Modeling Sugar Beet Responses to Irrigation with AquaCrop for Optimizing Water Allocation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calibration and Validation of AquaCrop for Sugar Beet
2.1.1. Datasets
2.1.2. Calibration and Validation Procedures
2.2. Simulating the Crop Response to Different Irrigation Water Allocations
3. Results
3.1. Calibration and Validation of AquaCrop for Sugar Beet
3.2. Crop Response to Different Irrigation Water Allocations
3.3. Yield and Water Productivity Gaps
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Database. Available online: http://www.fao.org/faostat/en/#home (accessed on 15 July 2019).
- Rinaldi, M.; Horemans, S. Sugar beet. In Crop Yield Response to Water; Steduto, P., Hsiao, T.C., Fereres, E., Raes, D., Eds.; FAO: Rome, Italy, 2012; pp. 202–208. [Google Scholar]
- Singels, A.; van der Laan, M. Sugarcane. In Crop Yield Response to Water; Steduto, P., Hsiao, T.C., Fereres, E., Raes, D., Eds.; FAO: Rome, Italy, 2012; pp. 174–180. [Google Scholar]
- Sadeghian, S.Y.; Yavari, N. Effect of Water-Deficit Stress on Germination and Early Seedling Growth in Sugar Beet. J. Agron. Crop Sci. 2004, 190, 138–144. [Google Scholar] [CrossRef]
- Davidoff, D.; Hanks, R.J. Sugar beet production as influenced by limited irrigation. Irrig. Sci. 1989, 10, 1–17. [Google Scholar] [CrossRef]
- Pidgeon, J.D.; Werker, A.R.; Jaggard, K.W.; Richter, G.M.; Lister, D.H.; Jones, P.D. Climatic impact on the productivity of sugar beet in Europe, 1961–1995. Agric. For. Meteorol. 2001, 109, 27–37. [Google Scholar] [CrossRef]
- Jones, P.D.; Lister, D.H.; Jaggard, K.W.; Pidgeon, J.D. Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim. Chang. 2003, 58, 93–108. [Google Scholar]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Werker, A.R.; Jaggard, K.W. Dependence of sugar beet yield on light interception and evapotranspiration. Agric. For. Meteorol. 1998, 89, 229–240. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kasssam, A.H. Yield Response to Water; FAO Irrigation and Drainage Paper No. 33; FAO: Rome, Italy, 1979. [Google Scholar]
- Qi, A.; Kenter, C.; Hoffmann, C.; Jaggard, K.W. The Broom’s Barn sugar beet growth model and its adaptation to soils with varied available water content. Eur. J. Agron. 2005, 23, 108–122. [Google Scholar] [CrossRef]
- Anar, M.J.; Lina, Z.; Hoogenboomb, G.; Sheliab, V.; Batchelord, W.D.; Tebohe, J.M.; Ostliee, M.; Schatze, B.G.; Khanf, M. Modeling growth, development and yield of Sugarbeet using DSSAT. Agr. Syst. 2019, 169, 58–70. [Google Scholar] [CrossRef]
- Beaudoina, N.; Launay, M.; Saubouac, E.; Ponsardina, G.; Marya, B. Evaluation of the soil crop model STICS over 8 years against the “on farm” database of Bruyeres catchment. Eur. J. Agron. 2008, 29, 46–57. [Google Scholar] [CrossRef]
- Baey, C.; Didier, A.; Lemaire, S.; Maupas, F.; Cournèdea, P.-H. Parametrization of five classical plant growth models applied to sugar beet and comparison of their predictive capacity on root yield and total biomass. Ecol. Model. 2014, 290, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, S.; Maupas, F.; Cournède, P.-H.; de Reffye, P. A morphogenetic crop model for sugar-beet (Beta vulgaris L.). In Proceedings of the International Symposium on Crop Modeling and Decision Support: ISCMDS 2008, Nanjing, China, 19–22 April 2008. [Google Scholar]
