Multiple Temporal Scales Assessment in the Hydrological Response of Small Mediterranean-Climate Catchments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Small Mediterranean-Climate Catchments
2.1.2. Es Fangar Creek
2.2. Hydrological Response of Small Mediterranean-Climate Catchments
2.3. Monitoring and Data Acquisition in Es Fangar
2.4. Rainfall-Runoff Relationship Assessment in Es Fangar
3. Results
3.1. Hydrological Response of Small Mediterranean-Climate Catchments
3.1.1. Annual Scale: Lithology Influence
3.1.2. Event Scale: Seasonality, Lithology and Land Use Influences
3.2. Hydrological Response at Multiple Temporal Scales in Es Fangar Catchment
3.2.1. Annual Scale
3.2.2. Seasonal Scale
3.2.3. Non-Linearity Assessment at Event Scale
4. Discussion on Hydrological Responses in Small Mediterranean-Climate and Es Fangar Catchments
4.1. Annual and Seasonal Scales
4.1.1. Small Mediterranean-Climate Catchments: Lithology Influences
4.1.2. Es Fangar
4.2. Event Scale
4.2.1. Seasonality, Lithology and Land Use Influences on Small Mediterranean-Climate Catchments Hydrological Response
4.2.2. Rainfall-Runoff Relationship at the Es Fangar Catchment
4.2.3. Non-Linearity Assessment at Es Fangar Catchment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Time Scale | Catchment | Country | Area (km2) | Precipitation (mm year−1) | Temperature (ºC) | Main Lithology | Reference |
(a) Annual scale | Watershed C | USA | 0.05 | 657 | 16.1 | Impervious | Cited in Latron [47] |
TM9 | Spain | 0.06 | 891 | 13.5 | Impervious | Cited in Latron [47] | |
Watershed B | USA | 0.09 | 901.7 | 13.9 | Impervious | Dahlgren et al. [75] | |
Watershed G | USA | 0.13 | 931.3 | 13.9 | Impervious | Dahlgren et al. [75] | |
Watershed B | USA | 0.17 | 623 | 16.1 | Impervious | Cited in Latron [47] | |
Watershed A | USA | 0.19 | 623 | 16.1 | Impervious | Cited in Latron [47] | |
Spruce | France | 0.20 | 1794 | 6.6 | Impervious | Didon-Lescot et al. [36] | |
La Sapine | France | 0.20 | 1715.6 | 6.6 | Impervious | Didon-Lescot et al. [36] | |
Watershed C | USA | 0.23 | 898.8 | 13.9 | Impervious | Dahlgren et al. [75] | |
Mokobulaam | South Africa | 0.26 | 1150 | 17.2 | Impervious | Cited in Nadal-Romero [34] | |
HREC | USA | 0.33 | 549 | 15.0 | Pervious | Swarowsky et al. [54] | |
Guadalperalón | Spain | 0.35 | 502 | 16.0 | Pervious | Ceballos and Schnabel [9] | |
La Teula | Spain | 0.39 | 595.5 | 12.5 | Impervious | Cited in Latron [47] | |
Araguás | Spain | 0.45 | 764.6 | 11.8 | Impervious | Nadal-Romero [34] | |
Avic | Spain | 0.52 | 548 | 12.5 | Impervious | Cited in Latron [47] | |
Sta Magdalena | Spain | 0.53 | 1418 | 7.3 | Pervious | Latron [47] | |
Can Vila | Spain | 0.56 | 1041 | 9.0 | Impervious | Latron [47] | |
Boussicaut | France | 0.73 | 1038 | 13.9 | Impervious | Cited in Latron [47] | |
San Salvador | Spain | 0.92 | 1108 | 9.5 | Pervious | Serrano-Muela [56] | |
Parapuños | Spain | 1.00 | 516.2 | 14.3 | Impervious | Schnabel et al. [74] | |
Schubert | USA | 1.03 | 708 | 15.7 | Impervious | Lewis et al. [35] | |
Can Revull | Spain | 1.03 | 517 | 16.5 | Impervious | Estrany et al. [15] | |
Sa Murtera | Spain | 1.20 | 520.4 | 16.5 | Pervious | García-Comendador et al. [58] | |
Cannata | Italy | 1.30 | 671 | 14.3 | Pervious | Licciardello et al. [76] | |
Ca l’Isard | Spain | 1.32 | 1128 | 7.3 | Pervious | Latron [47] | |
