Efficiency Analysis of the Input for Water-Saving Agriculture in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Indicator Selection and Data Source
2.2. Three-Stage DEA Model
2.2.1. Stage 1: Traditional DEA Model Analysis of the Original Input and Output Values
2.2.2. Stage 2: Statistical Noise and Exotic Environment Factors Separated from Results
2.2.3. Stage 3: Adjustment of the Efficiency Value
2.3. Calculation of Irrigation Requirement Index
3. Results and Discussion
3.1. Comprehensive Technical Efficiency of the Agricultural Water-Saving Inputs
3.2. Pure Technical Efficiency of Agricultural Water-Saving Inputs
3.3. Scale Efficiency of the Agricultural Water-Saving Inputs
3.4. Marginal Revenue of the Agricultural Water-Saving Inputs
3.5. Irrigation Water Requirement of Crops
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blanke, A.; Rozelle, S.; Lohmar, B.; Wang, J.; Huang, J. Water saving technology and saving water in China. Agric. Water Manag. 2007, 87, 139–150. [Google Scholar] [CrossRef]
- Li, G. Game analysis of the effect that urban water supply pricing has on the behavior of the resident resources saving. J. Cap. Univ. Econ. Bus. 2007, 6, 103–107. [Google Scholar] [CrossRef]
- Cai, X.; Ringler, C. Balancing agricultural and environmental water needs in China: Alternative scenarios and policy options. Water Policy 2007, 9, 95–108. [Google Scholar] [CrossRef]
- Facon, T.; Renault, D.; Rao, P.S.; Wahaj, R. High-yielding capacity building in irrigation system management: Targeting managers and operators. Irrig. Drain. 2008, 57, 288–299. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Gao, H.; Wei, T.; Lou, I.; Yang, Z.; Shen, Z.; Li, Y. Water saving effect on integrated water resource management. Resour. Conserv. Recy. 2014, 93, 50–58. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.Y.; Chen, S.Y.; Shao, L.W.; Sun, H.Y. Changes in water use efficiency and water footprint in grain production over the past 35 years: A case study in the North China Plain. J. Clean. Prod. 2016, 116, 71–79. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, S.Y.; Song, X.F. Evaluation of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain with SWAP model and field experiments. Comput. Electron. Agric. 2015, 116, 125–136. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A.B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Liu, J.; Zang, C.; Tian, S.; Liu, J.; Yang, H.; Jia, S.; You, L.; Liu, B.; Zhang, M. Water conservancy projects in China: Achievements, challenges and way forward. Glob. Environ. Chang. Hum. Policy Dimens. 2013, 23, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, S. Exploring Synergies Between Hardware and Software Interventions on Water Savings in China: Farmers Response to Water Usage and Crop Production. Water Resour. Manag. 2012, 26, 3285–3300. [Google Scholar] [CrossRef]