- Taky, A. Maîtrise des Excès d’eau Hivernaux et de L’Irrigation et de Leurs Conséquences sur la Productivité de la Betterave Sucrière dans le Périmètre Irrigué du Gharb (Maroc). Analyse Expérimentale et Modélisation. Ph.D. Thesis, AgroParisTech, Paris, France, 2008. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. Aquacrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Stricevic, R.; Cosic, M.; Djurovic, N.; Pejic, B.; Maksimovic, L. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agric. Water Manag. 2011, 98, 1615–1621. [Google Scholar] [CrossRef]
- Alishiri, R.; Paknejad, F.; Aghayari, F. Simulation of sugar beet growth under different water regimes and nitrogen levels by AquaCrop. Int. J. Biosci. 2014, 4, 1–9. [Google Scholar]
- van Straaten, J.W. Regional Modelling of Water Stress. Irrigation Water Requirement Meets Water Availability in the oum er Rbia Basin. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2017. [Google Scholar]
- Malik, A.; Shakir, A.S.; Ajmal, M.; Khan, M.J.; Khan, T.A. Assessment of AquaCrop Model in Simulating Sugar Beet Canopy Cover, Biomass and Root Yield under Different Irrigation and Field Management Practices in Semi-Arid Regions of Pakistan. Water Resour. Manag. 2017, 31, 4275–4292. [Google Scholar] [CrossRef]
- Araji, H.A.; Wayayok, A.; Khayamim, S.; Teh, C.B.S.; Abdullah, A.F.; Amiri, E.; Bavani, A.M. Calibration of AquaCrop model to simulate sugar beet production and water productivity under different treatments. Appl. Eng. Agric. 2019, 35, 211–219. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Willems, P. Regional and global climate projections increase mid-century yield variability and crop productivity in Belgium. Reg. Environ. Chang. 2016, 16, 659–672. [Google Scholar] [CrossRef]
- Gobin, A.; Kersebaum, K.C.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takác, J.; Kroes, J.; Ventrella, D.; Dalla Marta, A.; Deelstra, J.; et al. Variability in the water footprint of arable crop production across European regions. Water 2017, 9, 93. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D.; Garcia, M. Using AquaCrop to derive deficit irrigation schedules. Agric. Water Manag. 2010, 98, 213–216. [Google Scholar] [CrossRef]
- Garcia-Vila, M.; Fereres, E. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. Eur. J. Agron. 2012, 36, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Carmona, G.; Varela-Ortega, C.; Bromley, J. Supporting decision making under uncertainty: Development of a participatory integrated model for water management in the middle Guadiana river basin. Environ. Model. Softw. 2013, 50, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Pattey, E. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agric. For. Meteorol. 2010, 150, 1485–1490. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Chapter 3. Calculation procedures. In AquaCrop Version 6.0—6.1. Reference Manual; Raes, D., Steduto, P., Hsiao, T.C., Fereres, E., Eds.; FAO: Rome, Italy, 2018; pp. 1–141. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Fereres, E.; Steduto, P.; Raes, D. AquaCrop parameterization, calibration, and validation guide. In Crop Yield Response to Water; Steduto, P., Fereres, E., Raes, D., Eds.; FAO: Rome, Italy, 2012; pp. 70–87. [Google Scholar]
- Vanuytrecht, E.; Raes, D.; Willems, P. Global sensitivity analysis of yield output from the water productivity model. Environ. Model. Softw. 2014, 51, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- CLIMAGEN. Available online: http://www.uco.es/fitotecnia/contents/index.html (accessed on 15 July 2019).