Vaubarnier | France | 1.49 | 1059 | 13.9 | Impervious | Cited in Latron [47] | |
Desteou | France | 1.53 | 1169 | 13.9 | Impervious | Cited in Latron [47] | |
Bosc | Spain | 1.60 | 675.1 | 13.0 | Impervious | Pacheco et al. [77] | |
TM0 | Spain | 2.00 | 1004 | 13.5 | Impervious | Cited in Latron [47] | |
Campàs | Spain | 2.57 | 675.1 | 13.0 | Impervious | Pacheco et al. [77] | |
Kamech | Tunisia | 2.63 | 650 | 14.0 | Impervious | Slimane et al. [78] | |
Arnás | Spain | 2.84 | 951 | 11.0 | Impervious | Lana-Renalut [10] | |
Headwater 4 | Jordan | 3.20 | 493 | 16.7 | Pervious | Riest et al. [61] | |
Es Fangar | Spain | 3.35 | 840.8 | 15.7 | Pervious | This study | |
Cal Rodó | Spain | 4.17 | 1125 | 9.0 | Pervious | Latron [47] | |
Headwater 3 | Jordan | 4.20 | 491 | 16.7 | Pervious | Riest et al. [61] | |
Biniaraix | Spain | 4.40 | 1453.2 | 12.0 | Pervious | Calsamiglia et al. [55] | |
Sa Font de la Vila | Spain | 4.80 | 519.6 | 16.5 | Pervious | García-Comendador et al. [58] | |
Cogolins | France | 5.47 | 833 | 13.9 | Impervious | Cited in Latron [47] | |
Headwater 2 | Jordan | 8.40 | 367 | 16.7 | Pervious | Riest et al. [61] | |
Maurets | France | 8.48 | 1088 | 13.9 | Impervious | Cited in Latron [47] | |
Valescure | France | 9.22 | 1208 | 13.9 | Impervious | Cited in Latron [47] | |
Maraval | France | 9.61 | 822 | 13.9 | Impervious | Cited in Latron [47] | |
Catchment | Country | Area (km2) | Precipitation (mm year−1) | Land use | Main lithology | Reference | |
(b) Event scale | Guadalperalón | Spain | 0.35 | 22 | Agroforestry | Pervious | Ceballos and Schnabel [9] |
Can Vila | Spain | 0.56 | 39.6 | Agricultural | Impervious | Latron and Gallart [18]; Roig-Planasdemunt et al. [79]; Cayuelta et al. [80] | |
Parapuños | Spain | 1.00 | 17.4 | Agroforestry | Impervious | Schnabel et al. [74] | |
Can Revull | Spain | 1.03 | 19.9 | Agricultural | Impervious | Estrany et al. [15] | |
Sa Murtera | Spain | 1.20 | 43.9 | Shrub | Pervious | García-Comendador et al. [58] | |
Arnás | Spain | 2.84 | 20.1 | Shrub | Impervious | Lana-Renalut [10] | |
Headwater 4 | Jordan | 3.20 | 225 | Agricultural | Pervious | Riest et al. [61] | |
Es Fangar | Spain | 3.35 | 29 | Agroforestry | Pervious | This study | |
Headwater 3 | Jordan | 4.20 | 213 | Shrub | Pervious | Riest et al. [61] | |
Biniaraix | Spain | 4.40 | 42.6 | Forest | Pervious | Calsamiglia et al. [55] | |
Sa Font de la Vila | Spain | 4.80 | 36.9 | Shrub | Pervious | García-Comendador et al. [58] | |
Headwater 2 | Jordan | 8.40 | 174 | Shrub | Pervious | Riest et al. [61] |
Year | Rainfall Contribution of 5 Days (%) | Runoff Contribution of 5 Days (%) | Number of Days to Reach 50% of Runoff |
---|---|---|---|
2012–2013 | 32 | 37 | 10 |
2013–2014 | 35 | 53 | 5 |
2014–2015 | 23 | 50 | 5 |
2015–2016 | 35 | 28 | 17 |
2016–2017 | 41 | 28 | 3 |
ID | Date | Ptot (mm) | IPmean30 (mm h−1) | IPmax30 (mm h−1) | Qdur (h) | Q0 (m3 s−1) | Qmax (m3 s−1) | R (mm) | Rc (%) | AP1d (mm) | AP3d (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 27 October 2012 20:15 | 30.6 | 10.1 | 33.8 | 8.0 | 0.002 | 0.144 | 0.3 | 1.0 | 0.0 | 0.0 |
2 | 11 November 2012 22:20 | 47.3 | 11.3 | 77.5 | 18.0 | 0.008 | 1.747 | 6.7 | 14.1 | 3.4 | 3.4 |
3 | 28 November 2012 08:00 | 15.5 | 6.2 | 18.6 | 17.5 | 0.030 | 0.094 | 1.0 | 6.7 | 9.7 | 9.7 |
4 | 24 January 2013 09:00 | 21.3 | 5.7 | 24.6 | 12.7 | 0.011 | 0.036 | 0.3 | 1.6 | 0.0 | 15.3 |