- Ding, X.H.; Zhang, Z.X.; Wu, F.P.; Xu, X.Y. Study on the Evolution of Water Resource Utilization Efficiency in Tibet Autonomous Region and Four Provinces in Tibetan Areas under Double Control Action. Sustainability 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.H.; Tang, N.; He, J.H. The Threshold Effect of Environmental Regulation, FDI Agglomeration, and Water Utilization Efficiency under Double Control Actions-An Empirical Test Based on Yangtze River Economic Belt. Water 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Stec, A.; Zelenakova, M. An Analysis of the Effectiveness of Two Rainwater Harvesting Systems Located in Central Eastern Europe. Water 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.Z.; Chen, Z.H.; Zhang, H.L.; Xue, J.B. Impact Assessment of Growth Drag and Its Contribution Factors: Evidence from China’s Agricultural Economy. Sustainability 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, M.; Pellecchia, V.; Fasolino, I. Urban Plan and Water Infrastructures Planning: A Methodology Based on Spatial ANP. Sustainability 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.E.; Zhang, S.H.; Zhang, J.J.; Wang, Y.J.; Wang, Y.Q. Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China. Resour. Conserv. Recy. 2017, 126, 74–85. [Google Scholar] [CrossRef]
- Zhang, X.D.; Zhu, S. The Flexible Demand Analysis of Agricultural Irrigation Water Use Based on Technical Efficiency and Shadow Price: Taking Heilongjiang Province for an Example. Sci. Geogr. Sin. 2018, 38, 1165–1173. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.Q. The Study of the Farmer Water Users Participating in Irrigation Management and Water-saving Irrigation: The demonstration analysis of the mode of the independent management in irrigation district in Zaohe area of Jiangsu province. Probl. Agric. Econ. 2004, 3, 48–80. [Google Scholar] [CrossRef]
- Tian, G.L.; Gu, S.W.; Wei, D.; Shuai, M.D. A Study on the Influence of Comprehensive Reform of Agricultural Water Price on the Price of Water Right in the Process of Transaction. Price Theory Pract. 2017, 2, 66–69. [Google Scholar]
- Luo, W.Z.; Jiang, Y.L.; Wang, X.F.; Liu, H.X.; Chen, Y.S. Farmer cognition on water-saving irrigation technology analysis in groundwater overmining area of North China: A case study of Guyuan county, Zhangjiakou city, Hebei province. J. Nat. Resour. 2019, 34, 2469–2480. [Google Scholar] [CrossRef]
- Lei, G.R.; Hu, Z.Y.; Han, G. Technical efficiency and water saving potential in agriculture water based on SFA. J. Econ. Water Resour. 2010, 1, 55–78. [Google Scholar] [CrossRef]
- Tian, C.H.; Zhao, T.; Xu, Z.; Shen, H. Analysis of Technical Efficiency of Agricultural Efficient Water-saving Technology Based on DEA Method in Xinjiang. Water Sav. Irrig. 2017, 1, 90–93. [Google Scholar]
- Feng, X.; Li, J.; Guo, M.R. Studies on Efficiency of Facility Vegetable Production Considering the Water-saving in Beijing and Its Development Countermeasures. China Veg. 2017, 1, 55–60. [Google Scholar]
- Wang, X.; Lu, Q. The Empirical Analysis of Regional Differences in Chinese Agricultural Water Use Efficiency and Convergence Test. Soft Sci. 2014, 28, 133–137. [Google Scholar]
- Wu, X.; Zhu, M.L.; He, C. Research on the Efficiency of Agricultural High-efficiency Water-saving Technology Based on Super Efficiency DEA Method. Rural Econ. Sci. Technol. 2015, 26, 63–65. [Google Scholar]
