Glacier Surface Mass Balance in the Suntar-Khayata Mountains, Northeastern Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. SMB Model
2.3.1. Model Description
2.3.2. Model Parameters
2.3.3. Model Validation
2.3.4. Bias Correction
3. Results
3.1. Model Evaluation against Observations and Previous Estimates
3.2. Spatiotemporal Variability in the SMB
4. Discussion
4.1. Drivers of Regional Mass Loss
4.2. Future Variations in the SMB
4.3. Uncertainties in the SMB Calculation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arctic Monitoring and Assessment Programme (AMAP). Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2011. [Google Scholar]
- Arctic Monitoring and Assessment Programme (AMAP). Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017. [Google Scholar]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Marzeion, B.; Jarosch, A.H.; Gregory, J.M. Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change. Cryosphere 2014, 8, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2010. [Google Scholar]
- Koreisha, M.M. Present Glaciers of the Suntar-Khayata Range; Nauka: Moscow, Russia, 1963. [Google Scholar]
- Shirakawa, T.; Kadota, T.; Fedorov, A.; Konstantinov, P.; Suzuki, T.; Yabuki, H.; Nakazawa, F.; Tanaka, S.; Miyairi, M.; Fujisawa, Y.; et al. Meteorological and glaciological observations at Suntar-Khayata Glacier No. 31, east Siberia, from 2012–2014. Bull. Glaciol. Res. 2016, 34, 33–40. [Google Scholar] [CrossRef]
- Vinogradov, O.N. New data about modern and former glaciation of Suntar Khayata (in Russian). Data Glaciol. Study 1972, 19, 80–91. [Google Scholar]
- Yamada, T.; Takahashi, S.; Shiraiwa, T.; Fujii, Y.; Kononov, Y.; Ananicheva, M.D.; Koreisha, M.M.; Muravyev, Y.D.; Samborsky, T. Reconnaissance on the No. 31 Glacier in the Suntar-Khayata Range, Sakha Republic, Russian Federation. Bull. Glaciol. Res. 2002, 19, 101–106. [Google Scholar]
- Ananicheva, M.D.; Koreisha, M.M.; Takahashi, S. Assessment of glacier shrinkage from the maximum in the Little Ice Age in the Suntar-Khayata Range, North-East Siberia. Bull. Glaciol. Res. 2005, 22, 9–17. [Google Scholar]
- Galanin, A.A.; Lytkin, V.M.; Fedorov, A.N.; Kadota, T. Recession of glaciers in the Suntar-Khayata Mountains and methodological consideration of its assessment. Ice Snow 2013, 53, 30–42. [Google Scholar] [CrossRef]
- Takahashi, S.; Sugiura, K.; Kameda, T.; Enomoto, H.; Kononov, Y.; Ananicheva, M.D.; Kapustin, G. Response of glaciers in the Suntar-Khayata range, eastern Siberia, to climate change. Ann. Glaciol. 2011, 52, 185–192. [Google Scholar] [CrossRef]
- Zhang, Y.; Enomoto, H.; Ohata, T.; Katota, T.; Shirakawa, T.; Takeuchi, N. Surface mass balance on Glacier No. 31 in the Suntar–Khayata Range, eastern Siberia, from 1951 to 2014. J. Mt. Sci. 2017, 14, 501–512. [Google Scholar] [CrossRef]
- Takeuchi, N.; Fujisawa, Y.; Kadota, T.; Tanaka, S.; Miyairi, M.; Shirakawa, T.; Kusaka, R.; Fedorov, A.N.; Konstantinov, P.; Ohata, T. The effect of impurities on the surface melt of a glacier in the Suntar Khayata Mountain Range, Russian Siberia. Front. Earth Sci. 2015, 3, 82. [Google Scholar] [CrossRef]
- Ananicheva, M.D.; Krenke, A.N.; Barry, R.G. The Northeast Asia mountain glaciers in the near future by AOGCM scenarios. Cryosphere 2010, 44, 435–445. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOP1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, NOAA: Boulder, CO, USA, 2009. [Google Scholar] [CrossRef]
- Cogley, J.G. A more complete version of the World Glacier Inventory. Ann. Glaciol. 2009, 50, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C.; et al. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 4.0; Technical Report of Global Land Ice Measurements from Space (GLIMS): Boulder, CO, USA, 20 December 2014. [Google Scholar]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.; Oimoen, M.; Zhang, Z.; Danielson, J.; Krieger, T.; Burtis, B.; Haase, J.; et al. ASTER Global Digital Elevation Model Version 2—Summary of Validation Results; Technical Report for NASA Land Processes Distributed Active Archive Center and the Joint Japan-US ASTER Science Team: Washington, DC, USA, January 2011. [Google Scholar]