5 | 24 January 2013 22:30 | 5.0 | 6.7 | 13.8 | 15.7 | 0.021 | 0.083 | 0.7 | 13.9 | 21.3 | 36.6 |
6 | 28 January 2013 03:30 | 16.8 | 4.5 | 7.8 | 44.5 | 0.012 | 0.064 | 1.2 | 6.9 | 1.7 | 32.5 |
7 | 28 February 2013 08:00 | 32.1 | 3.9 | 16.4 | 21.2 | 0.017 | 0.427 | 4.5 | 14.0 | 4.6 | 11.0 |
8 | 01 March 2013 21:00 | 8.7 | 5.0 | 14.6 | 8.0 | 0.035 | 0.077 | 0.0 | 0.5 | 32.2 | 40.6 |
9 | 13 March 2013 14:15 | 60.6 | 8.7 | 24.0 | 12.8 | 0.014 | 1.610 | 12.8 | 21.1 | 0.0 | 0.0 |
10 | 14 March 2013 20:30 | 6.6 | 8.8 | 13.2 | 17.6 | 0.038 | 0.156 | 1.6 | 23.5 | 60.8 | 60.8 |
11 | 05 April 2013 22:30 | 38.5 | 4.1 | 11.0 | 48.5 | 0.007 | 0.059 | 1.4 | 3.6 | 0.0 | 0.0 |
12 | 28 April 2013 21:00 | 24.6 | ND | ND | 46.5 | 0.011 | 0.347 | 3.0 | 12.3 | 22.1 | 23.0 |
13 | 19 November 2013 02:15 | 99.3 | 5.3 | 43.0 | 64.7 | 0.002 | 1.414 | 22.5 | 22.7 | 7.0 | 75.5 |
14 | 22 November 2013 09:30 | 8.8 | ND | ND | 24.7 | 0.044 | 0.093 | 1.6 | 18.2 | 1.3 | 1.3 |
15 | 27 November 2013 18:45 | 14.0 | 3.1 | 9.3 | 39.5 | 0.028 | 0.115 | 2.6 | 18.6 | 9.2 | 15.3 |
16 | 29 November 2013 10:30 | 10.3 | ND | ND | 25.5 | 0.046 | 0.155 | 2.4 | 23.3 | 3.6 | 28.8 |
17 | 30 November 2013 18:45 | 39.5 | 2.3 | 6.6 | 46.3 | 0.054 | 1.105 | 11.3 | 28.7 | 10.3 | 40.2 |
18 | 04 April 2014 03:15 | 49.8 | 2.6 | 6.6 | 44.7 | 0.002 | 1.006 | 7.8 | 15.6 | 3.8 | 8.0 |
19 | 25 April 2014 06:45 | 28.6 | 6.4 | 14.4 | 15.5 | 0.000 | 0.180 | 0.8 | 2.9 | 5.0 | 13.4 |
20 | 29 September 2014 13:45 | 48.6 | 16.2 | 56.4 | 14.0 | 0.001 | 2.356 | 4.2 | 8.7 | 11.8 | 13.9 |
21 | 04 December 2014 22:45 | 27.2 | 4.5 | 12.4 | 44.3 | 0.016 | 0.197 | 2.1 | 7.9 | 9.4 | 69.2 |
22 | 28 December 2014 10:45 | 36.0 | 5.1 | 10.8 | 39.3 | 0.008 | 0.183 | 2.5 | 7.0 | 2.2 | 2.2 |
23 | 20 January 2015 13:00 | 81.0 | 2.7 | 12.4 | 50.0 | 0.010 | 2.094 | 17.3 | 21.4 | 9.0 | 9.0 |
24 | 03 February 2015 09:45 | 22.6 | 1.4 | 9.6 | 7.5 | 0.019 | 0.058 | 0.3 | 1.5 | 0.4 | 21.6 |
25 | 04 February 2015 11:15 | 73.6 | 1.3 | 5.2 | 65.5 | 0.050 | 2.453 | 39.2 | 53.2 | 22.6 | 35.8 |
26 | 21 February 2015 22:15 | 30.6 | 1.6 | 6.8 | 24.8 | 0.022 | 0.883 | 5.9 | 19.3 | 0.0 | 0.0 |
27 | 24 February 2015 00:45 | 20.4 | 2.7 | 10.8 | 18.2 | 0.031 | 0.077 | 1.0 | 4.7 | 0.0 | 30.6 |
28 | 27 February 2015 13:00 | 20.4 | 3.1 | 9.2 | 31.8 | 0.026 | 0.164 | 2.1 | 10.3 | 5.4 | 11.8 |
29 | 14 March 2015 18:00 | 21.6 | 3.9 | 10.4 | 16.7 | 0.015 | 0.351 | 1.7 | 8.1 | 0.0 | 0.0 |
30 | 22 March 2015 02:45 | 6.2 | 4.1 | 11.2 | 8.7 | 0.020 | 0.056 | 0.3 | 5.3 | 1.4 | 11.6 |
31 | 24 March 2015 23:15 | 75.6 | 1.8 | 7.2 | 42.8 | 0.033 | 0.924 | 13.9 | 18.4 | 0.0 | 7.6 |
32 | 04 September 2015 03:00 | 32.4 | 1.7 | 19.6 | 11.0 | 0.004 | 0.783 | 1.1 | 3.3 | 0.6 | 2.6 |
33 | 30 September 2015 08:15 | 34.0 | 2.4 | 5.6 | 9.7 | 0.001 | 0.132 | 0.7 | 2.0 | 8.0 | 13.0 |
34 | 30 September 2015 18:15 | 27.2 | 2.0 | 13.2 | 16.8 | 0.037 | 0.207 | 1.3 | 4.9 | 36.2 | 47.0 |
35 | 01 April 2016 16:00 | 78.8 | 2.7 | 14.0 | 43.5 | 0.016 | 0.222 | 2.4 | 3.0 | 0.0 | 0.0 |
36 | 07 May 2016 11:15 | 41.8 | 2.7 | 6.4 | 13.5 | 0.006 | 0.092 | 0.5 | 1.2 | 1.6 | 1.6 |
37 | 19 December 2016 02:30 | 46.4 | 2.3 | 7.6 | 27.2 | 0.012 | 0.394 | 4.4 | 9.5 | 2.0 | 16.6 |
38 | 20 December 2016 09:00 | 115.8 | 6.3 | 21.6 | 16.0 | 0.054 | 2.434 | 23.5 | 20.3 | 24.4 | 49.2 |
39 | 21 December 2016 04:30 | 61.4 | 4.9 | 9.6 | 33.7 | 0.626 | 1.565 | 17.6 | 28.6 | 116.0 | 164.6 |
40 | 20 January 2017 07:50 | 28.0 | 1.8 | 6.8 | 13.0 | 0.013 | 0.180 | 1.4 | 5.0 | 4.0 | 9.8 |