- Benfica, R.; Cunguara, B.; Thurlow, J. Linking agricultural investments to growth and poverty: An economywide approach applied to Mozambique. Agric. Syst. 2019, 172, 91–100. [Google Scholar] [CrossRef]
- Berbel, J.; Gutierrez-Martin, C.; Rodriguez-Diaz, J.A.; Camacho, E.; Montesinos, P. Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study. Water Resour. Manag. 2015, 29, 663–678. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.M.; Rosegrant, M.W.; Ringler, C. Physical and economic efficiency of water use in the river basin: Implications for efficient water management. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Gleick, P.H.; Christian-Smith, J.; Cooley, H. Water-use efficiency and productivity: Rethinking the basin approach. Water Int. 2011, 36, 784–798. [Google Scholar] [CrossRef]
- Huffaker, R.; Whittlesey, N. The allocative efficiency and conservation potential of water laws encouraging investments in on-farm irrigation technology. Agric. Econ. 2000, 24, 47–60. [Google Scholar] [CrossRef]
- Orfanou, A.; Pavlou, D.; Porter, W.M. Maize Yield and Irrigation Applied in Conservation and Conventional Tillage at Various Plant Densities. Water 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Playan, E.; Slatni, A.; Castillo, R.; Faci, J.M. A case study for irrigation modernisation: II Scenario analysis. Agric. Water Manag. 2000, 42, 335–354. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.E.; Grafton, R.Q.; Kirby, M.; Hanjra, M.A. Understanding irrigation water use efficiency at different scales for better policy reform: A case study of the Murray-Darling Basin, Australia. Water Policy 2011, 13, 1–17. [Google Scholar] [CrossRef]
- Fried, H.O.; Schmidt, S.S.; Yaisawarng, S. Incorporating the operating environment into a nonparametric measure of technical efficiency. J. Product. Anal. 1999, 12, 249–267. [Google Scholar] [CrossRef]
- Fried, H.O.; Lovell, C.A.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for environmental effects and statistical noise in data envelopment analysis. J. Product. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Banker, R.D.; Kauffman, R.J.; Morey, R.C. Measuring gains in operational efficiency from information technology: A study of the Positran deployment at Hardee’s Inc. J. Manag. Inf. Syst. 1990, 7, 29–54. [Google Scholar] [CrossRef] [Green Version]
- Banker, R.D.; Morey, R.C. Efficiency Analysis for Exogenously Fixed Inputs and Outputs. Oper. Res. 1986, 34, 513–521. [Google Scholar] [CrossRef]
- Yang, H.; Pollitt, M. Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants. Eur. J. Oper. Res. 2009, 197, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, L. Spatial distribution characteristics of irrigation water requirement for main crops in China. Trans. Chin. Soc. Agric. Eng. 2009, 25, 6–12. [Google Scholar] [CrossRef]
- Liu, Y.; Teixeira, J.L.; Zhang, H.J.; Pereira, L.S. Model validation and crop coefficients for irrigation scheduling in the North China plain. Agric. Water Manag. 1998, 36, 233–246. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, J.B.; Cai, L.G.; Pereira, L.S. Analysis of irrigation scheduling and water balance for an Irrigation district at lower reaches of the Yellow River. J. Hydraul. Eng. 2005, 36, 701–708. [Google Scholar] [CrossRef]
