Assessing Changes of Water Yield in Qinghai Lake Watershed of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Yield Module
2.3. Data Sources and Preparation
3. Results
3.1. Dynamic Change of LUCC
3.2. Simulation Verification
3.3. Dynamic Change of Water Yield
3.4. Effect of Precipitation on Water Yield
3.5. Effect of LUCC on Water Yield
3.6. Mechanism for LUCC and Climate Change Influencing Water Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Wu, J.G. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. In Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005; pp. 1–137.
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River basin, Beijing, China. J. Clean Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Egoh, B.; Rouget, M.; Reyers, B.; Knight, A.T.; Cowling, R.M.; van Jaarsveld, A.S.; Welz, A. Integrating ecosystem services into conservation assessments: A review. Ecol. Econ. 2007, 63, 714–721. [Google Scholar] [CrossRef]
- Cudennec, C.; Leduc, C.; Koutsoyiannis, D. Dryland hydrology in Mediterranean regions—A review. Hydrol. Sci. J. 2007, 52, 1077–1087. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhu, C.; Yang, G.; Weihua, X.U.; Zheng, H.; Zhang, Y.; Xiao, Y. Gross ecosystem product: Concept, accounting framework and case study. Acta Ecol. Sin. 2013, 33, 6747–6761. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Seppelt, R.; Dormann, C.F.; Eppink, F.V.; Lautenbach, S.; Schmidt, S. A quantitative review of ecosystem service studies: Approaches, shortcomings and the road ahead. J. Appl. Ecol. 2011, 48, 630–636. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.D.; Kollat, J.B.; Reed, P.M.; Wagener, T. Technical note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrol. Earth Syst. Sci. 2013, 17, 2893–2903. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.; Wang, X.; Yan, H.; Zhang, Q.; Jin, G. Land Use/Land Cover Change Induced Impacts on Water Supply Service in the Upper Reach of Heihe River Basin. Sustainability 2014, 7, 366–383. [Google Scholar] [CrossRef] [Green Version]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Logsdon, R.A.; Chaubey, I. A quantitative approach to evaluating ecosystem services. Ecol. Model. 2013, 257, 57–65. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzak, M.; Batker, D. A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef]
- Hoyer, R.; Chang, H. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 2014, 53, 402–416. [Google Scholar] [CrossRef]
- Mdk, L.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar]
- Zhang, C.; Li, W.; Zhang, B.; Liu, M. Water yield of Xitiaoxi river basin based on inVEST modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar]
- Su, C.; Fu, B. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Glob. Planet. Chang. 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Yu, J.; Yuan, Y.; Nie, Y.; Ma, E.; Li, H.; Geng, X. The Temporal and Spatial Evolution of Water Yield in Dali County. Sustainability 2015, 7, 6069–6085. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Deng, X.Z.; Yuan, Y.W.; Wang, Z.; Li, Z.H. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model. 2015, 318, 245–253. [Google Scholar] [CrossRef]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Cuo, L.; Beyene, T.K.; Voisin, N.; Su, F.; Lettenmaier, D.P.; Alberti, M.; Richey, J.E. Effects of mid-twenty-first century climate and land cover change on the hydrology of the Puget Sound basin, Washington. Hydrol. Process. 2011, 25, 1729–1753. [Google Scholar] [CrossRef]
- Wang, C.; Hou, Y.; Xue, Y. Water resources carrying capacity of wetlands in Beijing: Analysis of policy optimization for urban wetland water resources management. J. Clean. Prod. 2017, 161, 1180–1191. [Google Scholar] [CrossRef]
- Li, Q.F.; Cai, T.; Yu, M.X.; Lu, G.B.; Xie, W.; Bai, X. Investigation into the impacts of land-use change on runoff generation characteristics in the upper huaihe river basin, China. J. Hydrol. Eng. 2013, 18, 1464–1470. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, W.H.; Li, H.R.; Zhang, Q.F.; Zhang, K.R. Forest restoration efforts drive changes in land-use/land-cover and water-related ecosystem services in China’s Han River basin. Proc. Ecol. Eng. 2019, 126, 64–73. [Google Scholar] [CrossRef]