41 | 20 January 2017 17:45 | 14.6 | 1.7 | 7.6 | 10.7 | 0.082 | 1.687 | 5.9 | 40.2 | 28.4 | 37.2 |
42 | 21 January 2017 07:00 | 44.2 | 2.6 | 7.6 | 19.2 | 0.230 | 3.942 | 28.9 | 65.4 | 35.4 | 50.6 |
43 | 22 January 2017 04:00 | 5.2 | 1.0 | 4.0 | 5.7 | 0.360 | 1.465 | 4.2 | 80.8 | 35.4 | 50.6 |
44 | 22 January 2017 16:00 | 12.2 | 0.8 | 4.0 | 9.0 | 0.243 | 0.461 | 2.9 | 23.8 | 44.4 | 96.2 |
45 | 23 January 2017 20:52 | 29.0 | 2.1 | 4.8 | 25.0 | 0.150 | 0.355 | 4.8 | 16.5 | 20.2 | 87.2 |
46 | 25 January 2017 11:45 | 5.4 | 1.2 | 4.8 | 31.3 | 0.036 | 0.235 | 0.3 | 5.4 | 0.0 | 51.6 |
47 | 27 January 2017 17:00 | 23.0 | 2.9 | 11.6 | 55.0 | 0.027 | 0.306 | 5.6 | 24.5 | 0.0 | 5.6 |
48 | 8 February 2017 06:30 | 47.4 | 2.9 | 8.8 | 41.5 | 0.013 | 0.843 | 5.6 | 11.8 | 0.0 | 12.8 |
49 | 5 June 2017 10:45 | 67.6 | 3.0 | 21.6 | 5.7 | 0.028 | 0.330 | 0.4 | 0.7 | 2.6 | 2.6 |
Min | 5.0 | 0.8 | 4.0 | 5.7 | 0.000 | 0.036 | 0.0 | 0.5 | 0.0 | 0.0 | |
Max | 115.8 | 16.2 | 77.5 | 65.5 | 0.626 | 3.942 | 39.2 | 80.8 | 116.0 | 164.6 | |
Median | 29.0 | 2.9 | 10.8 | 19.2 | 0.0 | 0.3 | 2.4 | 11.8 | 4.0 | 13.9 | |
SD | 25.5 | 3.0 | 13.8 | 16.4 | 0.108 | 0.857 | 8.3 | 16.2 | 20.6 | 31.6 |
ID | Flood Event | Ptot (mm) | IPmax30 (mm h−1) | R (mm) | Rc (%) | Qmax (m3 s−1) | Q0 (m3 s−1) | AP1d (mm) |
---|---|---|---|---|---|---|---|---|
42 | 21 January 2017 07:00 | 44.2 | 7.6 | 28.9 | 65 | 3.942 | 0.229 | 35.4 |
18 | 04 April 2014 03:15 | 49.8 | 6.6 | 7.8 | 16 | 1.006 | 0.002 | 3.8 |
2 | 11 November 2012 22:15 | 47.3 | 77.5 | 6.7 | 14 | 1.747 | 0.008 | 3.4 |
48 | 08 February 2017 06:30 | 47.4 | 8.8 | 5.6 | 12 | 0.843 | 0.012 | 0.0 |
37 | 19 December 2016 02:30 | 46.4 | 7.6 | 4.4 | 9 | 0.394 | 0.012 | 2.0 |
20 | 29 September 2014 13:45 | 48.6 | 56.4 | 4.2 | 9 | 2.356 | 0.015 | 11.8 |
36 | 07 May 2016 11:15 | 41.8 | 6.4 | 0.5 | 1 | 0.092 | 0.006 | 1.6 |
ID | Flood Event | Ptot (mm) | IPmax30 (mm h−1) | R (mm) | Rc (%) | Qmax (m3 s−1) | Q0 (m3 s−1) | AP1d (mm) |
---|---|---|---|---|---|---|---|---|
25 | 04 February 2015 11:15 | 73.6 | 5.2 | 39.2 | 53 | 2.453 | 0.046 | 22.6 |
42 | 21 January 2017 07:00 | 44.2 | 7.6 | 28.9 | 65 | 3.942 | 0.229 | 35.4 |
38 | 20 December 2016 09:00 | 115.8 | 21.6 | 23.5 | 20 | 2.434 | 0.054 | 24.4 |
13 | 19 November 2013 02:15 | 99.3 | 43.0 | 22.5 | 23 | 1.414 | 0.021 | 7.0 |
39 | 21 December 2016 04:30 | 61.4 | 9.6 | 17.6 | 29 | 1.565 | 0.626 | 116.0 |
23 | 20 January 2015 13:00 | 81.0 | 12.4 | 17.3 | 21 | 2.094 | 0.010 | 9.0 |
References
- Chiu, M.-C.; Leigh, C.; Mazor, R.; Cid, N.; Resh, V. Anthropogenic Threats to Intermittent Rivers and Ephemeral Streams. In Intermittent Rivers and Ephemeral Streams: Ecology and Management; Academic Press: Cambridge, MA, USA, 2017; pp. 433–454. ISBN 978-0-12-803904-5. [Google Scholar]
- Borg Galea, A.; Sadler, J.P.; Hannah, D.M.; Datry, T.; Dugdale, S.J. Mediterranean Intermittent Rivers and Ephemeral Streams: Challenges in monitoring complexity. Ecohydrology 2019, 12. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Datry, T.; Bonada, N.; Boulton, A. General Introduction. In Intermittent Rivers and Ephemeral Streams: Ecology and Management; Academic Press: Cambridge, MA, USA, 2017; pp. 1–597. ISBN 978-0-12-803904-5. Available online: https://www.elsevier.com/books/intermittent-rivers-and-ephemeral-streams/datry/978-0-12-803835-2 (accessed on 18 January 2020).
