Hydrological Modeling to Assess the Efficiency of Groundwater Replenishment through Natural Reservoirs in the Hungarian Drava River Floodplain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Meteorological Data
2.1.2. Soil Data
2.1.3. Land Use and Groundwater Depth
2.2. Groundwater Recharge and Evapotranspiration
2.3. Numerical Groundwater Modeling
2.3.1. Groundwater Flow Model Setup
2.3.2. Calibration and Sensitivity Analysis
3. Results and Discussion
3.1. Water Budget of the Groundwater Flow Model
3.2. Simulated Scenarios
3.2.1. Korcsina Subarea
3.2.2. Simulation of the Water Storage Opportunities in the Okor–Fekete-víz Area
3.3. Spatio-Temporal Extent of Reservoir Impact
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gumiero, B.; Mant, J.; Hein, T.; Elso, J.; Boz, B. Linking the restoration of rivers and riparian zones/wetlands in Europe: Sharing knowledge through case studies. Ecol. Eng. 2013, 56, 36–50. [Google Scholar] [CrossRef]
- De Vries, A. (Ed.) Summary of Master Plans of Wetland Sub-Group Partners for Water Project; University of Debrecen, Centre for Environmental Management and Policy: Debrecen, Hungary, 2013; p. 76. [Google Scholar]
- Mori, K. Can market-based policies accomplish the optimal floodplain management? A gap between static and dynamic models. J. Environ. Manag. 2009, 90, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, K.G.; Noe, G.B.; Franco, F.; Pindilli, E.J.; Gordon, S.; Metes, M.J.; Claggett, P.R.; Gellis, A.C.; Hupp, C.R.; Hogan, D.M. A method to quantify and value floodplain sediment and nutrient retention ecosystem services. J. Environ. Manag. 2018, 220, 65–76. [Google Scholar] [CrossRef] [PubMed]
- WWF International. Assessment of the Restoration Potential along the Danube and Main Tributaries. In Working Paper for the Danube River Basin; World-Wide Fund for Nature: Vienna, Austria, 2010; p. 60. [Google Scholar]
- Anderson, J.; Arblaster, K.; Bartley, J.; Cooper, T.; Kettunen, M.; Kaphengst, T.; Leipprand, A.; Laaser, C.; Umpfenbach, K.; Kuusisto, E. Climate Change-Induced Water Stress and Its Impacts on Natural and Managed Ecosystems; European Parlament: Brussels, Belgium, 2008; p. 108. [Google Scholar]
- Hulisz, P.; Michalski, A.; Dąbrowski, M.; Kusza, G.; Łéczyński, L. Human-induced changes in the soil cover at the mouth of the Vistula River Cross-Cut (northern Poland). Soil Sci. Annu. 2015, 66, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Lóczy, D.; Dezső, J.; Czigány, S.; Gyenizse, P.; Pirkhoffer, E. Amadé Halász Rehabilitation potential of the Drava river floodplain in Hungary. In Proceedings of the Water Resources and Wetlands, Tulcea, Romania, 11–13 September 2014; pp. 21–29. [Google Scholar]
- Lóczy, D.; Dezső, J.; Czigány, S.; Prokos, H.; Tóth, G. An environmental assessment of water replenishment to a floodplain lake. J. Environ. Manag. 2017, 202, 337–347. [Google Scholar] [CrossRef]
- Dezső, J.; Lóczy, D.; Salem, A.; Gábor, N. Floodplain connectivity. In The Drava River: Environmental Problems and Solutions; Springer Science + Media: Cham, Switzerland, 2019; pp. 215–230. [Google Scholar]
- Burián, A.; Horváth, G.; Márk, L. Channel Incision Along the Lower Drava. In The Drava River: Environmental Problems and Solutions; Springer Science + Media: Cham, Switzerland, 2019; pp. 139–157. [Google Scholar]
- Goler, R.A.; Frey, S.; Formayer, H.; Holzmann, H. Influence of Climate Change on River Discharge in Austria. Meteorol. Z. 2016, 25, 621–626. [Google Scholar] [CrossRef]
- Gálosi-Kovács, B.; Császár, Z.M.; Pap, N.; Remény, P.; Elekes, T. Social problems of the most disadvantaged southern transdanubian micro-regions in Hungary. Rom. Rev. Reg. Stud. 2011, 7, 41–50. [Google Scholar]