- Dyurgerov, M.B.; Meier, M.F. Glaciers and the Changing Earth System: A 2004 Snapshot; Institute of Arctic and Alpine Research, University of Colorado at Boulder: Boulder, CO, USA, 2005; p. 58. [Google Scholar]
- Hirabayashi, Y.; Kanae, S.; Struthers, I.; Oki, T. A 100-year (1901–2000) global retrospective estimation of the terrestrial water cycle. J. Geophys. Res. 2005, 110, D19101. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Kanae, S.; Motoya, K.; Masuda, K.; Döll, P. A 59-year (1948–2006) global near-surface meteorological data set for land surface models. Part I: Development of daily forcing and assessment of precipitation intensity. Hydrol. Res. Lett. 2008, 2, 36–40. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Döll, P.; Kanae, S. Global-scale modeling of glacier mass balances for water resources assessments: Glacier mass changes between 1948 and 2006. J. Hydrol. 2010, 390, 245–256. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Zhang, Y.; Watanabe, S.; Koirala, S.; Kanae, S. Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2. Hydrol. Res. Lett. 2013, 7, 6–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Hirabayashi, Y.; Liu, S. Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment, south-eastern Tibetan Plateau. J. Hydrol. 2012, 444–445, 146–160. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the experiment design. BAMS 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- New, M.; Lister, D.; Hulme, M.; Markin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 2002, 21, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Ding, Y. Observed degree-day factors and their spatial variation on glaciers in western China. Ann. Glaciol. 2006, 43, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Ageta, Y. Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol. 2000, 46, 244–252. [Google Scholar] [CrossRef] [Green Version]
- van Pelt, W.J.J.; Pohjola, V.A.; Reijmer, C.H. The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard Glacier. Front. Earth Sci. 2016, 4, 102. [Google Scholar] [CrossRef]
- Wright, A.P.; Wadham, J.L.; Siegert, M.J.; Luckman, A.; Kohler, J.; Nuttall, A.M. Modeling the refreezing of meltwater as superimposed ice on a high Arctic glacier: A comparison of approaches. J. Geophys. Res. 2007, 112, F04016. [Google Scholar] [CrossRef]
- Bahr, D.B. Width and length scaling of glaciers. J. Glaciol. 1997, 43, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Bahr, D.B.; Meier, M.F.; Peckham, S.D. The physical basis of glacier volume—area scaling. J. Geophys. Res. 1997, 102, 20355–20362. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Liu, S.; Wang, X.; Chen, X. Inclusion of Glacier Processes for Distributed Hydrological Modeling at Basin Scale with Application to a Watershed in Tianshan Mountains, Northwest China. J. Hydrol. 2012, 477, 72–85. [Google Scholar] [CrossRef]
- Marzeion, B.; Jarosch, A.H.; Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 2012, 6, 1295–1322. [Google Scholar] [CrossRef] [Green Version]
- Radić, V.; Bliss, A.; Beedlow, A.C.; Hock, R.; Miles, E.; Cogley, J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 2013, 42, 37–58. [Google Scholar] [CrossRef]
- Graham, L.P.; Andréasson, J.; Carlsson, B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—A case study on the Lule River basin. Clim. Chang. 2007, 81, 293–307. [Google Scholar] [CrossRef]
- Hay, L.; Wilby, R.L.; Leavesley, G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Sperna Weiland, F.C.; van Beek, L.P.H.; Kwadijk, J.C.J.; Bierkens, M.F.P. The ability of a GCM-forced hydrological model to reproduce global discharge variability. Hydrol. Earth Syst. Sci. 2010, 14, 1595–1621. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Enomoto, H.; Ohata, T.; Kitabata, H.; Katota, T.; Hirabayashi, Y. Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios. Clim. Dyn. 2016, 47, 2935–2953. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [Green Version]
- Bintanja, R.; Selten, F.M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 2014, 509, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Huss, M.; Fischer, M. Sensitivity of Very Small Glaciers in the Swiss Alps to Future Climate Change. Front. Earth Sci. 2016, 4, 34. [Google Scholar] [CrossRef]