- Oueslati, O.; De Girolamo, A.M.; Abouabdillah, A.; Kjeldsen, T.R.; Lo Porto, A. Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrol. Process. 2015, 29, 4666–4682. [Google Scholar] [CrossRef]
- Costigan, K.H.; Kennard, M.J.; Leigh, C.; Sauquet, E.; Boulton, A.J. Flow Regimes in Intermittent Rivers and Ephemeral Streams. Intermittent Rivers Ephemer Streams. 2017, pp. 51–78. Available online: https://www.elsevier.com/books/intermittent-rivers-and-ephemeral-streams/datry/978-0-12-803835-2 (accessed on 18 January 2020).
- De Girolamo, A.M.; Lo Porto, A.; Pappagallo, G.; Tzoraki, O.; Gallart, F. The Hydrological Status Concept: Application at a Temporary River (Candelaro, Italy). River Res. Appl. 2015, 31, 892–903. [Google Scholar] [CrossRef]
- Latron, J.; Soler, M.; Llorens, P.; Gallart, F. Spatial and temporal variability of the hydrological response in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Hydrol. Process. 2008, 22, 775–787. [Google Scholar] [CrossRef]
- Ceballos, A.; Schnabel, S. Hydrological behaviour of a small catchment in the dehesa landuse system (Extremadura, SW Spain). J. Hydrol. 1998, 210, 146–160. [Google Scholar] [CrossRef]
- Lana-Renault, N. Respuesta Hidrológica y Sedimentológica en una Cuenca de Montaña Media Afectada por Cambios de Cubierta Vegetal: La Cuenca Experimental de Arnás. Pirineo Central, Universidad de Zaragoza. 2007. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=113822 (accessed on 21 April 2019).
- López-Tarazón, J.; Batalla, R.J.; Vericat, D.; Balasch, J.C. Rainfall, runoff and sediment transport relations in a mesoscale mountainous catchment: The River Isábena (Ebro basin). Catena 2010, 82, 23–34. [Google Scholar] [CrossRef]
- Lana-Renault, N.; Latron, J.; Regüés, D. Streamflow response and water-table dynamics in a sub-Mediterranean research catchment (Central Pyrenees). J. Hydrol. 2007, 347, 497–507. [Google Scholar] [CrossRef]
- Manus, C.; Anquetin, S.; Braud, I.; Vandervaere, J.-P.; Creutin, J.-D.; Viallet, P.; Gaume, E. Hydrology and Earth System Sciences A modeling approach to assess the hydrological response of small mediterranean catchments to the variability of soil characteristics in a context of extreme events. Hydrol. Earth Syst. Sci. 2009, 13, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Efstratiadis, A.; Koussis, A.D.; Koutsoyiannis, D.; Mamassis, N. Flood design recipes vs. reality: Can predictions for ungauged basins be trusted? Hazards Earth Syst. Sci 2014, 14, 1417–1428. [Google Scholar] [CrossRef] [Green Version]
- Estrany, J.; Garcia, C.; Batalla, R.J. Hydrological response of a small mediterranean agricultural catchment. J. Hydrol. 2010, 380, 180–190. [Google Scholar] [CrossRef]
- Huza, J.; Teuling, A.J.; Braud, I.; Grazioli, J.; Melsen, L.A.; Nord, G.; Raupach, T.H.; Uijlenhoet, R. Precipitation, soil moisture and runoff variability in a small river catchment (Ardèche, France) during HyMeX Special Observation Period 1. J. Hydrol. 2014, 516, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Zoccatelli, D.; Marra, F.; Armon, M.; Rinat, Y.; Smith, J.A.; Morin, E. Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins. Hydrol. Earth Syst. Sci. 2019, 23, 2665–2678. [Google Scholar] [CrossRef] [Green Version]
- Latron, J.; Gallart, F. Seasonal dynamics of runoff-contributing areas in a small mediterranean research catchment (Vallcebre, Eastern Pyrenees). J. Hydrol. 2007, 335, 194–206. [Google Scholar] [CrossRef]
- Lexartza-Artza, I.; Wainwright, J. Hydrological connectivity: Linking concepts with practical implications. Catena 2009, 79, 146–152. [Google Scholar] [CrossRef]
- McGlynn, B.L.; McDonnell, J.J. Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resour. Res. 2003, 39, 1090. [Google Scholar] [CrossRef] [Green Version]
- Buttle, J.M.; McDonald, D.J. Coupled vertical and lateral preferential flow on a forested slope. Water Resour. Res. 2002, 38, 18-1–18-16. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Soulsby, C.; Waldron, S.; Malcolm, I.A.; Bacon, P.J.; Dunn, S.M.; Lilly, A.; Youngson, A.F. Conceptualization of runoff processes using a geographical information system and tracers in a nested mesoscale catchment. Hydrol. Process. 2007, 21, 1289–1307. [Google Scholar] [CrossRef]
- Emanuel, R.E.; Hazen, A.G.; Mcglynn, B.L.; Jencso, K.G. Vegetation and topographic influences on the connectivity of shallow groundwater between hillslopes and streams. Ecohydrology 2014, 7, 887–895. [Google Scholar] [CrossRef]
- Boulton, A.J.; Rolls, R.J.; Jaeger, K.L. Hydrological Connectivity in Intermittent Rivers and Ephemeral Streams. In Intermittent Rivers Ephemer Streams; Academic Press: Cambridge, MA, USA, 2017; pp. 79–108. Available online: https://www.sciencedirect.com/science/article/pii/B9780128038352000048 (accessed on 18 January 2020).