- AQUAPROFIT Ős-Dráva Program—Összefogással az Ormánság fellendítéséért. Vezetői összefoglaló (Old Drava Programme—Cooperation for the Progress of Ormánság: Executive summary); AQUAPROFIT: Budapest, Hungary, 2010; p. 29. [Google Scholar]
- Cheng, Y.; Lee, C.-H.; Tan, Y.-C.; Yeh, H.-F. An optimal water allocation for an irrigation district in Pingtung County, Taiwan. Irrig. Drain. 2009, 58, 287–306. [Google Scholar] [CrossRef]
- Salem, A.; Dezső, J.; El-Rawy, M.; Loczy, D. Water management and retention opportunities along the Hungarian section of the Drava River. In Proceedings of the 2nd Euro-Mediterranean Conference for Environmental Integration (EMCEI), Sousse, Tunisia, 10–13 October 2019. [Google Scholar]
- Singh, H.; Sinha, T.; Sankarasubramanian, A. Impacts of Near-Term Climate Change and Population Growth on Within-Year Reservoir Systems. J. Water Resour. Plann. Manag. 2015, 141, 04014078. [Google Scholar] [CrossRef] [Green Version]
- El-Rawy, M.; Zlotnik, V.A.; Al-Raggad, M.; Al-Maktoumi, A.; Kacimov, A.; Abdalla, O. Conjunctive use of groundwater and surface water resources with aquifer recharge by treated wastewater: Evaluation of management scenarios in the Zarqa River Basin, Jordan. Environ. Earth Sci. 2016, 75, 1146. [Google Scholar] [CrossRef]
- Seo, S.B.; Mahinthakumar, G.; Sankarasubramanian, A.; Kumar, M. Conjunctive Management of Surface Water and Groundwater Resources under Drought Conditions Using a Fully Coupled Hydrological Model. J. Water Resour. Plann. Manag. 2018, 144, 04018060. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Cui, Y.; Luo, Y. Integrated Modeling of Conjunctive Water Use in a Canal-Well Irrigation District in the Lower Yellow River Basin, China. J. Irrig. Drain Eng. 2013, 139, 775–784. [Google Scholar] [CrossRef]
- Krešić, N. Groundwater Resources: Sustainability, Management, and Restoration; McGraw-Hill: New York, NY, USA, 2009; ISBN 978-0-07-149273-7. [Google Scholar]
- Healy, R.W.; Scanlon, B.R. Estimating Groundwater Recharge; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0-511-78074-5. [Google Scholar]
- Asano, T.; Cotruvo, J.A. Groundwater recharge with reclaimed municipal wastewater: Health and regulatory considerations. Water Res. 2004, 38, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Gale, I. Strategies for Managed Aquifer Recharge (MAR) in Semi-Arid Areas; UNESCO IHP: Paris, France, 2005; p. 33. [Google Scholar]
- Allam, M.N.; Allam, G.I. Water Resources in Egypt: Future Challeges and Opportunities. Water Int. 2007, 32, 205–218. [Google Scholar] [CrossRef]
- Khan, S.; Mushtaq, S.; Hanjra, M.A.; Schaeffer, J. Estimating potential costs and gains from an aquifer storage and recovery program in Australia. Agric. Water Manag. 2008, 95, 477–488. [Google Scholar] [CrossRef]
- Abiye, T.A.; Sulieman, H.; Ayalew, M. Use of treated wastewater for managed aquifer recharge in highly populated urban centers: A case study in Addis Ababa, Ethiopia. Environ. Geol. 2009, 58, 55–59. [Google Scholar] [CrossRef]
- Al-Maktoumi, A.; El-Rawy, M.; Zekri, S. Management options for a multipurpose coastal aquifer in Oman. Arab. J. Geosci. 2016, 9, 636. [Google Scholar] [CrossRef]
- El-Rawy, M.; Al-Maktoumi, A.; Zekri, S.; Abdalla, O.; Al-Abri, R. Hydrological and economic feasibility of mitigating a stressed coastal aquifer using managed aquifer recharge: A case study of Jamma aquifer, Oman. J. Arid Land 2019, 11, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, F.W.; Gallup, D.N. Some factors controlling the major ion chemistry of small lakes: Examples from the prairie parkland of Canada. Hydrobiologia 1978, 58, 65–81. [Google Scholar] [CrossRef]
- Stauffer, R.E. Effects of citrus agriculture on ridge lakes in Central Florida. Water Air Soil Pollut. 1991, 59, 125–144. [Google Scholar] [CrossRef]