- Geng, S.; Auburn, J.S.; Brandstetter, E.; Li, B. A Program to Simulate Meteorological Variables: Documentation for SIMMETEO; Agronomy Progress Rep. 204; Dep. of Agronomy and Range Science, Univ. of California: Davis, CA, USA, 1988. [Google Scholar]
- Milford, G.F.J.; Pocock, T.O.; Riley, I. An analysis of leaf growth in sugar beet. I. Leaf appearance and expansion in relation to temperature under controlled conditions. Ann. Appl. Biol. 1985, 106, 163–172. [Google Scholar] [CrossRef]
- Terry, N. Developmental Physiology of Sugar Beet: I. The influence of light and temperature on growth. J. Exp. Bot. 1968, 19, 795–811. [Google Scholar] [CrossRef]
- Radke, J.K.; Bauer, R.E. Growth of Sugar Beets as Affected by Root Temperatures. Part I: Greenhouse Studies. Agron. J. 1969, 61, 860–863. [Google Scholar] [CrossRef]
- Werker, A.R.; Jaggard, K.W.; Allison, M.F. Modelling partitioning between structure and storage in sugar beet: Effects of drought and soil nitrogen. Plant Soil 1999, 207, 97–106. [Google Scholar] [CrossRef]
- Fereres, E. Short and Long-Term Effects of Irrigation on the Fertility and Productivitv of Soils. In Proceedings of the 17th Colloquium of the International Potash Institute, Bern, Switzerland, 2–6 May 1983; pp. 283–304. [Google Scholar]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Espadafor, M.; Couto, L.; Resende, M.; Henderson, D.W.; García-Vila, M.; Fereres, E. Simulation of the responses of dry beans (Phaseolus vulgaris L.) to irrigation. Trans. ASABE 2017, 60, 1983–1994. [Google Scholar] [CrossRef]
- Ober, E.S.; Luterbacher, M.C. Genotypic variation for drought tolerance in Beta vulgaris. Ann. Bot. 2002, 89, 917–924. [Google Scholar] [CrossRef]
- Hoffmann, C.M.; Huijbregts, T.; Van Swaaij, N.; Jansen, R. Impact of different environments in Europe on yield and quality of sugar beet genotypes. Eur. J. Agron. 2009, 30, 17–26. [Google Scholar] [CrossRef]
- Rinaldi, M.; Vonella, A.V. The response of autumn and spring sown sugar beet (Beta vulgaris L.) to irrigation in southern Italy: Water and radiation use efficiency. Field Crops Res. 2006, 95, 103–114. [Google Scholar] [CrossRef]
- Reinsdorf, E.; Koch, H.J.; Märlander, B. Phenotype related differences in frost tolerance of winter sugar beet (Beta vulgaris L.). Field Crops Res. 2013, 151, 27–34. [Google Scholar] [CrossRef]
- Hoffmann, C.M.; Kluge-Severin, S. Growth analysis of autumn and spring sown sugar beet. Eur. J. Agron. 2011, 34, 1–9. [Google Scholar] [CrossRef]
- Stewart, J.I.; Hagan, R.M. Functions to predict effects of crop water deficits. J. Irrig. Drain. Div. 1973, 99, 421–439. [Google Scholar]
Data Sets | Location | Year | n | Cultivar | Sowing Date | Plant Density (Plants m−2) | Soil Texture |
---|---|---|---|---|---|---|---|
Calibration | |||||||
AIMCRA | Valladolid (Valladolid) | 2012 | 4 | Amalia KWS | 21 February | 14.5 | Clay loam |
Validation | |||||||
FARM1 | Villabañez (Valladolid) | 2012 | 1 | Amalia KWS | 9 March | 10.5 | Silty clay |
FARM2 | Pozáldez (Valladolid) | 2012 | 1 | Ludwina KWS | 1 March | 10.6 | Clay |
FARM3 | Herrera de Pisuerga (Palencia) | 2012 | 1 | Ludwina KWS | 16 March | 10.4 | Loam clay |
FARM4 | Donhierro (Segovia) | 2012 | 1 | Geraldina | 28 February | 10.8 | Loam |