- Penna, D.; Tromp-Van Meerveld, H.J.; Gobbi, A.; Borga, M.; Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 2011, 15, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Tromp-Van Meerveld, H.J.; McDonnell, J.J. Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resour. Res. 2006, 42, W02410. [Google Scholar] [CrossRef] [Green Version]
- Saffarpour, S.; Western, A.W.; Adams, R.; Mcdonnell, J.J. Multiple runoff processes and multiple thresholds control agricultural runoff generation. Hydrol. Earth Syst. Sci 2016, 20, 4525–4545. [Google Scholar] [CrossRef] [Green Version]
- Woodward, J. (Ed.) The Physical Geography of the Mediterranean; Oxford University Press: New York, NY, USA, 2009; ISBN 978-0-19-926803-0. [Google Scholar]
- Coustau, M.; Bouvier, C.; Borrell-Estupina, V.; Jourde, H. Natural Hazards and Earth System Sciences Flood modelling with a distributed event-based parsimonious rainfall-runoff model: Case of the karstic Lez river catchment. Hazards Earth Syst. Sci 2012, 12, 1119–1133. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Tsanis, I.K.; Daliakopoulos, I.N.; Jacob, D. Impact of climate change on water resources status: A case study for Crete Island, Greece. J. Hydrol. 2013, 479, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, N.P.; Demetropoulou, L.; Froebrich, J.; Jacobs, C.; Gallart, F.; Prat, N.; Porto, A.L.; Campana, C.; Papadoulakis, V.; Skoulikidis, N.; et al. Towards sustainable management of Mediterranean river basins: Policy recommendations on management aspects of temporary streams. Water Policy 2013, 15, 830–849. [Google Scholar] [CrossRef]
- Calvo-Cases, A.; Boix-Fayos, C.; Imeson, A. Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in southeast Spain. Geomorphology 2003, 50, 269–291. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; De Vente, J.; Boix-Fayos, C.; Calvo-Cases, A.; Asensio, C.; Puigdefábregas, J. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J. Arid Environ. 2011, 75, 1254–1261. [Google Scholar] [CrossRef]
- Nadal-Romero, E. Las áreas de Cárcavas (badlands) Como Fuente de Sedimento en Cuencas de Montaña: Procesos de Meteorización, Erosión y Transporte en Margas del Pirineo Central, Universidad de Zaragoza. 2007. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=206095 (accessed on 22 April 2019).
- Lewis, D.; Singer, M.; Dahlgren, R.; Tate, K. Hydrology in a California oak woodland watershed: A 17-year study. J. Hydrol. 2000, 240, 106–117. [Google Scholar] [CrossRef]
- Didon-Lescot, J.-F.; Guillet, B.; Lelong, F. Effect of the clearfelling on the water quality: Example of a spruce forest on a small catchment in France. Acta Geológica Hispánica 1993, 28, 45–53. [Google Scholar]
- Zuazo, D.V.; Pleguezuelo, C. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Buendia, C.; Batalla, R.J.; Sabater, S.; Palau, A.; Marcé, R. Runoff Trends Driven by Climate and Afforestation in a Pyrenean Basin. Land Degrad. Dev. 2016, 27, 823–838. [Google Scholar] [CrossRef] [Green Version]
- Caloiero, T.; Biondo, C.; Callegari, G.; Collalti, A.; Froio, R.; Maesano, M.; Matteucci, G.; Pellicone, G.; Veltri, A. Results of a long-term study on an experimental watershed in southern Italy. Forum Geogr. 2016, 15, 55–65. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Cammeraat, E.; Serrano-Muela, M.P.; Lana-Renault, N.; Regüés, D. Hydrological response of an afforested catchment in a Mediterranean humid mountain area: A comparative study with a natural forest. Hydrol. Process. 2016, 30, 2717–2733. [Google Scholar] [CrossRef]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Cammeraat, L.H.; Nieman, T. Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf. Process. Landforms 2008, 33, 1574–1584. [Google Scholar] [CrossRef]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Beven, K. Rainfall-Runoff Modelling The Primer, 2nd ed.; Wiley: Chichester, UK, 2012; ISBN 978-0-47-071459-1. [Google Scholar]
- Klemeš, V. Dilettantism in hydrology: Transition or destiny? Water Resour. Res. 1986, 22, 177S–188S. [Google Scholar] [CrossRef]
- Merheb, M.; Moussa, R.; Abdallah, C.; Colin, F.; Perrin, C.; Baghdadi, N. Hydrological response characteristics of Mediterranean catchments at different time scales: A meta-analysis. Hydrol. Sci. J. 2016, 61, 2520–2539. [Google Scholar] [CrossRef] [Green Version]
- Latron, J. Estudio del Funcionamiento Hidrológico de una Cuenca Mediterránea de Montaña (Vallcebre, Pirineos Catalanes), Universitat de Barcelona. 2003. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=235272 (accessed on 18 April 2019).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Guijarro, J.A. Contribución a la Bioclimatología de Baleares, Universitat de les Illes Balears. 1986. Available online: https://dialnet.unirioja.es/servlet/libro?codigo=613782 (accessed on 14 March 2019).