- Nakayama, T.; Watanabe, M. Missing role of groundwater in water and nutrient cycles in the shallow eutrophic lake Kasumigaura, Japan. Hydrol. Process. 2008, 22, 1150–1172. [Google Scholar] [CrossRef]
- Sanford, W. Recharge and groundwater models: An overview. Hydrogeol. J. 2002, 10, 110–120. [Google Scholar] [CrossRef]
- Salem, A.; Dezső, J.; Lóczy, D.; El-Rawy, M.; Slowik, M. Modeling Surface Water-Groundwater Interaction in an Oxbow of the Drava Floodplain. In Proceedings of the 13th International Conference on Hydroinformatics HIC 2018, Palermo, Italy, 1–6 July 2018. [Google Scholar]
- Lee, D.R. A device for measuring seepage flux in lakes and estuaries1. Limnol. Oceanogr. 1977, 22, 140–147. [Google Scholar] [CrossRef]
- Winter, T.C.; LaBaugh, J.W.; Rosenberry, D.O. The design and use of a hydraulic potentiomanometer for direct measurement of differences in hydraulic head between groundwater and surface water. Limnol. Oceanogr. 1988, 33, 1209–1214. [Google Scholar] [CrossRef]
- Ong, J.B.; Zlotnik, V.A. Assessing Lakebed Hydraulic Conductivity and Seepage Flux by Potentiomanometer. Ground Water 2011, 49, 270–274. [Google Scholar] [CrossRef]
- Stauffer, R.E. Use of solute tracers released by weathering to estimate groundwater inflow to seepage lakes. Environ. Sci. Technol. 1985, 19, 405–411. [Google Scholar] [CrossRef]
- Sacks, L.A.; Swancar, A.; Lee, T.M. Estimating Ground-Water Exchange with Lakes Using Water-Budget and Chemical Mass-Balance Approaches for Ten Lakes in Ridge Areas of Polk and Highlands Counties, Florida; U.S. Geological Survey: Reston, VA, USA, 1998; p. 52.
- Krabbenhoft, D.P.; Bowser, C.J.; Anderson, M.P.; Valley, J.W. Estimating groundwater exchange with lakes: The stable isotope mass balance method. Water Resour. Res. 1990, 26, 2445–2453. [Google Scholar] [CrossRef]
- Brindha, K.; Neena Vaman, K.V.; Srinivasan, K.; Sathis Babu, M.; Elango, L. Identification of surface water-groundwater interaction by hydrogeochemical indicators and assessing its suitability for drinking and irrigational purposes in Chennai, Southern India. Appl. Water Sci. 2014, 4, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Kanduč, T.; Grassa, F.; McIntosh, J.; Stibilj, V.; Ulrich-Supovec, M.; Supovec, I.; Jamnikar, S. A geochemical and stable isotope investigation of groundwater/surface-water interactions in the Velenje Basin, Slovenia. Hydrogeol. J. 2014, 22, 971–984. [Google Scholar] [CrossRef]
- Sacks, L.A.; Lee, T.M.; Swancar, A. The suitability of a simplified isotope-balance approach to quantify transient groundwater–lake interactions over a decade with climatic extremes. J. Hydrol. 2014, 519, 3042–3053. [Google Scholar] [CrossRef] [Green Version]
- Coplen, T.B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results: Guidelines and recommended terms for expressing stable isotope results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef]
- Dinçer, T. The Use of Oxygen 18 and Deuterium Concentrations in the Water Balance of Lakes. Water Resour. Res. 1968, 4, 1289–1306. [Google Scholar] [CrossRef]
- Turner, J.V.; Allison, G.B.; Holmes, J.W. The water balance of a small lake using stable isotopes and tritium. J. Hydrol. 1984, 70, 199–220. [Google Scholar] [CrossRef]
- LaBaugh, J.W.; Winter, T.C.; Rosenberry, D.O.; Schuster, P.F.; Reddy, M.M.; Aiken, G.R. Hydrological and chemical estimates of the water balance of a closed-basin lake in north central Minnesota. Water Resour. Res. 1997, 33, 2799–2812. [Google Scholar] [CrossRef]
- Sacks, L.A. Estimating Ground-Water Inflow to Lakes in Central Florida Using the Isotope Mass-Balance Approach; Water-Resources Investigations Report 2002-4192; U.S. Dept. of the Interior, U.S. Geological Survey: Reston, VA, USA, 2002.