- Allen, R.G.; Smith, M.; Perrier, A.; Pereira, L.S. An update for the definition of reference evapotranspiration. ICID Bull. 1994, 43, 1–34. [Google Scholar]
- Sun, Y.; Jiang, N.; Cui, Y. Research on Economic, Social and Environmental Efficiency of Environmental Protection Investment: Based on Three-stage DEA Model. Sci. Technol. Manag. Res. 2019, 39, 219–226. [Google Scholar] [CrossRef]
- Shen, X.B.; Lin, B.Q. The shadow prices and demand elasticities of agricultural water in China: A StoNED-based analysis. Resour. Conserv. Recy. 2017, 127, 21–28. [Google Scholar] [CrossRef]
- Pan, J.F.; Liu, Y.Z.; Zhong, X.H.; Lampayan, R.M.; Singleton, G.R.; Huang, N.R.; Liang, K.M.; Peng, B.L.; Tian, K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
- Li, P.L. Evaluation of Efficiency of Local Financial Investing in Agriculture. Econ. Manag. 2011, 25, 70–76. [Google Scholar]
- Li, G.F.; Zhou, D.Y.; Shi, M.J. Technical efficiency of crop irrigation and its determinants in the arid areas of Northwest China. J. Nat. Resour. 2019, 34, 853–866. [Google Scholar] [CrossRef]
- Li, W.; Yu, F.W. Analysis of factors influencing agricultural water performance in western China. Res. Dev. 2008, 6, 60–63. [Google Scholar] [CrossRef]
- Wang, Y.H.; Tao, Y.; Kang, J.N. Influencing factors of irrigation governance in China’s rural areas. Resour. Sci. 2019, 41, 1769–1779. [Google Scholar] [CrossRef]
- Wang, X.J.; Li, Z. Analysis of irrigation water efficiency and influencing factors. Chin. Rural. Econ. 2005, 7, 11–18. [Google Scholar]
- Song, C.X.; Ma, H.Y.; Huang, J.K.; Wang, J.X. Impact of climate change and farmer adaptation on wheat irrigation efficiency. J. Agrotech. Econ. 2014, 2, 4–16. [Google Scholar] [CrossRef]
- Rak, J.R.; Pietrucha-Urbanik, K. An Approach to Determine Risk Indices for Drinking Water–Study Investigation. Sustainability 2019, 11, 3189. [Google Scholar] [CrossRef] [Green Version]
Year | Slacks Explanatory Variable | Input 1 | Input 2 | Input 3 |
---|---|---|---|---|
2014 | Constant term | (1035.5579) | 4081.4798 | 0.007481262 |
GDP per capita | 0.00976548 | (0.27090702) | 2.5154086 | |
Cultivated area | 0.00451017 | 69.011447 | (0.41631877) | |
9,325,325.6 | 389,895,890 | 5,171,073.9 | ||
0.99999968 | 0.99999999 | 0.99999999 | ||
likelihood ratio test | 26.560963 | 14.248312 | 26.560963 | |
2015 | Constant term | (10.844754) | 4865.9359 | (1177.4461) |
GDP per capita | 0.00036329 | (0.28123225) | 0.012144941 | |
Cultivated area | 0.00038983 | 97.924711 | (0.000455359) | |
18,050.657 | 413,829,350 | 9,919,867.8 | ||
0.99999999 | 0.99999999 | 0.99999999 | ||
likelihood ratio test | 8.894564 | 15.640943 | 24.943002 | |
2016 | Constant term | (6.7862996) | 4597.7498 | (1203.8865) |
GDP per capita | 7.0433×10−5 | (0.27747648) | 0.012064749 | |
Cultivated area | 0.00021407 | 68.236315 | (0.002089515) | |
16093.141 | 417683040 | 9998899.5 | ||
0.99999999 | 0.99999999 | 0.99999999 | ||
likelihood ratio test | 14.16323 | 14.551437 | 26.015291 |
Region | 2014 | 2015 | 2016 | Region | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Beijing | 0.234 | 0.098 | 0.232 | Hubei | 0.277 | 0.302 | 0.301 |