- YACU Estudio de Caracterización del régimen Extremo de Precipitaciones en la Isla de Mallorca, Junta D’Aigües de Les Illes Balears: Palma de Mallorca. 2003. Available online: http://observatoriaigua.uib.es/repositori/tp_precipitacion_2002.pdf (accessed on 18 April 2019).
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Maidment, D.R. Handbook of Hydrology, 1st ed.; McGraw-Hill: New York NY, USA, 1993; ISBN 0070397325. Available online: https://www.abebooks.com/9780070397323/Handbook-Hydrology-Maidment-David-0070397325/plp (accessed on 16 March 2019).
- Gallart, F.; Amaxidis, Y.; Botti, P.; Canè, G.; Castillo, V.; Chapman, P.; Froebrich, J.; García-Pintado, J.; Latron, J.; Llorens, R.; et al. Investigating hydrological regimes and processes in a set of catchments with temporary waters in Mediterranean Europe. Hydrol. Sci. J. 2008, 53, 618–628. [Google Scholar] [CrossRef]
- Swarowsky, A.; Dahlgren, R.A.; Tate, K.W.; Hopmans, J.W.; O’Geen, A.T. Catchment-Scale Soil Water Dynamics in a Mediterranean-Type Oak Woodland. Vadose Zone J. 2011, 10, 800. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, A.; Fortesa, J.; Garcia-Comendador, J.; Estrany, J. Respuesta hidro-sedimentaria en dos cuencas mediterráneas representativas afectadas por el cambio global. Cuaternario y Geomorfol. 2016, 30, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Muela, M.P. Influencia de la Cubierta Vegetal y las Propiedades del Suelo en la Respuesta Hidrológica: Generación de Escorrentía en una Cuenca Forestal de la Montaña Media Pirenaica, Universidad de Zaragoza. 2012. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=77003 (accessed on 15 May 2019).
- Gallart, F.; Llorens, P.; Latron, J.; Regüés, D. Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees. Hydrol. Earth Syst. Sci. 2002, 6, 527–537. [Google Scholar] [CrossRef] [Green Version]
- García-Comendador, J.; Fortesa, J.; Calsamiglia, A.; Calvo-Cases, A.; Estrany, J. Post-fire hydrological response and suspended sediment transport of a terraced Mediterranean catchment. Earth Surf. Process. Landforms 2017, 42, 2254–2265. [Google Scholar] [CrossRef]
- Gaillard, E.; Lavabre, J.; Isbérie, C.; Normand, M. Etat hydrique d’une parcelle et écoulements dans un petit basin versant du massif cristallin des Maures. Hydrogéologie 1995, 4, 41–48. [Google Scholar]
- Tzoraki, O.; Nikolaidis, N.P. A generalized framework for modeling the hydrologic and biogeochemical response of a Mediterranean temporary river basin. J. Hydrol. 2007, 346, 112–121. [Google Scholar] [CrossRef]
- Ries, F.; Schmidt, S.; Sauter, M.; Lange, J. Controls on runoff generation along a steep climatic gradient in the Eastern Mediterranean. J. Hydrol. Reg. Stud. 2017, 9, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Regüés, D.; Gallart, F. Seasonal patterns of runoff and erosion responses to simulated rainfall in badland area in Mediterranean mountain conditions (Vallcebre, southeastern Pyrenees). Earth Surf. Process. Landforms 2004, 29, 755–767. [Google Scholar] [CrossRef]
- Latron, J.; Gallart, F. Hydrological Response of Two Nested Small Mediterranean Basins Presenting Various Degradation States. Phys. Chem. Earth 1995, 20, 369–374. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Latron, J.; Lana-Renault, N.; Serrano-Muela, P.; Martí-Bono, C.; Regüés, D. Temporal variability in hydrological response within a small catchment with badland areas, central Pyrenees. Hydrol. Sci. J. 2008, 53, 629–639. [Google Scholar] [CrossRef]
- Cerdan, O.; Le Bissonnais, Y.; Govers, G.; Lecomte, V.; van Oost, K.; Couturier, A.; King, C.; Dubreuil, N. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. J. Hydrol. 2004, 299, 4–14. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Regüés, D.; Alvera, B.; Lana-Renault, N.; Serrano-Muela, P.; Nadal-Romero, E.; Navas, A.; Latron, J.; Martí-Bono, C.; Arnáez, J. Flood generation and sediment transport in experimental catchments affected by land use changes in the central Pyrenees. J. Hydrol. 2008, 356, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; López-Moreno, J.I.; Lorente, A.; Seeger, M.; García-Ruiz, J.M. Assessing the Effect of Climate Oscillations and Land-use Changes on Streamflow in the Central Spanish Pyrenees. AMBIO A J. Hum. Environ. 2003, 32, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Buendia, C.; Bussi, G.; Tuset, J.; Vericat, D.; Sabater, S.; Palau, A.; Batalla, R.J. Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Sci. Total Environ. 2016, 540, 144–157. [Google Scholar] [CrossRef]