- El-Zehairy, A.A.; Lubczynski, M.W.; Gurwin, J. Interactions of artificial lakes with groundwater applying an integrated MODFLOW solution. Hydrogeol. J. 2018, 26, 109–132. [Google Scholar] [CrossRef]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; Book 6, Chapter A1; U.S. Geological Survey, Techniques of Water-Resources Investigations: Reston, VA, USA, 1988; p. 586.
- Leblanc, M.; Favreau, G.; Tweed, S.; Leduc, C.; Razack, M.; Mofor, L. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Hydrogeol. J. 2007, 15, 97–100. [Google Scholar] [CrossRef]
- Mylopoulos, N.; Mylopoulos, Y.; Tolikas, D.; Veranis, N. Groundwater modeling and management in a complex lake-aquifer system. Water Resour Manag. 2007, 21, 469–494. [Google Scholar] [CrossRef]
- Fenske, J.P.; Leake, S.A.; Prudic, D.E. Documentation of A Computer Program (RES1) to Simulate Leakage from Reservoirs Using the Modular Finite-Difference Ground-Water Flow Model (MODFLOW); U.S. Geological Survey: Reston, VA, USA, 1996; p. 51.
- Merritt, M.L.; Konikow, L.F. Documentation of A Computer Program to Simulate Lake-Aquifer Interaction Using the MODFLOW Ground Water Flow Model and the MOC3D Solute-Transport Model; Water-Resources Investigations Report 2000-4167; U.S. Dept. of the Interior, U.S. Geological Survey: Reston, VA, USA, 2000; p. 146.
- Lee, T.M. Hydrogeologic Controls on the Groundwater Interactions with an Acidic Lake in Karst Terrain, Lake Barco, Florida. Water Resour. Res. 1996, 32, 831–844. [Google Scholar] [CrossRef]
- Yihdego, Y.; Becht, R. Simulation of lake–aquifer interaction at Lake Naivasha, Kenya using a three-dimensional flow model with the high conductivity technique and a DEM with bathymetry. J. Hydrol. 2013, 503, 111–122. [Google Scholar] [CrossRef]
- Cheng, X.; Anderson, M.P. Numerical Simulation of Ground-Water Interaction with Lakes Allowing for Fluctuating Lake Levels. Groundwater 1993, 31, 929–933. [Google Scholar] [CrossRef]
- Kidmose, J.; Engesgaard, P.; Nilsson, B.; Laier, T.; Looms, M.C. Spatial Distribution of Seepage at a Flow-Through Lake: Lake Hampen, Western Denmark. Vadose Zone J. 2011, 10, 110. [Google Scholar] [CrossRef]
- Hunt, R. Ground Water-Lake Interaction Modeling Using the LAK3 Package for MODFLOW 2000. Ground Water 2003, 41, 114–118. [Google Scholar] [CrossRef]
- Buchberger, P. A Dráva-völgy árvédelmének története (History of flood control in the Drava Valley). Vízügyi Közlemények 1975, 75, 103–113. [Google Scholar]
- Pálfai, I. Magyarország Holtágai (Oxbows in Hungary); Hungarian Ministry of Transport and Water Management: Budapest, Hungary, 2001; p. 231.