Tianjin | 1.000 | 0.785 | 0.902 | Hunan | 0.084 | 0.093 | 0.107 |
Hebei | 0.961 | 0.340 | 0.535 | Guangdong | 1.000 | 1.000 | 1.000 |
Shanxi | 0.070 | 0.069 | 0.068 | Guangxi | 0.089 | 0.090 | 0.071 |
Inner Mongolia | 1.000 | 1.000 | 1.000 | Hainan | 0.068 | 0.057 | 0.180 |
Liaoning | 0.105 | 0.131 | 0.126 | Chongqing | 0.020 | 0.021 | 0.017 |
Jilin | 1.000 | 0.578 | 0.506 | Sichuan | 0.404 | 0.399 | 0.562 |
Heilongjiang | 1.000 | 1.000 | 0.686 | Guizhou | 0.044 | 0.031 | 0.028 |
Shanghai | 1.000 | 1.000 | 1.000 | Yunnan | 0.115 | 0.146 | 0.207 |
Jiangsu | 0.190 | 0.182 | 0.186 | Tibet | 0.213 | 0.177 | 0.245 |
Zhejiang | 1.000 | 1.000 | 1.000 | Shaanxi | 0.207 | 0.309 | 0.365 |
Anhui | 0.442 | 0.539 | 0.431 | Gansu | 0.247 | 0.203 | 0.198 |
Fujian | 0.139 | 0.119 | 0.098 | Qinghai | 0.114 | 0.140 | 0.140 |
Jiangxi | 0.061 | 0.054 | 0.049 | Ningxia | 0.419 | 0.418 | 0.389 |
Shandong | 0.097 | 0.105 | 0.102 | Xinjiang | 1.000 | 1.000 | 1.000 |
Henan | 0.177 | 0.219 | 0.223 | China Mainland | 0.412 | 0.374 | 0.386 |
Region | 2014 | 2015 | 2016 | Region | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Beijing | 0.295 | 0.254 | 0.344 | Hubei | 0.279 | 0.303 | 0.303 |
Tianjin | 1.000 | 0.805 | 0.917 | Hunan | 0.099 | 0.109 | 0.120 |
Hebei | 1.000 | 0.388 | 0.568 | Guangdong | 1.000 | 1.000 | 1.000 |
Shanxi | 0.112 | 0.117 | 0.106 | Guangxi | 0.117 | 0.126 | 0.102 |
Inner Mongolia | 1.000 | 1.000 | 1.000 | Hainan | 0.252 | 0.270 | 0.301 |
Liaoning | 0.126 | 0.195 | 0.183 | Chongqing | 0.103 | 0.104 | 0.082 |
Jilin | 1.000 | 0.623 | 0.565 | Sichuan | 0.439 | 0.406 | 0.647 |
Heilongjiang | 1.000 | 1.000 | 0.793 | Guizhou | 0.120 | 0.087 | 0.075 |
Shanghai | 1.000 | 1.000 | 1.000 | Yunnan | 0.127 | 0.149 | 0.208 |
Jiangsu | 0.192 | 0.191 | 0.189 | Tibet | 1.000 | 1.000 | 1.000 |
Zhejiang | 1.000 | 1.000 | 1.000 | Shaanxi | 0.215 | 0.330 | 0.366 |
Anhui | 0.459 | 0.541 | 0.431 | Gansu | 0.270 | 0.239 | 0.235 |
Fujian | 0.288 | 0.274 | 0.218 | Qinghai | 0.446 | 0.528 | 0.514 |
Jiangxi | 0.080 | 0.081 | 0.074 | Ningxia | 0.510 | 0.526 | 0.523 |
Shandong | 0.103 | 0.112 | 0.109 | Xinjiang | 1.000 | 1.000 | 1.000 |
Henan | 0.178 | 0.221 | 0.226 | China Mainland | 0.478 | 0.451 | 0.458 |
Region | 2014 | 2015 | 2016 | Region | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
Beijing | 0.793 | 0.385 | 0.674 | Hubei | 0.993 | 0.995 | 0.994 |
Tianjin | 1.000 | 0.974 | 0.983 | Hunan | 0.849 | 0.856 | 0.892 |
Hebei | 0.961 | 0.875 | 0.941 | Guangdong | 1.000 | 1.000 | 1.000 |
Shanxi | 0.622 | 0.589 | 0.641 | Guangxi | 0.761 | 0.712 | 0.692 |
Inner Mongolia | 1.000 | 1.000 | 1.000 | Hainan | 0.269 | 0.209 | 0.598 |
Liaoning | 0.829 | 0.669 | 0.689 | Chongqing | 0.192 | 0.198 | 0.206 |
Jilin | 1.000 | 0.928 | 0.897 | Sichuan | 0.921 | 0.982 | 0.869 |
Heilongjiang | 1.000 | 1.000 | 0.864 | Guizhou | 0.370 | 0.355 | 0.371 |
Shanghai | 1.000 | 1.000 | 1.000 | Yunnan | 0.906 | 0.984 | 0.998 |
Jiangsu | 0.990 | 0.956 | 0.981 | Tibet | 0.213 | 0.177 | 0.245 |
Zhejiang | 1.000 | 1.000 | 1.000 | Shaanxi | 0.963 | 0.937 | 0.997 |
Anhui | 0.962 | 0.996 | 1.000 | Gansu | 0.915 | 0.851 | 0.845 |