FARM5 | Villamarciel (Valladolid) | 2013 | 1 | Amalia KWS | 25 April | 9.6 | Loamy sand |
FARM6 | Lebrija (Sevilla) | 2014 | 1 | Brahms | 28 October | 11.1 | Clay |
FARM7 | Lebrija (Sevilla) | 2014 | 1 | Sanlucar | 16 October | 10.5 | Clay |
FARM8 | Lebrija (Sevilla) | 2014 | 1 | Portal | 24 October | 10.9 | Clay |
Calibration | Default | Stricevic et al., (2011) [18] | Alishiri et al., (2014) [19] | Van Straaten (2017) [20] | Malik et al., (2017) [21] | |
---|---|---|---|---|---|---|
AquaCrop version | 6.1 | 4.0 | 4.0 | 4.0 | 5.0 | - |
Location | Spain | Italy | Serbia | Iran | Morocco | Pakistan |
Observed dry yield range (t ha−1) | 4.8–25.8 | - | 8.5–19.8 | 4.0–12.0 | 10.0–25.0 | 7.3–15.0 |
Evaluated variables | CC, B, Y | - | Y | CC, B, Y | Y | CC, B, Y |
Crop parameters | ||||||
Threshold air temperatures | ||||||
Base temperature, Tbase (°C) | 3 | 5 | 5 | 5 | 5 | 5 |
Upper temperature, Tupper (°C) | 25 | 30 | 30 | 30 | 30 | 30 |
Crop transpiration | ||||||
KcTr,x | 1.15 | 1.10 | 1.10 | 1.10 | 1.15 | 1.10 |
Production | ||||||
Normalized water productivity, WP * (g m−2) | 18.0 | 17.0 | 17.0 | 18.0 | 18.0 | 16.7–18.6 |
Reference harvest index, HIo (%) | 75 | 70 | 70 | 60 | 70 | 68–73 |
Water stress response | ||||||
Top soil thickness (cm) 1 | 20 | 10 | 10 | 10 | 10 | 10 |
Canopy expansion pupper | 0.20 | 0.20 | 0.20 | 0.25 | 0.20 | 0.10–0.20 |
Canopy expansion plower | 0.60 | 0.60 | 0.60 | 0.70 | 0.60 | 0.45–0.55 |
Canopy expansion shape factor | 3.0 | 3.0 | 3.0 | 4.0 | 3.0 | 0.5–3.2 |
Stomatal closure pupper | 0.65 | 0.65 | 0.65 | 0.65 | 0.57 | 0.45–0.65 |
Stomatal closure shape factor | 3.0 | 3.0 | 3.0 | 2.5 | 2.5 | 2.5–2.8 |
Canopy senescence pupper | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.45–0.55 |
Canopy senescence shape factor | 3.0 | 3.0 | 3.0 | 2.5 | 2.5 | 1.2–3.0 |
HIo adjustment-Before yield formation (+) | None | None | None | None | None | None |
HIo adjustment-During yield formation (+) | 6 | 4 | 4 | 4 | 4 | 4 |
HIo adjustment-During yield formation (−) | None | None | None | None | 1 | None |
Variable | n | Observations Range | Simulations Range | RMSE | d | Slope | Intercept | r2 |
---|---|---|---|---|---|---|---|---|
Calibration | ||||||||
CC (%) | 60 | 2–100 | 0–100 | 11.39 | 0.999 | 1.038 | −2.748 | 0.924 |
B (t ha−1) | 18 | 1.56–34.0 | 4.50–30.21 | 2.10 | 0.983 | 0.857 | 2.172 | 0.957 |
Y (t ha−1) | 4 | 4.83–25.80 | 3.49–25.18 | 0.85 | 0.999 | 1.056 | −1.256 | 0.994 |
Validation | ||||||||
Y (t ha−1) | 8 | 16.18–27.00 | 16.26–27.63 | 1.17 | 0.998 | 0.945 | 1.278 | 0.908 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Vila, M.; Morillo-Velarde, R.; Fereres, E. Modeling Sugar Beet Responses to Irrigation with AquaCrop for Optimizing Water Allocation. Water 2019, 11, 1918. https://doi.org/10.3390/w11091918
Garcia-Vila M, Morillo-Velarde R, Fereres E. Modeling Sugar Beet Responses to Irrigation with AquaCrop for Optimizing Water Allocation. Water. 2019; 11(9):1918. https://doi.org/10.3390/w11091918
Chicago/Turabian StyleGarcia-Vila, Margarita, Rodrigo Morillo-Velarde, and Elias Fereres. 2019. "Modeling Sugar Beet Responses to Irrigation with AquaCrop for Optimizing Water Allocation" Water 11, no. 9: 1918. https://doi.org/10.3390/w11091918