- VKKI Vízgyűjtő-gazdálkodási terv. Dráva részvízgyűjtő (Water Basin Management Plan: Drava Partial Water Basin); Central Directorate for Water Management and Environmental Protection: Budapest, Hungary, 2010. [Google Scholar]
- Lóczy, D. Geological and Geomorphological Setting. In The Drava River: Environmental Problems and Solutions; Springer Science + Media: Cham, Switzerland, 2018; pp. 5–21. [Google Scholar]
- Lóczy, D.; Dezső, J.; Gyenizse, P.; Czigány, S.; Tóth, G. Oxbow Lakes: Hydromorphology. In The Drava River: Environmental Problems and Solutions; Springer Science + Media: Cham, Switzerland, 2019; pp. 177–198. [Google Scholar]
- Salem, A.; Dezső, J.; El-Rawy, M.; Lóczy, D. Statistical analysis of precipitation trend for Drava flood plain region in Hungary. In Proceedings of the GSRD International Conference, 579th International Conferences on Engineering and Natural Science (ICENS), Istanbul, Turkey, 21 March 2019; pp. 43–47. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A 1948, 193, 120–145. [Google Scholar]
- Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Allen, R.G.; Food and Agriculture Organization of the United Nations (Eds.) FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 978-92-5-104219-9. [Google Scholar]
- Dezső, J.; Salem, A.; Lóczy, D.; Slowik, M.; Dávid, P. Randomly layered fluvial sediments influenced groundwater-surface water interaction. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM 2017, Vienna, Austria, 27 June–6 July 2017; Volume 17, pp. 331–338. [Google Scholar]
- Słowik, M.; Dezső, J.; Marciniak, A.; Tóth, G.; Kovács, J. Evolution of river planforms downstream of dams: Effect of dam construction or earlier human-induced changes?: Evolution of river planforms downstream of dams. Earth Surf. Process. Landf. 2018, 43, 2045–2063. [Google Scholar] [CrossRef]
- Salem, A.; Dezső, J.; El-Rawy, M.; loczy, D.; Halmai, Á. Estimation of groundwater recharge distribution using Gis based WetSpass model in the Cun-Szaporca oxbow, Hungary. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM 2019, Albena, Bulgaria, 28 June–7 July 2019; Volume 19, pp. 169–176. [Google Scholar]
- Abdollahi, K.; Bashir, I.; Verbeiren, B.; Harouna, M.R.; Van Griensven, A.; Huysmans, M.; Batelaan, O. A distributed monthly water balance model: Formulation and application on Black Volta Basin. Environ. Earth Sci. 2017, 76, 198. [Google Scholar] [CrossRef]
- Batelaan, O.; Smedt, F.D. WetSpass: A flexible, GIS based, distributed recharge methodology for regional groundwater modelling. In Impact of Human Activity on Groundwater Dynamics; Gehrels, H., Peters, J., Leibundgut, C., Eds.; International Association of Hydrological Sciences: Wallingford, UK, 2001; pp. 11–17. [Google Scholar]
- Abu-Saleem, A.; Al-Zubi, Y.; Rimawi, O.; Al-Zubi, J.; Alouran, N. Estimation of Water Balance Components in the Hasa Basin with GIS based WetSpass Model. J. Agron. 2010, 9, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Gebreyohannes, T.; De Smedt, F.; Walraevens, K.; Gebresilassie, S.; Hussien, A.; Hagos, M.; Amare, K.; Deckers, J.; Gebrehiwot, K. Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. J. Hydrol. 2013, 499, 110–123. [Google Scholar] [CrossRef]
- Armanuos, A.M.; Negm, A.; Yoshimura, C.; Valeriano, O.C.S. Application of WetSpass model to estimate groundwater recharge variability in the Nile Delta aquifer. Arab. J. Geosci. 2016, 9, 553. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Cheng, F.; Shen, Z. WetSpass-Based Study of the Effects of Urbanization on the Water Balance Components at Regional and Quadrat Scales in Beijing, China. Water 2017, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.; Dezső, J.; El-Rawy, M. Assessment of Groundwater Recharge, Evaporation, and Runoff in the Drava Basin in Hungary with the WetSpass Model. Hydrology 2019, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Batelaan, O.; De Smedt, F. GIS-based recharge estimation by coupling surface–subsurface water balances. J. Hydrol. 2007, 337, 337–355. [Google Scholar] [CrossRef]
- Niswonger, R.G.; Panday, S.; Ibaraki, M. MODFLOW-NWT, A Newton Formulation for MODFLOW-2005; U.S. Geological Survey: Reston, VA, USA, 2011.