- Bossa, A.Y.; Diekkrüger, B.; Agbossou, E.K. Scenario-based impacts of land use and climate change on land and water degradation from the meso to regional scale. Water 2014, 6, 3152–3181. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yang, H.; Lacayo, M.; Liu, J.; Lei, G. Impacts of Land-Use and Land-Cover Changes on Water Yield: A Case Study in Jing-Jin-Ji, China. Sustainability 2018, 10, 960. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.; He, K.N.; Li, R.J.; Sheng, Z.P.; Wang, H. Linkage of Climatic Factors and Human Activities with Water Level Fluctuations in Qinghai Lake in the Northeastern Tibetan Plateau, China. Water 2017, 9, 552. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Zhu, M.L.; Wang, Y.; Xu, C.; Yang, H. Eco-environment status evaluation and change analysis of Qinghai based on national geographic conditions census data. ISPRS J. Photogramm. Remote Sens. 2018, XLII-3, 2453–2457. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Cao, G.; Cao, S.; Zhang, X.; Zhang, J.; Han, G. Dynamic assessment of the value of vegetation carbon fixation and oxygen release services in Qinghai Lake basin. Acta Ecol. Sin. 2017, 37, 79–84. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, G.C.; Cao, S.K.; Chen, K.L.; Shan, Z.X.; Zhang, J. Spatial-temporal characteristics of the vegetation net primary production in the Qinghai Lake Basin from 2000 to 2012. J. Desert Res. 2015, 35, 1072–1080. [Google Scholar]
- Budyko, M.I. Climate and Life; Academic press: New York, NY, USA, 1974; pp. 217–243. [Google Scholar]
- Wu, X.; Wang, S.; Fu, B.; Liu, Y.; Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the Yanhe watershed. Land Use Policy 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Berti, A.; Tardivo, G.; Chiaudani, A.; Rech, F.; Borin, M. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agric. Water Manag. 2014, 140, 20–25. [Google Scholar] [CrossRef]
- Allen, G.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guide Lines for Computing Crop Water Requirements. In FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; pp. 1–281. [Google Scholar]
- Hu, Q.; Yang, D.; Wang, Y.; Yang, Y. Global correction and applicability evaluation of Hargreaves formula. Adv. Water Sci. 2011, 22, 160–167. [Google Scholar]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO); International Institute for Applied Systems Analysis (IIASA); International Soil Reference and Information Centre (ISRIC); Institute of Soil Science, Chinese Academy of Sciences (ISSCAS); Joint Research Centre (JRC). Harmonized World Soil Database, version 1.1; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2009. [Google Scholar]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M. Getting water right: A case study in water yield modelling based on precipitation data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Canales, M.; Lopez Benito, A.; Passuello, A.; Terrado, M.; Ziv, G.; Acuna, V.; Schuhmacher, M.; Elorza, F.J. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Sci. Total Environ. 2012, 440, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Tian, J.H.; Li, X.Y.; Ma, Y.J.; Yi, W.J. Evaluation of concordance between environment and economy in Qinghai Lake Watershed, Qinghai- Tibet Plateau. J. Geogr. Sci. 2011, 21, 949–960. [Google Scholar] [CrossRef]
- Im, S.; Kim, H.; Kim, C.; Jang, C. Assessing the impacts of land use changes on watershed hydrology using MIKE SHE. Environ. Geol. 2008, 57, 231–239. [Google Scholar] [CrossRef]
- Yang, C.G.; Yu, Z.B.; Hao, Z.C.; Lin, Z.H.; Wang, H.M. Effects of vegetation cover on hydrological processes in a large region: Huaihe river basin, China. J. Hydrol. Eng. 2013, 18, 1477–1483. [Google Scholar] [CrossRef]