Fujian | 0.484 | 0.435 | 0.451 | Qinghai | 0.257 | 0.266 | 0.273 |
Jiangxi | 0.759 | 0.668 | 0.668 | Ningxia | 0.822 | 0.796 | 0.743 |
Shandong | 0.942 | 0.942 | 0.940 | Xinjiang | 1.000 | 1.000 | 1.000 |
Henan | 0.990 | 0.989 | 0.989 | Mainland China | 0.799 | 0.765 | 0.788 |
Region | Water-Saving Area of the Total Cultivated Area | Agricultural Water-Saving Input Efficiency | ||
---|---|---|---|---|
Proportion | Rank of Mainland China | Value | Rank of Mainland China | |
Inner Mongolia | 28.50% | 10 | 1 | 1 |
Shanghai | 76.10% | 2 | 1 | 1 |
Zhejiang | 54.89% | 4 | 1 | 1 |
Guangdong | 11.56% | 25 | 1 | 1 |
Xinjiang | 74.59% | 3 | 1 | 1 |
Guangxi | 23.45% | 13 | 0.071 | 27 |
Jiangxi | 17.03% | 20 | 0.068 | 28 |
Shanxi | 22.41% | 16 | 0.049 | 29 |
Guizhou | 7.14% | 30 | 0.028 | 30 |
Chongqing | 9.18% | 27 | 0.017 | 31 |
Region | Main Crop Species | Irrigation Requirement Index | Region | Main Crop Species | Irrigation Requirement Index |
---|---|---|---|---|---|
Heilongjiang; Jilin; Liaoning | Middle-season rice | 0.4 | Shaanxi; Gansu; Shanxi | Middle-season rice | 0.7 |
Spring maize | 0.25 | Cotton | 0.65 | ||
Spring wheat | 0.34 | Spring maize | 0.65 | ||
Beijing; Tianjin; Hebei; Shandong; Henan | Middle-season rice | 0.6 | Summer maize | 0.4 | |
Cotton | 0.425 | Spring wheat | 0.675 | ||
Spring maize | 0.425 | Sichuan; Chongqing | Late-season rice | 0.3 | |
Summer maize | 0.325 | Middle-season rice | 0.275 | ||
Winter wheat | 0.625 | Early-season rice | 0.35 | ||
Jiangsu; Zhejiang; Shanghai; Hunan; Hubei; Jiangxi; Anhui | Late-season rice | 0.425 | Cotton | 0.15 | |
Middle-season rice | 0.375 | Spring maize | 0.125 | ||
Early-season rice | 0.325 | Summer maize | 0.125 | ||
Cotton | 0.3 | Winter wheat | 0.575 | ||
Spring maize | 0.2 | Yunnan; Guizhou | Late-season rice | 0.3 | |
Summer maize | 0.35 | Middle-season rice | 0.375 | ||
Fujian; Guangdong; Guangxi; Hainan | Late-season rice | 0.4 | Early-season rice | 0.35 | |
Middle-season rice | 0.35 | Spring maize | 0.275 | ||
Early-season rice | 0.3 | Summer maize | 0.15 | ||
Cotton | 0.2 | Qinghai; Tibet | Winter wheat | 0.625 | |
Spring maize | 0.175 | Spring wheat | 0.625 | ||
Summer maize | 0.2 | Xinjiang | Middle-season rice | 0.9 | |
Inner Mongolia; Ningxia | Middle-season rice | 0.775 | Cotton | 0.9 | |
Spring maize | 0.7 | Spring maize | 0.85 | ||
Spring wheat | 0.6 | Summer maize | 0.9 | ||
Winter wheat | 0.8 | ||||
Spring wheat | 0.875 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Zhang, W.; Ren, J. Efficiency Analysis of the Input for Water-Saving Agriculture in China. Water 2020, 12, 207. https://doi.org/10.3390/w12010207
Cao Y, Zhang W, Ren J. Efficiency Analysis of the Input for Water-Saving Agriculture in China. Water. 2020; 12(1):207. https://doi.org/10.3390/w12010207
Chicago/Turabian StyleCao, Yangdong, Wang Zhang, and Jinzheng Ren. 2020. "Efficiency Analysis of the Input for Water-Saving Agriculture in China" Water 12, no. 1: 207. https://doi.org/10.3390/w12010207
APA StyleCao, Y., Zhang, W., & Ren, J. (2020). Efficiency Analysis of the Input for Water-Saving Agriculture in China. Water, 12(1), 207. https://doi.org/10.3390/w12010207