- Winston, R.B. ModelMuse-A Graphical User Interface for MODFLOW-2005 and PHAST: US Geological Survey Techniques And Methods 6-A29; U.S. Geological Survey: Reston, VA, USA, 2009.
- Guimerà, J.; Vives, L.; Carrera, J. A discussion of scale effects on hydraulic conductivity at a granitic site (El Berrocal, Spain). Geophys. Res. Lett. 1995, 22, 1449–1452. [Google Scholar] [CrossRef]
- Zhang, Y.; Gable, C.W.; Person, M. Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin-scale flow simulations: Equivalent conductivity of experimental stratigraphy. Water Resour. Res. 2006, 4, W05404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Person, M.; Gable, C.W. Representative hydraulic conductivity of hydrogeologic units: Insights from an experimental stratigraphy. J. Hydrol. 2007, 339, 65–78. [Google Scholar] [CrossRef]
- Poeter, E.E.; Hill, M.C.; Banta, E.R.; Mehl, S.; Christensen, S. UCODE_2005 and Six Other Computer Codes for Universal Sensitivity Analysis, Calibration, and Uncertainty Evaluation; U.S. Geological Survey: Reston, VA, USA, 2006; p. 283.
- Banta, E.R. ModelMate—A Graphical User Interface for Model Analysis; U.S. Geological Survey: Reston, VA, USA, 2011; p. 26.
Parameter | Value | Unit | Description |
---|---|---|---|
HKZ1 | 360 | m d−1 | Hydraulic conductivity of zone 1 |
HKZ2 | 25 | m d−1 | Hydraulic conductivity of zone 2 |
HKZ3 | 0.10 | m d−1 | Hydraulic conductivity of zone 3 |
HKZ4 | 5 | m d−1 | Hydraulic conductivity of zone 4 |
HKZ5 | 60 | m d−1 | Hydraulic conductivity of zone 5 |
RIVC1 | 300 | m2 d−1 | River conductance of streams 1 |
RIVC2 | 5 | m2 d−1 | River conductance of streams 2 |
GHB | 40 | m2 d−1 | Conductance of general head boundary |
RCH | 0.95R | mm d−1 | Groundwater recharge |
Input | Output | Input−Output | |||
---|---|---|---|---|---|
(m3 day−1) | % | (m3 day−1) | % | (m3 day−1) | |
Recharge | 546,403 | 36.8 | 457 | 0.0 | 545,946 |
Evapotranspiration | 0 | 0.0 | 149,992 | 10.1 | −149,992 |
GHB boundary | 627,789 | 42.3 | 10,949 | 0.7 | 616,840 |
River | 62,766 | 4.2 | 1,275,244 | 85.8 | −1,212,478 |
Lake | 6868 | 0.5 | 4967 | 0.3 | 1901 |
Storage | 242,055 | 16.3 | 44,265 | 3.0 | 197,783 |
Total | 1,485,881 | 100.0 | 1,485,874 | 100.0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, A.; Dezső, J.; El-Rawy, M.; Lóczy, D. Hydrological Modeling to Assess the Efficiency of Groundwater Replenishment through Natural Reservoirs in the Hungarian Drava River Floodplain. Water 2020, 12, 250. https://doi.org/10.3390/w12010250
Salem A, Dezső J, El-Rawy M, Lóczy D. Hydrological Modeling to Assess the Efficiency of Groundwater Replenishment through Natural Reservoirs in the Hungarian Drava River Floodplain. Water. 2020; 12(1):250. https://doi.org/10.3390/w12010250
Chicago/Turabian StyleSalem, Ali, József Dezső, Mustafa El-Rawy, and Dénes Lóczy. 2020. "Hydrological Modeling to Assess the Efficiency of Groundwater Replenishment through Natural Reservoirs in the Hungarian Drava River Floodplain" Water 12, no. 1: 250. https://doi.org/10.3390/w12010250
APA StyleSalem, A., Dezső, J., El-Rawy, M., & Lóczy, D. (2020). Hydrological Modeling to Assess the Efficiency of Groundwater Replenishment through Natural Reservoirs in the Hungarian Drava River Floodplain. Water, 12(1), 250. https://doi.org/10.3390/w12010250