [Google Scholar] [CrossRef]
- Labry, C.; Youenou, A.; Delmas, D.; Michelon, P. Addressing the measurement of particulate organic and inorganic phosphorus in estuarine and coastal waters. Cont. Shelf. Res. 2013, 60, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Solórzano, L.; Sharp, J.H. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol. Oceanogr. 1980, 25, 754–758. [Google Scholar] [CrossRef]
- Stockner, J.G.; Armstrong, F.A. Periphyton of the experimental lakes area, northwestern Ontatio. J. Fish. Res. Bd. Ca. 1972, 28, 215–229. [Google Scholar] [CrossRef]
- Lin, P.; Guo, L.; Chen, M.; Cai, Y. Distribution, partitioning and mixing behavior of phosphorus species in the Jiulong River estuary. Mar. Chem. 2013, 157, 93–105. [Google Scholar] [CrossRef]
- Martiny, A.C.; Vrugt, J.A.; Lomas, M.W. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci. Data 2014, 1. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.M.; Hinkle, D.C.; Sturgis, B.; Jesien, R.V. Eutrophication of a Maryland/Virginia coastal lagoon: A tipping point, ecosystem changes, and potential causes. Estuar. Coast. 2014, 37, 128–146. [Google Scholar] [CrossRef]
- Tue-Ngeuna, O.; Ellis, P.; McKelvie, I.D.; Worsfold, P.; Jakmunee, J.; Grudpan, K. Determination of dissolved reactive phosphorus (DRP) and dissolved organic phosphorus (DOP) in natural waters by the use of rapid sequenced reagent injection flow analysis. Talanta 2005, 66, 453–460. [Google Scholar] [CrossRef]
- Wilson, T.A.; Norton, S.A.; Lake, B.A.; Amirbahman, A. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes. Sci. Total Environ. 2008, 404, 269–275. [Google Scholar] [CrossRef]
- Arias, C.A.; Del Bubba, M.; Brix, H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 2001, 35, 1159–1168. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Sui, Y.; Thompson, M.L.; Shang, C. Fractionation of phosphorus in a Mollisol amended with biosolids. Soil Sci. Soc. Am. J. 1999, 63, 1174–1180. [Google Scholar] [CrossRef]
Type of Sample | Location of Sampling | Frequency of Sampling | Depth of Sampling | Sampling Techniques | Recommended Sampling Techniques |
---|---|---|---|---|---|
Surface Runoff | - Outflow of residential, industrial, and agricultural catchments - Channel outlet | Based on precipitation or irrigation intensity, time-interval of sampling could vary from seconds to hours | - | - Manual sampling - Automated sampler - Passive sampler - Flow-proportional sampling | - Automated sampler - Passive sampler |
Leachate | - Point samples - Tile drains | Based on irrigation or precipitation regime | At different depths of soil profile, depending on research objectives | - Lysimeter - Passive sampler | - Zero-tension lysimeter - Passive sampler |
Groundwater | - Point samples on uplands and alluvial settings - Springs | Depending on the purposes of groundwater monitoring studies varying from monthly to annually | Depth of phreatic zone or depth of perched water tables, depending on study goals | - Well - Piezometer - Passive sampler | - Well - Passive sampler |
Rivers/Streams | - Upstream - Downstream - River mouth - Optimal location using mathematical models | Usually carried out on weekly, biweekly, monthly, or seasonal basis, depending on research objectives | Usually within top, middle, and bottom of each cross-section of the water column; also in the hyporheic zone; the depth may vary with sampling technique | - Manual sampling - Automated sampler - Piezometer - Passive sampler - Flow-proportional sampling | - Automated sampler - Passive sampler |
Lakes/Ponds | - Inlets and outlets, where applicable - Multiple points within the water body | Usually carried out on weekly, biweekly, monthly, or seasonal basis, depending on research objectives | Depending on research objectives | - Manual sampling - Passive sampler | - Manual sampling - Passive sampler |
Wetlands/ Estuaries | - Inlet - Outlet - Multiple points within the wetland | Usually carried out on weekly, biweekly, monthly, or seasonal basis, depending on research objectives | Depending on research objectives | - Manual sampling - Water column sampling - Flow-proportional sampling | - Water column sampling - Flow-proportional sampling |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kianpoor Kalkhajeh, Y.; Jabbarian Amiri, B.; Huang, B.; Henareh Khalyani, A.; Hu, W.; Gao, H.; Thompson, M.L. Methods for Sample Collection, Storage, and Analysis of Freshwater Phosphorus. Water 2019, 11, 1889. https://doi.org/10.3390/w11091889
Kianpoor Kalkhajeh Y, Jabbarian Amiri B, Huang B, Henareh Khalyani A, Hu W, Gao H, Thompson ML. Methods for Sample Collection, Storage, and Analysis of Freshwater Phosphorus. Water. 2019; 11(9):1889. https://doi.org/10.3390/w11091889
Chicago/Turabian StyleKianpoor Kalkhajeh, Yusef, Bahman Jabbarian Amiri, Biao Huang, Azad Henareh Khalyani, Wenyou Hu, Hongjian Gao, and Michael L. Thompson. 2019. "Methods for Sample Collection, Storage, and Analysis of Freshwater Phosphorus" Water 11, no. 9: 1889. https://doi.org/10.3390/w11091889