- Zhang, Y.; Enomoto, H.; Ohata, T.; Kitabata, H.; Kadota, T.; Hirabayashi, Y. Glacier mass balance and its potential impacts in the Altai Mountains over the period 1990–2011. J. Hydrol. 2017, 553, 662–677. [Google Scholar] [CrossRef]
Observations | Period | Source |
---|---|---|
Ablation data on Glaciers No. 29–33 | July 2012–August 2013 | [8] |
Annual SMB and vertical mass profiles on Glacier No. 31 | 1957–1959 | [7] |
Annual SMB on Glacier No. 31 | 1957–1969 | [21] |
Daily temperature and precipitation at Oymyakon station | 1950–2014 | http://meteo.ru/ |
Daily temperature at ~1988 m a.s.l. near Glacier No. 31 | August 2004–August 2005 | [13] |
Daily temperature and monthly precipitation at ~2446 m a.s.l. on Glacier No. 31 | July 2012–August 2013 | [8] |
Model | Institute | Resolution |
---|---|---|
CanESM2 | Canadian Centre for Modeling and Analysis (Canada) | 2.81° × 2.81° |
CCSM4 | National Center for Atmospheric Research (USA) | 0.90° × 1.25° |
CMCC-CM | Centro Euro-Mediterraneo sui Cambiamenti Climatici (Italy) | 0.75° × 0.75° |
CNRM-CM5 | Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique (France) | 1.41° × 1.41° |
CSIRO-Mk3.6.0 | Commonwealth Scientific and Industrial Research Organization in collaboration with the Queensland Climate Change Centre of Excellence (Australia) | 1.88° × 1.88° |
GFDL-ESM2G | Geophysical Fluid Dynamics Laboratory (USA) | 2.00° × 2.00° |
INM-CM4 | Institute for Numerical Mathematics (Russia) | 1.50° × 2.00° |
IPSL-CM5A-LR | Institute Pierre-Simon Laplace (France) | 1.90° × 3.75° |
MIROC5 | Atmosphere and Ocean Research Institute/National Institute for Environmental Studies/Japan Agency for Marine-Earth Science and Technology (Japan) | 1.40° × 1.40° |
MPI-ESM-LR | Max Planck Institute for Meteorology (Germany) | 1.88° × 1.88° |
MRI-CGCM3 | Meteorological Research Institute (Japan) | 1.13° × 1.13° |
NorESM1-M | Norwegian Climate Centre (Norway) | 1.88° × 1.88° |
Parameter | Symbol | Unit | Value |
---|---|---|---|
Daily mean temperature | Tair | °C | – |
Threshold temperature | Ttht | °C | 2 |
Degree-day factor for snow | DDFsnow | mm w.e. K−1 day−1 | 1.2–4.0 |
Degree-day factor for ice | DDFice | mm w.e. K−1 day−1 | 3.5–9.0 |
Ice density | ρi | kg m−3 | 900 |
Snow density | ρs | kg m−3 | 415 |
Specific heat capacity of ice | ci | J kg−1 K−1 | 2100 |
Latent heat of fusion | Lf | J kg−1 | 3.34×10−5 |
Depth from surface/snow-ice interface | Z | m | – |
Depth for annual amplitude of ice temperature of < 0.1 °C | Zc | m | 20 |
Temperature difference of snow/ice | ΔTZ | °C | – |
Temperature lapse rate | TLR | °C (100m)−1 | –0.21–1.43 |
Vertical precipitation gradient | VPG | % (100m)−1 | 0.0–25.0 |
Bias-corrected temperature | TCOR | °C | – |
Temperature from CRU data | TCRU | °C | – |
Temperature from gridded data | TGRID | °C | – |
Bias-corrected precipitation | PCOR | mm w.e. day−1 | – |
Precipitation from CRU data | PCRU | mm w.e. day−1 | – |
Precipitation from gridded data | PGRID | mm w.e. day−1 | – |
30-year mean monthly temperature from gridded data | °C | – | |
30-year mean monthly precipitation from gridded data | mm w.e. day−1 | – | |
Volume-area scaling parameter | ca | – | 0.2055m3−2γ |
Volume- length scaling parameter | ci | – | 1.7026m3−2γ |
Volume-area scaling parameter | – | 1.375 | |
Volume- length scaling parameter | q | – | 2.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, X.; Jiang, Z.; Wei, J.; Enomoto, H.; Ohata, T. Glacier Surface Mass Balance in the Suntar-Khayata Mountains, Northeastern Siberia. Water 2019, 11, 1949. https://doi.org/10.3390/w11091949
Zhang Y, Wang X, Jiang Z, Wei J, Enomoto H, Ohata T. Glacier Surface Mass Balance in the Suntar-Khayata Mountains, Northeastern Siberia. Water. 2019; 11(9):1949. https://doi.org/10.3390/w11091949
Chicago/Turabian StyleZhang, Yong, Xin Wang, Zongli Jiang, Junfeng Wei, Hiroyuki Enomoto, and Tetsuo Ohata. 2019. "Glacier Surface Mass Balance in the Suntar-Khayata Mountains, Northeastern Siberia" Water 11, no. 9: 1949. https://doi.org/10.3390/w11091949
APA StyleZhang, Y., Wang, X., Jiang, Z., Wei, J., Enomoto, H., & Ohata, T. (2019). Glacier Surface Mass Balance in the Suntar-Khayata Mountains, Northeastern Siberia. Water, 11(9), 1949. https://doi.org/10.3390/w11091949