- Gallart, F.; Llorens, P. Water resources and environmental change in Spain. A key issue for sustainable integrated catchment management. Cuad. Investig. Geográfica 2001, 27, 7–16. [Google Scholar] [CrossRef]
- Jordan, J.P. Spatial and temporal variability of stormflow generation processes on a Swiss catchment. J. Hydrol. 1994, 1–4, 357–382. [Google Scholar] [CrossRef]
- Tuset, J.; Vericat, D.; Batalla, R.J. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Sci. Total Environ. 2016, 540, 114–132. [Google Scholar] [CrossRef]
- Dunne, T.; Black, R.D. Partial Area Contributions to Storm Runoff in a Small New England Watershed. Water Resour. Res. 1970, 6, 1296–1311. [Google Scholar] [CrossRef] [Green Version]
- Gallart, F.; Llorens, P.; Latron, J. Studying the role of old agricultural terraces on runoff generation in a small Mediterranean mountainous basin. J. Hydrol. 1994, 159, 291–303. [Google Scholar] [CrossRef]
- Schnabel, S.; Lozano Parra, J.; Gómez-Gutiérrez, A.; Alfonso-Torreño, A. Hydrological dynamics in a small catchment with silvopastoral land use in SW Spain. Cuad. Investig. Geográfica 2018, 44, 557–580. [Google Scholar] [CrossRef] [Green Version]
- Dahlgren, R.A.; Tate, K.W.; Lewis, D.J.; Atwill, E.R.; Harper, J.M.; Allen-Diaz, B.H. Watershed research examines rangeland management effects on water quality. Calif. Agric. 2001, 55, 64–71. [Google Scholar] [CrossRef]
- Licciardello, F.; Barbagallo, S.; Gallart, F. Hydrological and erosional response of a small catchment in Sicily. J. Hydrol. Hydromech 2019, 67, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, E.; Farguell, J.; Úbeda, X.; Outeiro, L.; Miguel, A. Runoff and sediment production in a mediterranean basin under two different land uses. Cuaternario y Geomorfol. 2011, 25, 103–114. [Google Scholar]
- Ben Slimane, A.; Raclot, D.; Rebai, H.; Le Bissonnais, Y.; Planchon, O.; Bouksila, F. Combining field monitoring and aerial imagery to evaluate the role of gully erosion in a Mediterranean catchment (Tunisia). CATENA 2018, 170, 73–83. [Google Scholar] [CrossRef]
- Roig-Planasdemunt, M.; Llorens, P.; Latron, J. Seasonal and storm flow dynamics of dissolved organic carbon in a Mediterranean mountain catchment (Vallcebre, eastern Pyrenees). Hydrol. Sci. J. 2016, 62, 1–14. [Google Scholar] [CrossRef]
- Cayuela, C.; Latron, J.; Geris, J.; Llorens, P. Spatio-temporal variability of the isotopic input signal in a partly forested catchment: Implications for hydrograph separation. Hydrol. Process. 2019, 33, 36–46. [Google Scholar] [CrossRef]
Pre-Event Conditions | Event Conditions | ||
---|---|---|---|
Q0 | Baseflow at the start of the flood (m3 s−1) | Ptot | Rainfall depth (mm) |
AP1d | Antecedent precipitation 1 day before (mm) | IPmean30 | Average rainfall intensity (mm h−1) |
IPmax30 | Maximum 30’ rainfall intensity (mm h−1) | ||
Qmax | Maximum peak discharge (m3 s−1) | ||
R | Runoff (mm) | ||
Rc | Runoff coefficient |
Variables | Q0 | Ptot | IPmean30 | IPmax30 | Qmax | R | Rc |
---|---|---|---|---|---|---|---|
Q0 | 1 | 0.03 | 0.00 | 0.08 | 0.39 | 0.28 | 0.53 |
Ptot | 1 | 0.09 | 0.27 | 0.55 | 0.68 | 0.07 | |
IPmean30 | 1 | 0.79 | 0.15 | −0.06 | −0.21 | ||
IPmax30 | 1 | 0.25 | 0.03 | −0.17 | |||
Qmax | 1 | 0.82 | 0.67 | ||||
R | 1 | 0.62 | |||||
Rc | 1 | ||||||
Correlation significant at 0.01 level |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortesa, J.; Latron, J.; García-Comendador, J.; Tomàs-Burguera, M.; Company, J.; Calsamiglia, A.; Estrany, J. Multiple Temporal Scales Assessment in the Hydrological Response of Small Mediterranean-Climate Catchments. Water 2020, 12, 299. https://doi.org/10.3390/w12010299
Fortesa J, Latron J, García-Comendador J, Tomàs-Burguera M, Company J, Calsamiglia A, Estrany J. Multiple Temporal Scales Assessment in the Hydrological Response of Small Mediterranean-Climate Catchments. Water. 2020; 12(1):299. https://doi.org/10.3390/w12010299
Chicago/Turabian StyleFortesa, Josep, Jérôme Latron, Julián García-Comendador, Miquel Tomàs-Burguera, Jaume Company, Aleix Calsamiglia, and Joan Estrany. 2020. "Multiple Temporal Scales Assessment in the Hydrological Response of Small Mediterranean-Climate Catchments" Water 12, no. 1: 299. https://doi.org/10.3390/w12010299
APA StyleFortesa, J., Latron, J., García-Comendador, J., Tomàs-Burguera, M., Company, J., Calsamiglia, A., & Estrany, J. (2020). Multiple Temporal Scales Assessment in the Hydrological Response of Small Mediterranean-Climate Catchments. Water, 12(1), 299. https://doi.org/10.3390/w12010299