- Bi, H.; Liu, B.; Wu, J.; Yun, L.; Chen, Z.; Cui, Z. Effects of precipitation and landuse on runoff during the past 50 years in a typical watershed in Loess Plateau, China. Int. J. Sediment Res. 2009, 24, 352–364. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhang, X.N.; Xia, D.Z.; You, J.S.; Rong, Y.S.; Bakir, M. Impacts of land-use and climate changes on hydrologic processes in the qingyi river watershed, China. J. Hydrol. Eng. 2013, 18, 1495–1512. [Google Scholar] [CrossRef]
- Lang, Y.; Song, W.; Zhang, Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys. Chem. Earth 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Im, S.; Brannan, K.M.; Mostaghimi, S. Simulating hydrologic and water quality impacts in an urbanizing watershed. J. Am. Water Resour. Assoc. 2003, 39, 1465–1479. [Google Scholar] [CrossRef]
Time | LUCC | 1977 | |||||
---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grass Land | Water Area | Built-Up Land | Unused Land | ||
2018 | Cultivated land | 90.54% | 0.11% | 0.93% | 0.00% | 13.25% | 0.03% |
Forestland | 3.69% | 87.74% | 0.18% | 0.21% | 0.10% | 0.07% | |
Grassland | 2.78% | 8.37% | 96.38% | 2.49% | 1.40% | 6.08% | |
Water area | 0.02% | 0.93% | 0.49% | 94.28% | 0.21% | 1.11% | |
Built-up land | 2.81% | 0.02% | 0.22% | 0.02% | 81.50% | 0.04% | |
Unused land | 0.16% | 2.83% | 1.80% | 3.00% | 3.54% | 92.67% |
Time | LUCC | 1977 | |||||
---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grass Land | Water Area | Built-up Land | Unused Land | ||
2004 | Cultivated land | 98.12% | 0.00% | 0.84% | 0.00% | 0.47% | 0.00% |
Forestland | 0.00% | 92.85% | 0.07% | 0.08% | 0.00% | 0.03% | |
Grassland | 0.08% | 6.41% | 97.84% | 1.56% | 0.17% | 2.46% | |
Water area | 0.00% | 0.32% | 0.13% | 94.88% | 0.00% | 0.24% | |
Built-up land | 1.80% | 0.01% | 0.08% | 0.00% | 99.36% | 0.01% | |
Unused land | 0.00% | 0.40% | 1.04% | 3.48% | 0.00% | 97.26% |
Time | LUCC | 2004 | |||||
---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grass Land | Water Area | Built-Up Land | Unused Land | ||
2018 | Cultivated land | 89.33% | 0.11% | 0.22% | 0.00% | 10.25% | 0.03% |
Forestland | 3.38% | 93.59% | 0.10% | 0.19% | 0.21% | 0.04% | |
Grassland | 5.68% | 2.58% | 98.03% | 1.64% | 2.24% | 4.20% | |
Water area | 0.02% | 0.91% | 0.58% | 96.19% | 0.48% | 3.49% | |
Built-up land | 1.46% | 0.01% | 0.14% | 0.01% | 85.00% | 0.04% | |
Unused land | 0.12% | 2.80% | 0.94% | 1.96% | 1.82% | 92.21% |
Year | Actual_Water Yield/108 m3 | InVEST_Water Yield/108 m3 | Simulation Error |
---|---|---|---|
1977 | NAN | 18.17 | NAN |
1987 | NAN | 23.84 | NAN |
2000 | 13.05 (QHLS) | 19.03 (QHLW) | — |
2004 | 23.25 | 24.98 | 6.93% |
2010 | 29.97 | 28.97 | 3.45% |
2018 | 45.57 | 45.45 | 0.26% |
LUCC | Correlation | Significance |
---|---|---|
Cultivated land | −0.198 | 0.750 |
Forestland | 0.897 * | 0.039 |
Grassland | 0.075 | 0.905 |
Water area | 0.314 | 0.607 |
Built-up land | 0.932 * | 0.021 |
Unused land | −0.398 | 0.506 |
Year | Only LUCC Scenario/108 m3 | Only Climate Change Scenario/108 m3 | Real Scenario/108 m3 |
---|---|---|---|
1977 | 18.17 | 18.17 | 18.17 |
1987 | 18.74 | 23.78 | 23.84 |
2000 | 19.64 | 18.81 | 19.03 |
2004 | 18.78 | 24.68 | 24.98 |
2010 | 18.33 | 28.54 | 28.97 |
2018 | 17.97 | 44.56 | 45.45 |
LUCC | Correlation | Significance |
---|---|---|
Cultivated land | 0.490 | 0.402 |
Forestland | −0.885 * | 0.046 |
Grassland | −0.952 * | 0.012 |
Water area | 0.498 | 0.393 |
Built-up land | 0.979 ** | 0.004 |
Unused land | 0.617 | 0.267 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, X.-h.; Qi, Y.; Wang, H.-w.; Zhang, J.-l.; Yang, R. Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water 2020, 12, 11. https://doi.org/10.3390/w12010011
Lian X-h, Qi Y, Wang H-w, Zhang J-l, Yang R. Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water. 2020; 12(1):11. https://doi.org/10.3390/w12010011
Chicago/Turabian StyleLian, Xi-hong, Yuan Qi, Hong-wei Wang, Jin-long Zhang, and Rui Yang. 2020. "Assessing Changes of Water Yield in Qinghai Lake Watershed of China" Water 12, no. 1: 11. https://doi.org/10.3390/w12010011
APA StyleLian, X.-h., Qi, Y., Wang, H.-w., Zhang, J.-l., & Yang, R. (2020). Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water, 12(1), 11. https://doi.org/10.3390/w12010011